
Phishing Sites Detection from a Web Developer’s Perspective
Using Machine Learning

Xin Zhou
Department of Computer Science

University of Houston
xzhou21@uh.edu

Rakesh M. Verma
Department of Computer Science

University of Houston
rverma@uh.edu

Abstract

The Internet has enabled unprecedented
communication and new technologies. Concomitantly,
it has brought the bane of phishing and exacerbated
vulnerabilities. In this paper, we propose a model
to detect phishing webpages from a web developer’s
perspective. From this standpoint, we design 120
novel features based on content from a webpage,
four time-based and two search-based novel features,
plus we use 34 other content-based and 11 heuristic
features to optimize the model. Moreover, we select
Random Committee (Base learner: Random Tree)
for our framework since it has the best performance
after comparing with six other algorithms: Hellinger
Distance Decision Tree, SVM, Logistic Regression,
J48, Naive Bayes, and Random Forest. In real-time
experiments, the model achieved 99.4% precision and
98.3% MCC with 0.1% false positive rate in 5-fold
crossvalidation using the realistic scenario of an
unbalanced dataset.

1. Introduction

Over the last decade, many cyber attacks start
with a poisoned link. Phishing websites try to hook
Internet surfers into revealing their sensitive information
including credentials, bank account, and other personal
information. These new, short-lived phishing URLs can
easily bypass signature-based detectors. To combat this
problem, researchers have also used machine learning
methods to detect phishing websites. Nevertheless, there
is still no definitive solution with machine learning or
another approach.

We propose an effective phishing detection system
using machine learning, which is based on finding
and classifying the differences of webpage source
code between hand-coded, auto-generated, and
toolkit-generated webpages. We also add other features
selectively to optimize the framework. In the real world,
a phishing website normally exists for a very short

time. The no longer live phishing sites likely redirect to
legitimate sites. Therefore, we conduct our experiments
on both offline and real-time datasets.

For evaluating our work, we use accuracy, false
positive rate, precision, recall, and F score. We also
add MCC (Matthews correlation coefficient) and
AUC (Area under the ROC curve) for comparison
because these are better metrics for both balanced
and unbalanced datasets, since they balance the
classification performance between minority and
majority class. Precision is defined as true positives
divided by summation of true positives and false
positives, i.e., the proportion of positive identifications
that were actually correct. A phishing detection
system must aim for high precision, since true and
false positives are most important in a real world
application. Recall is defined as true positives divided
by the sum of true positives and false negatives, which
is the proportion of actual positives that are identified
correctly. Recall shows that how effectively the system
can detect a phishing webpage. Formulas for the metrics
are given in Aassal et al. [1].

We use crossvalidation, when the dataset is not too
large, to avoid over-fitting issues. Crossvalidation is
used to estimate how accurately a predictive model
performs in practice. Normally, the model is trained on
a training subset, then tested on a different subset of the
data called test dataset. Using crossvalidation gives a
more realistic idea of the performance, since the method
is tested in K rounds on every dataset instance. In K-fold
crossvalidation, the data is divided into K subsets. Then,
the algorithm uses ith subset as testing dataset in round i
and the remaining subsets as training dataset.

In this paper, we focus on web content analysis and
feature selection and make the following contributions:
(i) We introduce many new features for this problem.
(ii) In contrast to most previous work, we test our
models on both balanced and unbalanced datasets,
which is the more realistic scenario. (iii) We do both
real-time and offline experiments. (iv) We use the
right metrics for different scenarios, and (v) a new

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6486
URI: https://hdl.handle.net/10125/64536
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

classifier, the Hellinger Distance Decision Tree [2]. To
our knowledge, this has never been used for phishing
website or even any security challenge before. Our
observations and ideas are as follows:

A hand-coded website, which is created by an
attacker, is typically formatted poorly and has weird
behaviors. A web developer optimizes the usage of
HTML header tags for improving SEO (Search Engine
Optimization) [3]. For example, the source code of real
PayPal login page uses four <h1> tags and one <h2>
tag, but a fake PayPal page does not use any <h1> tag
and uses one <h2> tag (shown in Figure 1).

When a mimic site is just generated by a social
engineering toolkit,1 the links to social media sites
or other links may not match the domain of current
URL. A feature that checks the patterns on domain,
title, and links can help the model to identify the
discrepancies in source code. For example, Figure 2
shows a phishing website that is generated by SET
(Social-Engineer Toolkit). Note that the links such
as “http://facebook.com/legal/terms/update” and
“http://facebook.com/about/privacy/update” are
supposed to be internal links “/legal/terms/update”
and “/about/privacy/update.”

Figure 1. PayPal Login Page (Fake vs Real)

Normally, a business website has its own domain
emails for business, service, support, or internal
use, but many phishing sites do not have these
types of emails, since it adds extra cost and their
sites only exist for a very short time. We can
extract domain emails based on top search results
using Google, Bing, or other search engines to
avoid missclassifying some legitimate websites. For
example, a website “https://popuband.com” will own
email addresses such as “support@popuband.com,”
“service@popuband.com,” and so on, if they use email
to communicate with customers or employees. Only

1https://github.com/trustedsec/social-engineer-toolkit

Figure 2. Legitimate VS Phishing

a few attackers will spend the extra money to run
an email server. Even if they do, their emails may
not show up in the top search results, since phishing
websites are short-lived. Another hypothesis is that a
phishing website sometimes only mimics a subset of
the pages from a legitimate website, then its number of
sub-domains will be lower than legitimate one. Overall,
a legitimate website has many more sub-domains than
a phishing website. We used the “theHarvester”2 tool
with the Bing search engine (Google sometimes blocks
our IP) to extract these features, but it took from one to
three seconds to extract. We understand that this could
be a hindrance in a real world application, since most
people will not wait for a few seconds to open a web
page, but this can be used from the back-end to create
and update a powerful whitelist.

Some content-based features have been used

2https://github.com/laramies/theHarvester

Page 6487

https://github.com/trustedsec/social-engineer-toolkit
https://github.com/laramies/theHarvester

previously, e.g., [4, 5, 6, 7, 8, 9], but we should
extract features more carefully. From a web developer’s
perspective, different types of links have totally different
characteristics and purposes. For example, (1) using an
external image will slow down the loading speed; (2)
an external link of open source JavaScript library has
less impact compared to those video and image links;
(3) social share links normally are longer than others
or constant length based on a specific hash function;
(4) The length of links can vary, but the mean length
and standard deviation for each type of link is within a
certain range based on the development style, tools, and
directory management.

We also observed that toolkit-generated pages
have different characteristics compared to hand-coded
or auto-generated web pages. A web developer
will optimize the loading speed of a web page
so as to make it load up as fast as possible,
which means more customization and features will
be added. A developer will download libraries
like Bootstrap and JQuery, then save them into the
server instead of taking the link from a provider’s
page. For example, one can directly use the JQuery
link “https://code.jquery.com/jquery-3.3.1.slim.min.js”
on tag “<script>,” but downloading it to one’s server
is better.

SEO is super important to any website that needs
more visitors from search engines over time. A
mimic page usually contain weird links and headers, no
concerns about SEO since a phishing link is normally
sent by an email or embedded somewhere. Simply
calculating the mean and standard deviation of all
links does not make any sense, since a legitimate
website could also use lots of external links, but it
will be really meaningful if we group the links into
different categories by their behaviors, usage, and tags.
Therefore, we split all links into 30 sets based on HTML
tags and link types. Based on these sets, we calculate
the size, mean, and standard deviation for each set, thus
extracting 90 features totally. More details are shown on
L-Tree (Figure 3).

The rest of this paper is organized as follows. In
Section 2 we describe the features, feature extraction
and datasets. Section 3 details the pipeline for the
experiment. We present the results and analysis in
Section 4. Related works are discussed in Section 5 and
Section 6 concludes the paper.

2. Features and datasets

In this section we explain our features and describe
the datasets in detail.

2.1. Feature selection

Several features have been used by other researchers
for phishing URL/website detection. We select only
eight URL-based and three host-based features from
two surveys [10, 11] to enhance our detecting system,
since our goal is to improve the effectiveness of the
model based on the differences between hand-coded,
auto-generated, and toolkit-generated pages. We now
describe the features we have implemented for our
models. Most of them are novel, i.e., to our knowledge,
they have not been used by other researchers in the
phishing literature. In parentheses, next to the feature
group title, we list the number of features for each
category.

URL-based (8): (i) domain Length: length of
domain. (ii) hyphen symbol: number of hyphens
“-” in domain. (iii) consecutive numbers: find
all maximal sequences of digits in domain name
and calculate the score

∑
(length(number))2

(e.g., for “amaz0n.666buy01.com”, we get 12

+ 32 + 22 = 14). (iv) digits count: count
the number of digits in the domain (e.g.,
digits count(amaz0n.666buy01.com) = 6). (v) protocol:
whether the default hypertext transfer protocol is
used by the website (e.g., “https://google.com” uses
https://). (vi) numberOfPeriods: number of periods
in the URL. (vii) TLD: top level domain. If a URL
contains a common TLD (“com,” “net,” “org,” “edu,”
“mil,” “gov,” “co,” “edu,” “biz,” “info,” “me”), then
we set value of this attribute to 1. Otherwise, it is 0.
(viii) numberOfredirects: number of total redirects to
reach the final destination.

Search-based (2 novel features): (i) Number of
domain emails (novel): using “theHarvester” we extract
domain emails that are found in top 50 search results
from Bing. (ii) Number of hosts (novel): using
“theHarvester” to extract sub-domains that are found in
top 50 search results from Bing.

For example, we feed a domain “Microsoft.com”
into the Bing search engine, then count the number of
domain emails and number of sub-domains from top
50 search results. We choose 50 top search results
because it is the best number for extracting features in
reasonable time. Using more than 50 search results ends
up taking more time for feature extraction, but yields no
significant performance improvement.

Host-based (3): We use a custom parser to extract
these features based on the information from WHOIS
Lookup: (i) Expiration minus creation date. (ii) Current
minus updated date. (iii) Current minus creation date.

Content-based (90 (novel) + 12 + 22 + 30 (novel) =
154):

Page 6488

1. <a>, <link>, <script>, <video>, ,
<meta>: split all links by these six HTML tags
first, then divide again by five types: (i) any URL
contains current domain, (ii) social network links
(“Facebook,” “YouTube,” “Google,” “Twitter,”
“Instagram,” “Pinterest)”, (iii) other https links,
(iv) other http links, and (v) internal links.
Calculate the size, mean, and standard deviation
of these 30 sets. 30 * 3 = 90 novel features
(Figure 3).

Figure 3. L-Tree

2. Display/content features (12): (i) <h1> header
length, (ii) <h2> header length, (iii) title length,
(iv) number of inputs, (v) number of paragraphs,
(vi) number of spans, (vii) number of buttons,
(viii) real domain name on title, (ix) real domain
name on <h1>, and (x) real domain name on
<h2>, (xi) Is it a login page? (xii) Is there a
submit form?

3. Login form features (22): number of <input>
forms by their types: (i) button (ii) checkbox
(iii) color (iv) date (v) datatime-local (vi) email
(vii) file (viii) hidden (ix) image (x) month
(xi) number (xii) password (xiii) radio (xiv) range
(xv) reset (xvi) search (xvii) submit (xviii) tel
(xix) text (xx) time (xxi) url (xxii) week

4. Alexa Features (5 ∗ 3 ∗ 2 = 30 novel features):
Alexa rank is normalized by the ranges.
Convert [<1000, <10000, <100000, <500000,
<1000000, <5000000, 5000000+, unranked]
to [1, 2, 3, 4, 5, 6, 7, 8]. Group external links
into five sets by HTML tags: <link>, <script>,
<video>, , <a>. For each set of links,
compute: (i) Mean (5) and standard deviation (5)
of global ranks of domains. (ii) Mean (5) and
standard deviation (5) of country-based ranks of
domains. (iii) Mean (5) and standard deviation
(5) of country codes (ISO) in domains.

Time-based (4 novel features): A phishing website
is normally hosted on a cheap server with cheap domain,
which has poor performance. Therefore, we choose

four elapsed-time features based on feature extraction:
(i) Elapsed time for URL-based features. (ii) Elapsed
time for Host-based features: the parser will take longer
to find the information from WHOIS Lookup for poorer
servers. (iii) Elapsed time for Content-based features:
the loading speed of a website is based on its servers and
content. (iv) Elapsed time for Search-based features:
higher ranking webpages could be parsed much faster
than lower ranking ones.

2.2. Datasets

We use two major sources for our datasets, both
of them are publicly available and easy to access, and
keep updating the dataset every time we perform a new
experiment. (1) Phishing URLs from PhishTank.3 (2)
Legitimate URLs found by our URL-crawler.
Web crawler: We developed a URL crawler to
create two legitimate pools. Pool A contains a total
of 21369 URLs based on top 5000 websites from
Alexa on 05/28/2019. Pool B contains a total of
202,056 URLs based on top 50,000 websites from Alexa
on 06/01/2019. To ensure diversity of the dataset,
the URL-crawler grabs at most five URLs from each
website.
Offline dataset: We used phishing URLs that were
collected by PhishTank from 01/01/2019 to 04/22/2019.
Then we took 4090, 21369, and 202056 legitimate
URLs from pools A, A, and B respectively to conduct
three offline experiments.
Online dataset: We extracted the features of phishing
URL in real time. We collected a total of 2916 phishing
URLs from 04/23/2019 to 06/08/2019. Then we took
2916, 15263, and 202056 legitimate URLs from pools
A, A, and B respectively to conduct three real-time
experiments.

3. Pipeline

Figure 4 shows the pipeline of our system. It has the
following components:

Whitelist filter: We use the final URL (the
destination after all redirects) as our input URL.
Sometimes, a no longer existing phishing URL from
PhishTank may redirect to a common legitimate
web homepage such as “google.com/ServiceLogin,”
“facebook.com,” “google.com,” etc. Therefore, we use a
white list that contains five common legitimate websites
{google,microsoft, facebook, airbnb, bing} to filter
out such URLs that used to be phishing, but now redirect
to a legitimate website.

3https://www.phishtank.com/

Page 6489

https://www.phishtank.com/

Figure 4. System Pipeline

Feature extractor: We build the feature
extractor in Java with following libraries: Jsoup,
Apache-commons-net, htmlparser-1.6, WEKA V.3.8.2,
and theHarvester. For each URL, it takes on average
1.63 seconds to extract all the features on a Linux
3.10.0-862.6.3.el7 server with 2 x Eight-Core Intel Xeon
Processor 3.20GHz, 25MB Cache, 8 x 64GB memory
size, and dual 1-Gigabit Ethernet. Offline Version: We
download phishing URLs from PhishTank and extract
the features every time we start a new experiment.
This will let some fake phishing URLs (they are still
accessible but no longer being used as phishing) labeled
as phish feed into the machine learning model. Online
Version: The feature extractor automatically extracts
features from fresh phishing URLs as they are verified
by PhishTank.

Machine learning frameworks: We use the
WEKA library4 to construct our classification and
prediction models. We build the models based
on the following machine learning (ML) algorithms:
Hellinger Distance Decision Trees, SVM, Random
Forest, Naive Bayes, J48, Logistic Regression, and
Random Committee (Random Tree). This framework
is convenient and efficient in detecting phishing URLs.
We developed this framework for detecting phishing
URL/website, but it is flexible enough for detecting
phishing emails, if an email contains link(s).

Table 1: Performance Comparison of ML Algorithms
Alg. Acc. FP. Pre. Recall F1 MCC
R. C. 0.978 0.022 0.978 0.979 0.978 0.957
R. F. 0.971 0.027 0.973 0.970 0.971 0.943
J48 0.948 0.054 0.946 0.950 0.948 0.897
Logistic 0.928 0.074 0.926 0.930 0.928 0.856
SVM 0.929 0.037 0.859 0.811 0.834 0.790
HDDT 0.865 0.130 0.868 0.860 0.864 0.729

4https://www.cs.waikato.ac.nz/ml/weka/downloading.html

4. Analysis and results

4.1. Model

Based on the results shown in Table 1 of
different algorithms using an offline balanced dataset
(4090:4090) in 5-fold crossvalidation, we can see R.
C. (Random Committee) with base learner Random
Tree has the best performance compared to five other
models. Therefore, we implement our detecting system
using Random Committee for further investigation. All
following results are based on this method.

4.2. Random Committee

Random Committee is a type of ensemble learning
method that builds an ensemble of randomized base
classifiers. Each base classifiers is built using a different
random number seed (but based on the same data and
the same base learner). The final prediction is based on
an average of the predictions generated by the individual
base classifiers.

4.3. Evaluation

Detailed evaluation results for precision, recall, FP,
and MCC using balanced and unbalanced datasets are
given next. Tables 2 to 5 give offline results in
5-fold crossvalidation and Tables 6 to 9 give online
results with 5-fold crossvalidation. We also test the
model with combined features minus features from a
specific category (shown in Table 5 and 9). For
example, NU means the model with all features except
URL-based features. In real-world deployment of a
phishing detection system, the model must perform
with relatively high precision and recall. These tables
show that our model has achieved high precision, recall,
and MCC in both balanced and unbalanced datasets
in 5-fold crossvalidation. Comparing our offline and
online experiments, the best results were achieved with
all features (Table 7): 99.4% precision, 98.3% MCC
and 0.1% false positive rate on an unbalanced dataset
(15263:2916) in a real-time experiment.

We also gave a tough test to our method in
real time using a much larger dataset (202056:2916)
in 5-fold crossvalidation. As Table 8 shows, the
model still achieves 98.2% precision and 93.5% MCC
with 0.00025% false positive. For search-based
features only, the performance degrades with larger
unbalanced datasets (compare Tables 6, 7 and 8),
because many legitimate websites are not among the
top 50 retrieved results. Results without content-based
features on Table 5 & 9 are also lower, proving their
importance. However, we should mention that the

Page 6490

https://www.cs.waikato.ac.nz/ml/weka/downloading.html

content-based features are developed based on personal
web development experience of the authors and the
pyschology of the lazy phisher. We also perform
an online experiment without retraining to study their
effectiveness on unseen data.

It is hard to directly compare with other methods,
since the datasets are different. Nevertheless we note
that CANTINA+ [12], Tan et al. [13], and Shirazi et al.
[14] claim good results without using crossvalidation on
smaller datasets (details are shown in Table 10). Huang
et al. [15] uses a large dataset, but do not report false
positive rate in their paper and 97% accuracy is not
so high for a large unbalanced dataset. Samuel et al.
[16] propose an impressive framework and their model
has achieved relatively high accuracy, high MCC, and
low false positive rate, but they use train/test instead of
crossvalidation on a smaller dataset (150000:1216). The
model proposed by Ma et al. [17] also achieves good
results, but their dataset is unbalanced in an un-realistic
scenario, i.e., more phishing URLs than legitimate ones.

Table 2: Balanced (4090:4090) - Offline
Feat. Acc. FP Pre. Rec. F1 MCC AUC
URL 0.824 0.174 0.825 0.821 0.823 0.647 0.866
Host 0.773 0.403 0.702 0.948 0.807 0.583 0.868
Time 0.873 0.125 0.874 0.872 0.873 0.747 0.875
Search 0.786 0.170 0.814 0.743 0.777 0.575 0.829
Content 0.952 0.046 0.954 0.950 0.952 0.905 0.989
All 0.978 0.022 0.978 0.979 0.978 0.957 0.997

Table 3: Unbalanced (21369:4090 ≈ 5:1) - Offline
Feat. Acc. FP Pre. Rec. F1 MCC AUC
URL 0.924 0.028 0.824 0.674 0.741 0.702 0.885
Host 0.916 0.008 0.926 0.522 0.667 0.657 0.868
Time 0.944 0.025 0.856 0.785 0.819 0.787 0.880
Search 0.877 0.076 0.613 0.626 0.620 0.546 0.855
Content 0.977 0.009 0.950 0.904 0.927 0.913 0.992
All 0.987 0.005 0.973 0.948 0.961 0.953 0.996

Table 4: Unbalanced (202056:4090 ≈ 49:1) - Offline
Feat. Acc. FP Pre. Rec. F1 MCC AUC
URL 0.984 0.003 0.698 0.376 0.489 0.506 0.805
Host 0.985 0.003 0.742 0.412 0.530 0.547 0.785
Time 0.981 0.009 0.543 0.520 0.531 0.522 0.757
Search 0.980 0.000 0.500 0.000 0.001 0.015 0.714
Content 0.993 0.001 0.953 0.704 0.810 0.816 0.976
All 0.995 0.001 0.961 0.800 0.873 0.874 0.988

Table 5: Unbalanced (202056:4090 ≈ 49:1) - Offline
Feat. Acc. FP Pre. Rec. F1 MCC AUC
NU 0.994 0.001 0.942 0.780 0.853 0.855 0.981
NH 0.995 0.001 0.945 0.782 0.856 0.858 0.982
NT 0.995 0.001 0.956 0.795 0.868 0.870 0.976
NS 0.995 0.001 0.953 0.807 0.874 0.875 0.985
NC 0.987 0.006 0.697 0.690 0.694 0.687 0.842

Table 6: Balanced (2916:2916) - Online
Feat. Acc. FP Pre. Rec. F1 MCC AUC
URL 0.849 0.126 0.868 0.823 0.845 0.698 0.891
Host 0.810 0.344 0.737 0.963 0.835 0.650 0.881
Time 0.870 0.123 0.875 0.862 0.869 0.739 0.739
Search 0.838 0.103 0.883 0.778 0.827 0.680 0.894
Content 0.970 0.038 0.963 0.978 0.971 0.941 0.993
All 0.987 0.015 0.985 0.987 0.986 0.972 0.998

Table 7: Unbalanced (15263:2916 ≈ 5:1) - Online
Feat. Acc. FP Pre. Rec. F1 MCC AUC
URL 0.929 0.022 0.856 0.672 0.752 0.720 0.895
Host 0.913 0.005 0.949 0.486 0.642 0.643 0.882
Time 0.956 0.013 0.918 0.796 0.853 0.830 0.892
Search 0.899 0.061 0.684 0.694 0.689 0.629 0.892
Content 0.986 0.004 0.976 0.939 0.957 0.949 0.997
All 0.995 0.001 0.994 0.978 0.986 0.983 0.999

Table 8: Unbalanced (202056:2916 ≈ 69:1) - Online
Feat. Acc. FP Pre. Rec. F1 MCC AUC
URL 0.998 0.002 0.650 0.282 0.393 0.423 0.762
Host 0.989 0.002 0.736 0.373 0.495 0.520 0.801
Time 0.986 0.007 0.508 0.490 0.499 0.492 0.742
Sear. 0.986 0.000 1.000 0.002 0.003 0.041 0.746
Cont. 0.997 0.00034 0.971 0.785 0.868 0.871 0.986
All 0.998 0.00025 0.982 0.892 0.934 0.935 0.996

Table 9: Unbalanced (202056:2916 ≈ 69:1) - Online
Feat. Acc. FP Pre. Rec. F1 MCC AUC
NU 0.998 0.001 0.957 0.874 0.914 0.914 0.988
NH 0.997 0.001 0.951 0.874 0.911 0.911 0.988
NT 0.998 0.00034 0.974 0.898 0.935 0.935 0.986
NS 0.998 0.00038 0.971 0.898 0.934 0.933 0.989
NC 0.991 0.004 0.680 0.648 0.664 0.659 0.822

4.4. Feature ranking

To evaluate feature efficacy, we only chose the top 20
features to train and test. The results shown in Table 11

Page 6491

Table 10: Comparison with Other Methods from Research Literature (NR = Not Reported)
Technique Dataset (legit:phish) Evaluation Lang. Acc. FP Pre. Rec. F1 MCC AUC
Table 6 2916:2916 in real time 5-fold C.V. Several 0.987 0.015 0.985 0.987 0.986 0.972 0.998
Table 7 15263:2916 in real time 5-fold C.V. Several 0.995 0.001 0.994 0.978 0.986 0.983 0.999
Table 8 202056:2916 in real time 5-fold C.V. Several 0.998 0.0003 0.982 0.892 0.934 0.935 0.996
Samuel et al.
[16]

4531:1036 - PhishTank &
Intel Security.

5-fold C.V. English 0.990 0.001 0.991 0.957 0.974 0.968 0.998

Samuel et al.
[16]

4531:1036 (train) and
150000:1216 (test)

train/test Several 0.998 0.001 0.857 0.958 0.904 0.905 NR

Bahnsen et al.
[18] R.F.

1M:1M - web crawl &
PhishTank

3-fold C.V. Several 0.935 0.064 0.936 0.933 0.934 0.869 0.984

Bahnsen et al.
[18] LSTM

1M:1M - web crawl &
PhishTank

3-fold C.V. Several 0.987 0.014 0.986 0.989 0.987 0.975 0.999

Thomas et al.
[19]

500K:500K - Monarch,
Twitter, etc.

n-fold C.V. Several 0.866 0.003 0.961 0.734 0.832 0.725 NR

CANTINA+
[12]

1868:940 - several
different sources

train/test Several 0.970 0.013 0.964 0.955 0.959 0.940 NR

Ma et al. [17] 15000:20500 - DMOZ n-fold C.V. Several 0.955 0.001 0.998 0.924 0.960 0.913 NR

are based on a balanced dataset (2916:2916) using
Random Committee in 5-fold crossvalidation. Using
Information Gain, PCA, correlation, or Symmetrical
Uncertainty feature selection method to pick top 20
features, the model still achieved good performance.
Therefore, reducing the number of attributes to achieve
fast detection is achievable. For abbreviations of
content-based features, please see this page.5

4.5. False positives

We checked the false positives manually in a small
testing sample, which contains 100 legit and 100 phish
URLs. We observed one out of three false positives
(“https://www.paypal.com/signin?”) was because many
phishing URLs (ex. “http://dinas.tomsk.ru/language/”)
only existed for a very short time, then they redirected
to the legitimate PayPal login page. Even if we created
a whitelist to filter out these “legitimate” URLs from
PhishTank, some of them redirected to uncommon or
unknown legitimate websites, which were not included
in our whitelist.

4.6. False negatives

We observed seven false negatives in one of our
testing models because these phishing webpages are
built on legitimate domains. For example, one of these
phishing URLs was “https://sites.google.com/view
/im-not-a-robot” based on legitimate domain

5https://github.com/xzhou29/F E/blob/master/dataset/
list of content based features.txt

“google.com.”

4.7. Content and search-based features

The precision, recall, and MCC shown in Tables 2
to 8 have proved that features we use from web
development perspective actually work as well with
Random Committee algorithm. Without using
URL-based and host-based features, the models still
achieve comparable performance. Since the purpose
of this paper is to prove the efficiency of these
content-based features, therefore we only use a few
URL-based and host-based features. We believe our
model could be further enhanced by adding more
URL-based features, e.g., KL-Divergence, KS-Distance
from [21] and [22] and others.

5. Related works

An influential search-based framework, CANTINA
[23], uses TF-IDF scores of each term on the web
page, then generates a lexical signature by taking the
five terms with highest TF-IDF weights to feed into a
search engine (Google). Detection is based on whether
a domain of the current web page matches the domains
of the top 30 search results. In the real world, there are
many types of legitimate and phishing websites. For
example, many new legitimate websites exist, which
use very generic terms in their website content, e.g.,
non-profit websites do this frequently, and have no logos
in the web content. Such domains may not be easy
to find, if that website is not popular. Therefore, such

Page 6492

https://github.com/xzhou29/F_E/blob/master/dataset/list_of_content_based_features.txt
https://github.com/xzhou29/F_E/blob/master/dataset/list_of_content_based_features.txt

Table 11: Feature Ranking (see [20])
Method Top features FP Pre. Rec. MCC AUC
Information
Gain

CF 6, CF 137, CF 1, numberOfHosts, CF 11, time 4,
expiration minus creation, current minus creation, CF 93,
CF 16, CF 3, CF 21, CF 140, CF 8, time 1, CF 99, CF 143,
CF 136, CF 149, CF 15

0.035 0.966 0.974 0.939 0.970

Principle
Component
Analysis

CF 68, CF 83, CF 23, CF 21, CF 38, CF 27, CF 22, CF 2,
CF 8, CF 12, CF 39, CF 19, CF 34, CF 24, CF 29, CF 96,
CF 93, CF 65, CF 5, CF 110

0.032 0.842 0.892 0.840 0.942

Correlation protocol, time 1, CF 99, domain length,
current minus creation, expiration minus creation, CF 136,
CF 6, CF 141, CF 21, CF 68, hyphen symbol, CF 38,
CF 83, CF 7, CF 23, CF 93, CF 142, count digits, CF 1

0.005 0.973 0.926 0.940 0.961

Symmetrical
Uncert

CF 1, CF 21, CF 11, CF 6, protocol, time 1,
numnberOfHosts, CF 99, CF 136, CF 117, CF 137,
current minus creation, expiration minus creation,
hyphen symbol, CF 143, CF 81, CF 16, CF 3, CF 155,
CF 76

0.006 0,967 0.947 0.949 0.974

methods tend to have a relatively high false positive
rate, and must be complemented with other features.
Although our search-based features are inspired by [13,
23], they are novel, since we look for domain emails
and subdomains rather than keywords from the content.
Another search-based method by Tan et al. [13] focuses
on identifying brand names in HTML content to detect
phishing websites, since phishers normally place brand
names in different parts of a URL. They claim many
effective features based on the result, but the dataset
used is really small and legitimate URLs are collected
manually. If a detector uses this method only, it will not
work, since an attacker has full control on sub-domains
that can increase importance of the words on URL
weighting system. For example, if we build a phishing
website with uncommon strings or patterns as domain
name and then add these patterns on the web content,
it will lead search engines to show the domain on top
search results easily.

A hybrid framework CANTINA+ [12] uses a
new method that leverages the high similarity among
phishing web pages due to the prevalent use of phishing
tool-kits, and examines a web page’s similarity to known
phishing attacks via hashing to filter highly similar
phish. Their work tries to detect phishing pattern with
a low false positive rate by filtering via heuristics. They
also report run-time speedup because of this, but it
is still slower compared to other methods especially
in the feature extraction part. They implemented two
filters to reduce false positive rate: a hash-based filter
that compares a web page against known phish, and a
login filter that checks a login field. As the researchers
mentioned, hash-based filter actually is easy to beat, if

an attacker modifies something on the web page. Login
filter is based on three properties: Form Tag, Input Tag,
and login keywords. These still can be beaten, if an
attacker knows the rules of this filter. Other parts of this
work are based on [23]. Buder et al. [24] use some
machine learning algorithms and also add some visual
similarities features with the help of natural language
processing techniques.

There are more URL-based features such as patterns,
character frequency and character distances in [15, 25,
21, 22] and visual similarity-based features in [26, 27,
28]. Another hybrid framework by Samuel et al. [16]
uses 84 features based on calculation of the mean and
standard deviation of URL length, mld length (mld =
domain - top level domain), count of terms in URL,
etc. Some of their features lack good justifications.
However, this inspired our hypothesis that perhaps mean
and standard deviation of different types of links could
be used as features to predict phishing webpages, since a
social engineering toolkit keeps the same format or uses
external links all the time. Another hybrid approach by
Dadkhah et al. [29] is based on classification algorithms
that are capable of identifying different types of phishing
page. Harshal et al. [30] investigate the effectiveness
of three logistic regression classifiers using URL-based
features based on bag-of-X representations. Ding et
al. [31] use seven heuristic rules for detecting URL
obfuscation and identifying phishing websites.

A content-based framework PhishMon [4] uses
features based on capturing various characteristics of
legitimate web applications as well as their underlying
web infrastructures. Thakur et al. [5] focus on the
fundamental characteristics of phishing web sites and

Page 6493

decompose the classification task for a phishing web site
into URL classifier and content-based classifier. Yuan
et al. [8] propose to extract features from URLs and
webpage links to detect phishing website. Sahingoz et
al. [7] also analyze the hyperlinks found in the HTML
source code of the website. Li et al. [6] propose
a stacking model to detect phishing webpages using
URL and HTML features. Mao et al. [9] extract
many features from the Cascading Style Sheet (CSS)
of webpages, then select an effective feature set for
similarity.

A URL-based classifier by Xue et al. [32] uses
URL correlation, which is based on the similarity of
URLs with the list that they create. Furthermore, two
efficient URL-based classifiers by Verma et al. [21, 22]
focus on characters on URL. Page et al. [33] uses
URL shortener click analytics to compare the life cycle
of phishing and malware attacks. Additionally, Yang
et al. [34] propose a phishing detection approach
using deep learning. Ludl et al. [35] report their
findings on analyzing the effectiveness of two popular
blacklist-based anti-phishing solutions. Anand et al.
[36] train text generative adversarial network with URLs
in the minority class. Bahnsen et al. [18] use
recurrent neural network approach without the need
of manual feature creation. Liang et al. [37] uses
Bidirectional LSTM and report superior performance
than other machine learning methods. Nagaraj et al.
[38] use an ensemble machine learning model (RF NN)
for classifying phishing websites. Dong et al. [39]
use public key certification to detect phishing websites
in real time. Rao et al. [40] use key discriminative
features extracted from the source code of the website
to detect phishing websites and enhance the blacklist.
Williams et al. [41] investigate the end users behavior
when faced with phishing websites, then show a proof
of concept computer model for simulating human
behaviors. Zouina et al. [42] propose a lightweight
SVM system to detect phishing websites. A novel
method by Hara et al. [43] analyzes visual similarity
among web pages without a priori knowledge. Mehdi et
al. [44] propose a nonlinear regression algorithm with a
feature selection method, harmony search. Furthermore,
there are two useful surveys [10, 11] on phishing website
detection.

6. Conclusions

We propose an effective phishing detection
system using an ensemble learning method, Random
Committee, based on a total of 126 novel features
from web development perspective plus 45 other
features. Although, some features are inspired by

previous work, most are based on our observations
and understanding. We compared the models using
different machine learning techniques including
Hellinger Distance Decision Trees, SVM, Naive Bayes,
Logistic Regression, J48, Random Forest, and Random
Committee (Random Tree). The ensemble learning
method Random Committee with base learner Random
Tree had the best performance, thus we use it for further
study. The model achieved solid performance in a
difficult test, proving the effectiveness of our features.
Acknowledgments. We thank S. Baki and the reviewers
for insightful comments. Research supported in part by
NSF grants CNS 1319212 and DGE 1433817, and by
ARO grant W911NF-16-1-0422.

References

[1] A. El Aassal, L. Moraes, S. Baki, A. Das, and R. Verma,
“Anti-phishing pilot at ACM IWSPA 2018: Evaluating
performance with new metrics for unbalanced datasets,”
in Proceedings of 1st Anti-Phishing Pilot IWSPA-AP,
July 2018.

[2] D. A. Cieslak, T. R. Hoens, N. V. Chawla, and
W. P. Kegelmeyer, “Hellinger distance decision trees
are robust and skew-insensitive,” Data Mining and
Knowledge Discovery, pp. 136–158, 2012.

[3] QUICKSPROUT, “34 ways to improve SEO rankings in
2019.” quicksprout.com [Online; posted 2019].

[4] A. Niakanlahiji, B. Chu, and E. Al-Shaer, “Phishmon:
A machine learning framework for detecting phishing
webpages,” in 2018 IEEE International Conference on
Intelligence and Security Informatics, IEEE, 2018.

[5] T. Thakur and R. Verma, “Catching classical and
hijack-based phishing attacks,” in International
Conference on Information Systems Security,
pp. 318–337, Springer, 2014.

[6] Y. Li, Z. Yang, H. Y. X. Chen, and W. Liu, “A stacking
model using url and HTML features for phishing
webpage detection,” in Future Generation Comp. Syst.,
pp. 27–39, 2019.

[7] O. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine
learning based phishing detection from URLs,” Expert
Systems with Applications, pp. 345–357, 2018.

[8] H. Yuan, X. Chen, Y. Li, Z. Yang, and W. Liu,
“Detecting phishing websites and targets based on URLs
and webpage links,” in 24th International Conference on
Pattern Recognition, ICPR 2018, pp. 3669–3674, 2018.

[9] J. Mao, W. Tian, P. Li, T. Wei, and Z. Liang, “Phishing
website detection based on effective CSS features of web
pages,” in WASA, pp. 804–815, 2017.

[10] G. Varshney, M. Misra, and P. K. Atrey, “A survey
and classification of web phishing detection schemes,”
Security and Communication Networks, October 2016.

[11] D. Sahoo, C. Liu, and S. C. Hoi, “Malicious URL
detection using machine learning: A survey,” CORR,
vol. abs/1802.02871, 2018.

[12] G. Xiang, J. Hong, C. P. Rose, and L. Cranor,
“CANTINA+: A feature-rich machine framework for
detecting phishing web sites,” in ACM Transactions
on Information and System Security (TISSEC), vol. 14,
ACM, 2011.

Page 6494

https://www.quicksprout.com/ways-to-improve-seo-ranking/

[13] C. L. Tan, K. L. Chiew, and S. N. Sze, “Phishing website
detection using URL-assisted brand name weighting
system,” in ISPACS, IEEE, 2014.

[14] H. Shirazi, B. Bezawada, and I. Ray, “Kn0w thy doma1n
name: Unbiased phishing detection using domain name
based features,” in SACMAT ’18 Proceedings of the
23rd ACM on Symposium on Access Control Models and
Technologies, pp. p. 69–75, ACM, 2018.

[15] D. Huang, K. Xu, and J. Pei, “Malicious URL detection
by dynamically mining patterns without pre-defined
elements,” in World Wide Web - Internet and Web
Information Systems, vol. 17, pp. 1375–1394, 2014.

[16] S. Marchal, K. Saari, N. Singh, and N. Asokan, “Know
your phish: Novel techniques for detecting phishing sites
and their targets,” in 36th International Conference on
Distributed Computing Systems, IEEE, August 2016.

[17] J. Ma, L. K. Saul, S. Savage, , and G. M. Voelker,
“Beyond blacklists: Learning to detect malicious web
sites from suspicious URLs,” in in Proceedings of
the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1245–1254,
2009.

[18] A. C. Bahnsen, E. C. Bohorquez, S. Villegas, J. Vargas,
and F. A. Gonzlez, “Classifying phishing URLs using
recurrent neural networks,” in 2017 APWG Symposium
on Electronic Crime Research (eCrime), IEEE, 2017.

[19] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song,
“Design and evaluation of a real-time URL spam filtering
service,” in Proceedings of the 2011 IEEE Symposium on
Security and Privacy (SP), pp. 447–462, 2011.

[20] J. Alamelu Mangai, V. Santhosh Kumar, and
S. Appavu alias Balamurugan, “A novel feature selection
framework for automatic web page classification,”
International Journal of Automation and Computing,
pp. 442–448, 2012.

[21] R. Verma and A. Das, “What’s in a URL: Fast feature
extraction and malicious URL detection,” in IWSPA ’17
Proceedings of the 3rd ACM International Workshop on
Security and Privacy Analytics, ACM, 2017.

[22] R. Verma and K. Dyer, “On the character of
phishing URLs: Accurate and robust statistical learning
classifiers,” in CODASPY ’15 Proceedings of the 5th
ACM Conference on Data and Application Security and
Privacy, pp. p. 111–122, ACM, 2015.

[23] Y. Zhang, J. Hong, and L. Cranor., “CANTINA: A
content-based approach to detecting phishing web sites,”
in WWW ’07, pp. 639–648, ACM, 2007.

[24] E. Buber, B. Diri, and O. K. Sahingoz, “NLP
based phishing attack detection from URLs,” in
17th International Conference on ISDA, Delhi, India,
pp. 608–618, 2017.

[25] A. Subasi, E. Molah, F. Almkallawi, and T. J.
Chaudhery, “Intelligent phishing website detection
using random forest classifier,” in 2017 International
Conference on Electrical and Computing Technologies
and Applications, IEEE, 2017.

[26] T. Chen, T. Stepan, S. Dick, and J. Miller, “An
anti-phishing system employing diffused information,”
ACM Trans. Inf. Syst. Secur., vol. 16, no. 4,
pp. 16:1–16:31, 2014.

[27] S. Sarika and V. Paul., “Agenttab: An anti-phishing
framework to defend tabnabbing attack,” in International
Conference on Security and Authentication,
pp. 132–135, 2014.

[28] J. Mao, P. Li, K. Li, T. Wei, and Z. Liang,
“Baitalarm: detecting phishing sites using similarity in
fundamental visual features,” in Intelligent Networking
and Collaborative System, pp. 790–795, 2013.

[29] M. Dadkhah, S. Shamshirband, A. Wahid, and A. Wahab,
“A hybrid approach for phishing web site detection,” in
The Electronic Library, pp. 927–944, 2016.

[30] H. Tupsamudre, A. K. Singh, and S. Lodha, “Everything
is in the name a URL based approach for phishing
detection,” in Cyber Security Cryptography and
Machine Learning, pp. 231–248, Springer International
Publishing, May 2019.

[31] Y. Ding, N. Luktarhan, K. Li, and W. Slamu, “A
keyword-based combination approach for detecting
phishing webpages,” Computers & Security, p. 256275,
May 2019.

[32] Y. Xue, Y. Li, Y. Yao, X. Zhao, J. Liu, and R. Zhang,
“Phishing sites detection based on URL correlation,” in
4th International Conference on Cloud Computing and
Intelligence Systems, IEEE, 2016.

[33] S. Page, G. Jourdan, G. con Bochmann, J. Flood, and
I. Onut, “Using URL shorteners to compare phishing and
malware attacks,” in eCrime, pp. 1–13, IEEE, 2018.

[34] P. Yang, G. Zhao, and P. Zeng, “Phishing website
detection based on multidimensional features driven by
deep learning,” IEEE Access, Jan 2019.

[35] C. Ludl, S. McAllister, E. Kirda, and C. Kruegel, “On
the effectiveness of techniques to detect phishing sites,”
in DIMVA : Detection of Intrusions and Malware, and
Vulnerability Assessment, pp. 20–39, 2007.

[36] A. Anand, K. Gorde, J. Moniz, N. Park, T. Chakraborty,
and B. Chu, “Phishing URL detection with oversampling
based on text generative adversarial networks,” in
BigData, pp. 1168–1177, IEEE, 2018.

[37] Y. Liang, D. Bao, and J. Cui, “Bidirectional LSTM:
An innovative approach for phishing url identification,”
in Intelligent Technologies and Robotics, pp. 326–337,
Springer, Cham, June 2019.

[38] K. Nagaraj, B. Bhattacharjee, A. Sridhar, and G. S.
Sharvani, “Detection of phishing websites using a novel
twofold ensemble model,” in Systems and IT 20(3),
pp. 321–357, 2018.

[39] Z. Dong, A. Kapadia, J. Blythe, and L. J. Camp, “Beyond
the lock icon: real-time detection of phishing websites
using public key certificates,” in 2015 APWG Symposium
on Electronic Crime Research (eCrime), May 2015.

[40] R. Rao and A. Pais, “An enhanced blacklist method to
detect phishing websites,” in ICISS, pp. 323–333, 2017.

[41] N. Williams and S. Li, “Simulating human detection of
phishing websites: An investigation into the applicability
of the ACT-R cognitive behaviour architecture model,” in
CYBCONF, pp. 1–8, 2017.

[42] M. Zouina and B. Outtaj, “A novel lightweight URL
phishing detection system using svm and similarity
index,” Human-centric Computing and Information
Sciences, vol. 7, p. 17, 2017.

[43] M. Hara, A. Yamada, and Y. Miyake, “Visual
similarity-based phishing detection without victim
site information,” in Symposium on Computational
Intelligence in Cyber Security, IEEE, 2009.

[44] M. Babagoli, M. Pourmahmood, Aghababa, and
V. Solouk, “Heuristic nonlinear regression strategy
for detecting phishing websites,” in Soft Computing,
pp. 4315–4327, Springer Berlin Heidelberg, June 2019.

Page 6495

	Introduction
	Features and datasets
	Feature selection
	Datasets

	Pipeline
	Analysis and results
	Model
	Random Committee
	Evaluation
	Feature ranking
	False positives
	False negatives
	Content and search-based features

	Related works
	Conclusions

