1,827 research outputs found

    Comparisons & analyses of U.S. & global economic data & trends

    Get PDF
    Issued as final reportSRI Internationa

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Design and Simulation of a Miniature Cylindrical Mirror Auger Electron Energy Analyzer with Secondary Electron Noise Suppression

    Get PDF
    In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in the CMA. Laser Beam Machining, (LBM), of copper substrates was used to create copper pillars with very high surface areas, which were designed to supress SE’s. The LBM was performed with a Lumera SUPER RAPID‐HE model Neodymium Vanadate laser. The laser has a peak output power of 30 megawatts, has a 5x lens and a spot size of 16 μm. The laser wavelength is in the infrared at 1064 nm, a pulse width of 15 picoseconds, and pulse repetition rate up to 100 kHz. The spectrometer used in this research is intended for use when performing chemical analysis of the surface of bulk materials and thin films. It is applicable for metrology of thin films, as low as 0.4 nm in thickness, without the need to perform destructive sample thinning, which is required in Scanning Tranmission Electron Microscopy, (STEM). The spectrometer design is based on the well known and widely used coaxial cylinder capacitor design known as the Cylindrical Mirror Analyzer, (CMA). The coaxial tube arrangement of the CMA allows for placing an electron source,which is mounted in the center of the inner cylinder of the spectrometer. Simulation of the electron source with an Einzel Lens was also performed. In addtion, experiments with thin film coatings and Laser Beam Machining to supress Secondary Electron emission noise within the Auger electron spectrum were completed. Design geometry for the miniature CMA were modeled using Computer Aided Design, (CAD). Fixed Boundary Conditions, (BC), were applied and the geometry was then meshed for FEM. The electrostatic potential was then solved using the Poisson equation at each point. Having found the solution to the electrostatic potentials, electron flight simulations were performed and compared with the analytical solution. From several commercially available FEM modeling packages, COMSOL Multiphysics was chosen as the research platform for modeling of the spectrometer design. The CMA in this design was reduced in size by a factor of 4 to 5. This enabled mounting the CMA on a 2 ¾ in flange compared to the commercial PHI model 660 CMA which mounts onto a 10 in flange. Results from the Scanning Electron Microscopy measurements of the Secondary Electron emission characteristics of the LBM electron suppressor will also be presented

    Digitalising Dentistry: A Review

    Get PDF
    Digitalisation has not left any part of our lives untouched and dentistry is no exception to it. It has revolutionised dentistry in unimaginable ways.The denture market is continously growing and advancing to better suit the patient needs. The denture or medical technology has evolved massively from its infancy stage to maturity. If you haven't visited a dentist for some time, you may be surprised to discover that there are a lot of new options to keep teeth healthy and beautiful

    VLSI Revisited - Revival in Japan

    Get PDF
    This paper describes the abundance of semiconductor consortia that have come into existence in Japan since the mid-1990s. They clearly reflect the ambition of the government - through its reorganized ministry METI and company initiatives - to regain some of the industrial and technological leadership that Japan has lost. The consortia landscape is very different in Japan compared with EU and the US. Outside Japan the universities play a much bigger and very important role. In Europe there has emerged close collaboration, among national government agencies, companies and the EU Commission in supporting the IT sector with considerable attention to semiconductor technologies. Another major difference, and possibly the most important one, is the fact that US and EU consortia include and mix partners from different areas of the semiconductor landscape including wafer makers, material suppliers, equipment producers and integrated device makers.semiconductors, Hitachi, Sony, Toshiba, Elpida, Renesas, Sematech, VLSI, JESSI, MEDEA, ASPLA, MIRAI, innovation system

    Long Wavelength VCSELs and VCSEL-Based Processing of Microwave Signals

    Get PDF
    We address the challenge of decreasing the size, cost and power consumption for practical applications of next generation microwave photonics systems by using long-wavelength vertical cavity surface emitting lasers. Several demonstrations of new concepts of microwave photonics devices are presented and discussed

    VLSI REVISITED – REVIVAL IN JAPAN

    Get PDF
    This paper describes the abundance of semiconductor consortia that have come into existence in Japan since the mid-1990s. They clearly reflect the ambition of the government – through its reorganized ministry METI and company initiatives - to regain some of the industrial and technological leadership that Japan has lost. The consortia landscape is very different in Japan compared with EU and the US. Outside Japan the universities play a much bigger and very important role. In Europe there has emerged close collaboration, among national government agencies, companies and the EU Commission in supporting the IT sector with considerable attention to semiconductor technologies. Another major difference, and possibly the most important one, is the fact that US and EU consortia include and mix partners from different areas of the semiconductor landscape including wafer makers, material suppliers, equipment producers and integrated device makers.semiconductors; Hitachi; Sony; Toshiba; Elpida; Renesas; Sematech; VLSI; JESSI; MEDEA; ASPLA; MIRAI; innovation system
    corecore