20 research outputs found

    TOWARDS ROBUST REPRESENTATION LEARNING AND BEYOND

    Get PDF
    Deep networks have reshaped the computer vision research in recent years. As fueled by powerful computational resources and massive amount of data, deep networks now dominate a wide range of visual benchmarks. Nonetheless, these success stories come with bitterness---an increasing amount of studies has shown the limitations of deep networks on certain testing conditions like small input changes or occlusion. These failures not only raise safety and reliability concerns on the applicability of deep networks in the real world, but also demonstrate the computations performed by the current deep networks are dramatically different from those by human brains. In this dissertation, we focus on investigating and tackling a particular yet challenging weakness of deep networks---their vulnerability to adversarial examples. The first part of this thesis argues that such vulnerability is a much more severe issue than we thought---the threats from adversarial examples are ubiquitous and catastrophic. We then discuss how to equip deep networks with robust representations for defending against adversarial examples. We approach the solution from the perspective of neural architecture design, and show incorporating architectural elements like feature-level denoisers or smooth activation functions can effectively boost model robustness. The last part of this thesis focuses on rethinking the value of adversarial examples. Rather than treating adversarial examples as a threat to deep networks, we take a further step on uncovering adversarial examples can help deep networks improve the generalization ability, if feature representations are properly disentangled during learning

    Mathematical Optimization Algorithms for Model Compression and Adversarial Learning in Deep Neural Networks

    Get PDF
    Large-scale deep neural networks (DNNs) have made breakthroughs in a variety of tasks, such as image recognition, speech recognition and self-driving cars. However, their large model size and computational requirements add a significant burden to state-of-the-art computing systems. Weight pruning is an effective approach to reduce the model size and computational requirements of DNNs. However, prior works in this area are mainly heuristic methods. As a result, the performance of a DNN cannot maintain for a high weight pruning ratio. To mitigate this limitation, we propose a systematic weight pruning framework for DNNs based on mathematical optimization. We first formulate the weight pruning for DNNs as a non-convex optimization problem, and then systematically solve it using alternating direction method of multipliers (ADMM). Our work achieves a higher weight pruning ratio on DNNs without accuracy loss and a higher acceleration on the inference of DNNs on CPU and GPU platforms compared with prior works. Besides the issue of model size, DNNs are also sensitive to adversarial attacks, a small invisible noise on the input data can fully mislead a DNN. Research on the robustness of DNNs follows two directions in general. The first is to enhance the robustness of DNNs, which increases the degree of difficulty for adversarial attacks to fool DNNs. The second is to design adversarial attack methods to test the robustness of DNNs. These two aspects reciprocally benefit each other towards hardening DNNs. In our work, we propose to generate adversarial attacks with low distortion via convex optimization, which achieves 100% attack success rate with lower distortion compared with prior works. We also propose a unified min-max optimization framework for the adversarial attack and defense on DNNs over multiple domains. Our proposed method performs better compared with the prior works, which use average-based strategies to solve the problems over multiple domains
    corecore