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ABSTRACT

Large-scale deep neural networks (DNNs) have made breakthroughs in a variety of tasks, such

as image recognition, speech recognition and self-driving cars. However, their large model size

and computational requirements add a significant burden to state-of-the-art computing systems.

Weight pruning is an effective approach to reduce the model size and computational requirements

of DNNs. However, prior works in this area are mainly heuristic methods. As a result, the per-

formance of a DNN cannot maintain for a high weight pruning ratio. To mitigate this limitation,

we propose a systematic weight pruning framework for DNNs based on mathematical optimiza-

tion. We first formulate the weight pruning for DNNs as a non-convex optimization problem, and

then systematically solve it using alternating direction method of multipliers (ADMM). Our work

achieves a higher weight pruning ratio on DNNs without accuracy loss and a higher acceleration

on the inference of DNNs on CPU and GPU platforms compared with prior works.

Besides the issue of model size, DNNs are also sensitive to adversarial attacks, a small invisible

noise on the input data can fully mislead a DNN. Research on the robustness of DNNs follows two

directions in general. The first is to enhance the robustness of DNNs, which increases the degree of

difficulty for adversarial attacks to fool DNNs. The second is to design adversarial attack methods

to test the robustness of DNNs. These two aspects reciprocally benefit each other towards harden-

ing DNNs. In our work, we propose to generate adversarial attacks with low distortion via convex

optimization, which achieves 100% attack success rate with lower distortion compared with prior

works. We also propose a unified min-max optimization framework for the adversarial attack and

defense on DNNs over multiple domains. Our proposed method performs better compared with

the prior works, which use average-based strategies to solve the problems over multiple domains.
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1

CHAPTER 1

INTRODUCTION

1.1 Background

Large-scale deep neural networks or DNNs have made breakthroughs in many fields, such as image

recognition [3–5], speech recognition [6,7], game playing [8], and driver-less cars [9]. Despite the

huge success, their large model size and computational requirements will add significant burden

to state-of-the-art computing systems [3, 10, 11], especially for embedded and IoT systems. As

a result, a number of prior works are dedicated to model compression in order to simultaneously

reduce the computation and model storage requirements of DNNs, with minor effect on the overall

accuracy. These model compression techniques include weight pruning [11–15], weight clustering

[11, 16], and low rank approximation [17, 18], etc.

Most of the existing methods on weight pruning are heuristic. For example, some of them prune

the weights based on the magnitude of their value or gradient. However, the importance of weights

can not be determined by their magnitude. Which results in the fact that the heuristic methods

cannot achieve high pruning ratio on DNN without accuracy loss. To mitigate these shortcomings,

we present a systematic framework of weight pruning based on optimization algorithms. First, we

formulate weight pruning as a non-convex optimization problem. By using ADMM, the original

non-convex optimization problem is decomposed into two subproblems that are solved iteratively.
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In the weight pruning problem, one of these subproblems can be solved using stochastic gradient

descent, while the other can be solved analytically. Upon convergence of alternating direction

method of multipliers (ADMM), we remove the weights which are (close to) zero and retrain the

network. Our extensive numerical experiments indicate that ADMM works very well in practice

and is highly suitable for weight pruning. The weight pruning results consistently outperform prior

works.

Recent research also demonstrates that DNNs are vulnerable to adversarial attacks, a small

invisible change on an image can change how it is classified. Research on the robustness of DNNs

follows two directions in general. The first is to enhance the robustness of DNNs, which increases

the degree of difficulty for adversarial attacks to fool DNNs [19–22]. The second is to design

adversarial attack methods to test the robustness of DNNs [23–27]. These two aspects reciprocally

benefit each other towards hardening DNNs.

Most adversarial attack generation problems in the literature are solved by first-order gradi-

ent descent method. In contrast to these methods, we first formulate adversarial attack on deep

neural networks as a non-convex optimization problem. Then we relax it to a convex problem by

proposing a linear approximation on the activation function. We also designed an algorithm which

iteratively solve the convex problem and prove that upon convergence the solution is feasible for

the original non-convex problem. In experiments, we achieve 100% success rate on neural network

models with lower distortion compared with prior works.

Many problem setups in adversarial attacks and defenses need the optimization in multiple

domains, such as attacking model ensembles [28, 29], devising universal perturbation to input

samples [30] and generalized AT over multiple types of threat models [31, 32]. However, current

methods for solving these tasks often rely on simple heuristics (e.g., uniform averaging). We pro-

pose a unified min-max optimization framework on solving these problems, and achieve significant

performance improvements compared with current methods.

In transportation networks, mass enters through source cells and, after being routed through

the network, are removed at sink cells. The flow of mass is subject to (i) conservation of mass
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constraints, and (ii) link capacity constraints. In our work, we study interdiction or attack on trans-

portation networks, which for the sake of concreteness we consider to be highway traffic networks.

Our work follows [1] in formulating the optimal interdiction problem as a min-max optimization

problem and subsequently employing duality to transform it to a standard bilinear optimization

problem. We prove that even without an explicit promotion of sparsity in the formulation, the

solution to the optimal interdiction problem is both sparse and binary. Our numerical experiments

demonstrate that our approach performs better in comparison with methods reported in earlier

work [8].

1.2 Dissertation organization and chapter summaries

The remainder of the dissertation is organized as follows. In Chapter 2, we study a unified DNN

weight pruning framework using ADMM. In chapter 3, a DNN weight pruning method using

reweighted optimization methods is discussed. In Chapter 4, we discuss an adversarial attack gen-

eration method via convex programming. In Chapter 5, we propose a unified min-max optimization

framework for adversarial attack and defense over multiple domains. In Chapter 5.7, we study an

optimal interdiction method of transportation networks. In Chapter 6.7, we conclude this thesis

and give directions for future research.

In Chapter 2, we first formulate weight pruning problem on DNNs as an optimization problem

with hard constraints. Then we define indicator functions to integrate the hard constraints into

the objective function. Since the indicator functions are non-differentiable, the problem cannot be

solved directly by SGD [33] or ADAM [34]. To deal with this issue, we propose to decompose the

problem into two subproblems using ADMM. The first subproblem is differentiable and we solve

it using stochastic gradient descent. For the second subproblem, we can efficiently find the closed-

form solution. We iteratively solve the two subporblems until convergence. In our experiments,

we achieve notably higher pruning rate on different DNNs compared with prior works.

In Chapter 3, we propose a DNN weight pruning method based on reweighted optimization
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methods. For these soft regularization methods, we can decide the degree of sparsity in each

layer based on the distribution of weights after convergence. On one hand, the methods reduce

the complexity of setting hyper-parameters compared with the hard constraint method, in which

the pruning rate in each layer need to be determined at the time when the problem is formulated.

On the other hand, reweighted optimization methods act as the better approximation of `0 norm

and group `0 norm compared with prior soft regularization methods, such as `1 norm and group

Lasso. And in experiments our method achieve higher weight pruning rate without accuracy loss

compared with prior works.

In Chapter 4, we first formulate the adversarial attack generation problem as one with a convex

objective function but non-convex constraints. The non-convexity of the problem comes from the

non-linear activation function in the DNN. However, for piecewise linear activation function such

as Rectified Linear Unit (ReLU), we can first approximate it as a linear function to relax the original

problem to a convex problem. Then we iteratively solve the convex problem until a convergence

condition. We prove that upon the convergence the solution achieved by our method is a feasible

solution of the original non-convex problem, and the corresponding adversarial attacks achieve

100% success rate on the DNN. Our experiment results also demonstrate that our distortion on the

adversarial attacks are lower than the prior works.

In Chapter 5, we propose a unified min-max framework for robust adversarial attacks, we

show how a general notion of min-max optimization over multiple domains can be adapted to

attacking model ensembles, and devising universal perturbation under multiple inputs and data

transformations. We also show how min-max optimization can generalize adversarial training to

a defensive scheme against diversified attack models. Both the generalized attack and defense

problems can be solved via the theoretically-grounded min-max framework.

In Chapter 5.7, we study the optimal interdiction problem of transportation networks. Follow-

ing the prior work, we first formulate the optimal interdiction problem as a min-max optimization

problem. Then we prove that the solution to the optimal interdiction problem is both sparse and

binary even without an explicit promotion of sparsity in the formulation. We propose a numerical
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method to solve the optimal interdiction problem and it performs better compared with the methods

proposed in earlier work.

In Chapter 6.7, we summarize the results of this thesis, and present several future research

directions.

1.3 Bibliographic note

Most of the research work appearing in this dissertation has already been published at various
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CHAPTER 2

A UNIFIED DNN WEIGHT PRUNING

FRAMEWORK USING ADMM

2.1 Introduction

Deep neural networks (DNNs) utilize multiple functional layers cascaded together to extract fea-

tures at multiple levels of abstraction [3, 6–10], and are thus both computationally and storage

intensive. As a result, many studies on DNN model compression are underway, including weight

pruning [11–15], low-rank approximation [17,18,35], low displacement rank approximation (struc-

tured matrices) [36–38], etc. Weight pruning can achieve a high model pruning rate without loss of

accuracy. An early work [11,12] adopts an iterative weight pruning heuristic and results in a sparse

neural network structure. It can achieve 9×weight reduction with no accuracy loss on AlexNet [3].

This weight pruning method has been extended in [13, 15, 39–44] to either use more sophisticated

algorithms to achieve a higher weight pruning rate, or to obtain a fine-grained trade-off between a

higher pruning rate and a lower accuracy degradation.

Despite the promising results, these general weight pruning methods often produce non-

structured and irregular connectivity in DNNs. This leads to degradation in the degree of par-

allelism and actual performance in GPU and hardware platforms. Moreover, the weight pruning
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rate is mainly achieved through compressing the fully-connected (FC) layers [11, 12, 39], which

are less computationally intensive compared with convolutional (CONV) layers and are becoming

less important in state-of-the-art DNNs such as ResNet [5]. To address these limitations, recent

works [14, 45] have proposed to learn structured sparsity, including sparsity at the levels of fil-

ters, channels, filter shapes, layer depth, etc. These works focus on CONV layers and actual GPU

speedup is reported as a result of structured sparsity [14]. However, these structured weight prun-

ing methods are based on fixed regularization techniques and are still quite heuristic [14, 45]. The

weight pruning rate and GPU acceleration are both quite limited. For example, the average weight

pruning rate on CONV layers of AlexNet is only 1.5× without any accuracy loss, corresponding

to 33.3% sparsity.

In this work, we overcome this limitation by proposing a unified, systematic framework of

structured weight pruning for DNNs, named StructADMM, based on the powerful optimization

tool Alternating Direction Method of Multipliers (ADMM) [46, 47] shown to perform well on

combinatorial constraints. It is a unified framework for different types of structured sparsity such

as filter-wise, channel-wise, and shape-wise sparsity, as well as non-structured sparsity. It is a sys-

tematic framework of dynamic ADMM regularization and masked mapping and retraining steps,

guaranteeing solution feasibility (satisfying all constraints) and providing high solution quality. It

achieves a significant improvement in weight pruning rate under the same accuracy, along with fast

convergence rate. In the context of deep learning, the StructADMM framework can be understood

as a smart and dynamic regularization technique in which the regularization target is analytically

updated in each iteration.

Beyond the above single-step, one-shot ADMM framework, we observe the opportunity of

performing further weight pruning from the results. This is due to the special property of `2-

based ADMM regularization process. This observation suggests a progressive, multi-step model

compression framework using ADMM. In the progressive framework, the pruning result from the

previous step serves as intermediate result and starting point for the subsequent step. It has an

additional benefit of reducing the search space for (structured) weight pruning within each step.
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Detailed procedure and hyperparameter determination process have been carefully designed to-

wards ultra-high weight pruning rates.

During the post-processing procedure, we find that after model retraining, some weights be-

come less contributing to the network performance. To take advantage of this characteristics,

we propose a novel algorithm to detect and remove the redundant weights which slip away from

ADMM (structured) weight pruning. Also, we are the first to discover the unused path in a struc-

tured pruned DNN model and design an effective optimization framework to further boost com-

pression rate as well as maintain high network accuracy.

2.2 Related work

General, non-structured weight pruning. The early work by Han et al. [11, 12] achieved 9×

reduction in the number of parameters in AlexNet and 13× in VGG-16. However, most reduc-

tion is achieved in FC layers, and 2.7× reduction achieved in CONV layers will not lead to an

overall acceleration in GPU [14]. Extensions of iterative weight pruning, such as [39] (dynamic

network surgery), [13] (NeST) and [48], use more delicate algorithms such as selective weight

growing and pruning. But the weight pruning rates on CONV layers are still limited, e.g., 3.1×

in [39], 3.23× in [13], and 4.16× in [48] for AlexNet with no accuracy degradation. This level

of non-structured weight pruning cannot guarantee GPU acceleration. In fact, our StructADMM

framework can achieve 16.1× non-structured weight pruning in CONV layers of AlexNet without

accuracy degradation, however, only minor GPU acceleration is actually observed.

Structured weight pruning. To overcome the limitation in non-structured, irregular weight

pruning, SSL [14] proposes to learn structured sparsity at the levels of filters, channels, filter

shapes, layer depth, etc. This work is one of the first with actually measured GPU accelerations.

This is because CONV layers after structured pruning will transform to a full matrix multiplication

in GPU (with reduced matrix size). However, the weight pruning rate and GPU acceleration are

both limited. The average weight pruning rate on CONV layers of AlexNet is only 1.5× without
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accuracy loss. The reported GPU acceleration is 49%. Besides, another work [45] achieves 2×

channel pruning with 1% accuracy degradation on VGGNet.

Other types of DNN model compression techniques. There are many other types of DNN

model compression techniques. Weight quantization leverages the inherent redundancy in the num-

ber of bits for weight representation. Many of the prior work [49–55] are directed at quantization

of weights to binary values, ternary values, or powers of 2 to facilitate hardware implementations,

with acceptable accuracy loss. The state-of-the-art techniques [56, 57] adopt an iterative quantiza-

tion and retraining framework, with some degree of randomness incorporated into the quantization

step. This method results in less than 3% accuracy loss on AlexNet for binary weight quantiza-

tion [57]. Furthermore, knowledge distillation leverages the idea that a smaller student model can

absorb knowledge from the larger teacher model [58–61], low-rank approximation using single-

value decomposition (SVD) [17, 18, 35], and low-displacement rank approximation using struc-

tured matrices such as circulant matrices [36,62], Toeplitz matrices [37,38], etc. These techniques

result in a regular network structure, but in general a lower pruning rate and larger accuracy degra-

dation compared with parameter pruning. We point out that these compression techniques are

compatible with ADMM and will be the topic of future investigations orthogonal to this work.

Besides the works we mention above, there are also several representative recent works in

this field. References [63–65] define metrics to measure the importance of the weights, and they

prune the weights which are less important according to their metrics. [66,67] define optimization

targets to generate sparse DNNs, and they set the optimization target as a regularization term when

they train the DNNs. In these methods, the authors decide the importance of weights on a static

model or setting a static optimization target as the regularization term. However, in our method

the regularization targets are updated dynamically during the training procedure. This is the major

difference between our method and these methods. Note that there are also recent works use

dynamically updated approaches in the training to prune DNNs, such as C-SGD [68] and CNN-

FCF [69]. C-SGD trains several filters to collapse into a single point in the parameter hyperspace

and than remove the identical filters. CNN-FCF defines dynamically updated binary scalars to
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constraint the filters and remove the filters corresponding to 0-valued scalars after convergence.

Both of the two methods focus only on filter pruning on DNNs, but our framework is unified for

different kind of structured pruning, as well as non-structured pruning.

2.3 Problem statement

Consider an N -layer DNN in which the first M layers are CONV layers and the rest are FC layers.

The weights and biases of the i-th layer are respectively denoted by Wi and bi. Assume that the

input to the DNN is x. Every column of x corresponds to a training image, and the number t of

columns determines the number of training images in the input batch. The input x will enter the

first layer and the output of the first layer is calculated by

h1 = σ(W1x + b1),

where h1 and b1 have t columns, and b1 is a matrix with identical columns. The non-linear

activation function σ(·) acts entrywise on its argument, and is typically chosen to be the ReLU

function [70] in state-of-the-art DNNs. Since the output of one layer is the input of the next, the

output of the i-th layer for i = 2, . . . , N − 1 is given by

hi = σ(Wihi−1 + bi).

The output of the DNN corresponding to a batch of images is

s = WNhN−1 + bN .

In this case s is a k × t matrix, where k is the number of classes in the classification, and t is the

number of training images in the batch. The element sij in matrix s is the score of the j-th training
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image corresponding to the i-th class. The total loss of the DNN is calculated as

f
(
{W1, . . . ,WN}, {b1, . . . ,bN}

)
= −1

t

t∑
j=1

log
esyjj∑k
i=1 e

sij
+ λ

N∑
i=1

‖Wi‖2F ,

where the first term is cross-entropy loss, yj is the correct class of the j-th image, and the second

term is `2 weight regularization.

Hereafter, for simplicity of notation we write {Wi}Ni=1, or simply {Wi} instead of

{W1, . . . ,WN}. The same notational convention applies other variables and parameters. The

training of a DNN is a process of minimizing the loss by updating weights and biases. If we use

the gradient descent method then the update at every step is

Wi = Wi − α
∂f
(
{Wi}Ni=1, {bi}Ni=1

)
∂Wi

,

bi = bi − α
∂f
(
{Wi}Ni=1, {bi}Ni=1

)
∂bi

,

computed for i = 1, . . . , N, where α is the learning rate.

In this chapter, our objective is to implement structured pruning on DNNs. In the following

discussion we focus on the CONV layers because they have the highest computation requirements.

More specifically, we minimize the loss function subject to specific structured sparsity constraints

on the weights in the CONV layers, i.e.,

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
,

subject to Wi ∈ Si, i = 1, . . . ,M,

(2.1)

where Si is the constraint set of weight structure. Next we introduce constraint sets corresponding

to different types of structured sparsity. Non-structured, irregular sparsity is also included in the

framework. The suitability for GPU acceleration is discussed for different types of sparsity, and

we finally introduce the proper combination of structured sparsity to facilitate GPU accelerations.

The details of different types of structures will be discussed later in Section 2.4.1.

In problem (2.1) the constraint is non-convex and combinatorial. As a result, this problem
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cannot be solved directly by stochastic gradient descent methods (SGD) [33] (or ADAM [34]).

However, the property that Wi satisfies certain combinatorial “structures" allows us to integrate

the ADMM framework with stochastic gradient descent to effectively solve this problem.

2.4 A unified DNN weight pruning framework using

ADMM

To apply the ADMM framework, we (i) define indicator functions to incorporate combinatorial

constraints into the objective function, and (ii) define auxilliary variables that allow us to decom-

pose the optimization problem into two subproblems that individually can be solved effectively. In

what follows, we elaborate on these steps.

Corresponding to every set Si, i = 1, . . . ,M we define the indicator function

gi(Wi) =


0 if Wi ∈ Si,

+∞ otherwise.

Furthermore, we incorporate auxilliary variables Zi, i = 1, . . . ,M with the restriction that Zi =

Wi. The original problem (2.1) is then equivalent to

minimize
{Wi},{bi}

f
(
{Wi}Ni=1, {bi}Ni=1

)
+

M∑
i=1

gi(Zi),

subject to Wi = Zi, i = 1, . . . ,M.

(2.2)

The augmented Lagrangian [46] of problem (2.2) is defined by

Lρ
(
{Wi}Ni=1, {bi}Ni=1, {Zi}Mi=1, {Λi}Mi=1

)
= f

(
{Wi}Ni=1, {bi}Ni=1

)
+

M∑
i=1

gi(Zi)

+
M∑
i=1

tr[ΛT
i (Wi − Zi)] +

M∑
i=1

ρi
2
‖Wi − Zi‖2F ,

where ‖·‖F denotes the Frobenius norm, {Λi}Mi=1 are the dual variables, and the penalty parameters
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{ρi}Mi=1 are positive. With the scaled dual variable Ui = (1/ρi)Λi for i = 1, . . . ,M , the augmented

Lagrangian can be equivalently rewritten as

Lρ
(
{Wi}Ni=1, {bi}Ni=1, {Zi}Mi=1, {Λi}Mi=1

)
= f

(
{Wi}Ni=1, {bi}Ni=1

)
+

M∑
i=1

gi(Zi)

+

M∑
i=1

ρi
2
‖Wi − Zi + Ui‖2F −

M∑
i=1

ρi
2
‖Ui‖2F .

ADMM consists the following iterations for k = 0, 1, . . . [46, 71]:

{Wk+1
i }Ni=1, {bk+1

i }Ni=1 := argmin
{Wi},{bi}

Lρ
(
{Wi}Ni=1, {bi}Ni=1, {Zki }Mi=1, {Uk

i }Mi=1

)
, (2.3)

{Zk+1
i }Mi=1 := argmin

{Zi}
Lρ
(
{Wk+1

i }Ni=1, {bk+1
i }Ni=1, {Zi}Mi=1, {Uk

i }Mi=1

)
, (2.4)

Uk+1
i := Uk

i + Wk+1
i −Zk+1

i for i = 1, . . . ,M, (2.5)

until for i = 1, . . . ,M , both of the following conditions are satisfied

‖Wk+1
i − Zk+1

i ‖2F ≤ εi, ‖Zk+1
i − Zki ‖2F ≤ εi (2.6)

In order to solve the overall pruning problem, we need to solve subproblems (2.3) and (2.4).

More specifically, problem (2.3) can be formulated as

minimize
{Wi},{bi}

f
(
{Wi}Ni=1, {bi}Ni=1

)
+

M∑
i=1

ρi
2
‖Wi − Zki + Uk

i ‖2F , (2.7)

where the first term in the objective function of (2.7) is the differentiable loss function of the

DNN, and the second term is a quadratic regularization term of the Wi’s, which is differentiable

and convex. As a result (2.7) can be solved by stochastic gradient descent. Although we cannot

guarantee the global optimality of the solution, it is due to the non-convexity of the DNN loss

function rather than the quadratic term enrolled by our method.

On the other hand, problem (2.4) is given by

minimize
{Zi}

M∑
i=1

gi(Zi) +
M∑
i=1

ρi
2
‖Wk+1

i − Zi + Uk
i ‖2

F . (2.8)
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Note that gi(·) is the indicator function of Si, thus this subproblem can be solved analytically and

optimally [46]. For i = 1, . . . ,M , the optimal solution is

Zk+1
i = ΠSi

(Wk+1
i + Uk

i ), (2.9)

where ΠSi
(·) is Euclidean projection of Wk+1

i +Uk
i onto Si. The set Si is different when we apply

different types of structured sparsity. We will discuss how to implement the Euclidean projection

to different types of structures in Section 2.4.1.

2.4.1 Solutions of different types of structured sparsity and discussions

The collection of weights in the i-th CONV layer is a four-dimensional tensor, i.e., Wi ∈

RAi×Bi×Ci×Di , where Ai, Bi, Ci, and Di are respectively the number of filters, the number of chan-

nels in a filter, the height of the filter, and the width of the filter, in layer i. In what follows, if

X denotes the weight tensor in a specific layer, let (X)a,:,:,: denote the a-th filter in X, (X):,b,:,:

denote the b-th channel, and (X):,b,c,d denote the collection of weights located at position (:, b, c, d)

in every filter of X, as illustrated in Figure 2.1.

Fig. 2.1: Illustration of filter-wise, channel-wise and shape-wise structured sparsity from left to right.



16

Filter-wise structured sparsity: When we train a DNN with sparsity at the filter level, the

constraint on the weights in the i-th CONV layer is given by

Wi ∈ Si := {X | the number of nonzero filters in X is less than or equal to αi}.

Here, nonzero filter means that the filter contains some nonzero weight. To solve subproblem (2.9)

with such constraints, we first calculate

Oa = ‖(Wk+1
i + Uk

i )a,:,:,:‖2
F

for a = 1, . . . , Ai. We then keep αi elements in (Wk+1
i + Uk

i )a,:,:,: corresponding to the αi largest

values in {Oa}Ai
a=1 and set the rest to zero.

Channel-wise structured sparsity: When we train a DNN with sparsity at the channel level,

the constraint on the weights in the i-th CONV layer is given by

Wi ∈ Si := {X | the number of nonzero channels in X is less than or equal to βi}.

Here, we call the b-th channel nonzero if (X):,b,:,: contains some nonzero element. To solve sub-

problem (2.9) with such constraints, we first calculate

Ob = ‖(Wk+1
i + Uk

i ):,b,:,:‖2
F

for b = 1, . . . , Bi. We then keep βi elements in (Wk+1
i + Uk

i ):,b,:,: corresponding to the βi largest

values in {Ob}Bi
b=1 and set the rest to zero.

Filter shape-wise structured sparsity: When we train a DNN with sparsity at the filter shape

level, the constraint on the weights in the i-th CONV layer is given by

Wi ∈ Si := {X | the number of nonzero vectors in {X:,b,c,d}Bi,Ci,Di

b,c,d=1 is less than or equal to θi}.
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To solve subproblem (2.9) with such constraints, we first calculate

Ob,c,d = ‖(Wk+1
i + Uk

i ):,b,c,d‖2
F

for b = 1, . . . , Bi, c = 1, . . . , Ci and d = 1, . . . , Di. We then keep θi elements in (Wk+1
i +Uk

i ):,b,c,d

corresponding to the θi largest values in {Ob,c,d}Bi,Ci,Di

b,c,d=1 and set the rest to zero.

Non-structured, irregular weight sparsity: When we train a DNN with non-structured weight

sparsity, the constraint on the weights in i-th CONV layer is

Wi ∈ Si := {X | the number of nonzero elements in X is less than or equal to γi}.

To solve subproblem (2.9), we keep γi elements in Wk+1
i + Uk

i with largest magnitudes and set

the rest to zero.

Combination of structured sparsity to facilitate GPU acceleration: Convolutional computa-

tions in DNNs are commonly transformed to matrix multiplications by converting weight tensors

and feature map tensors to matrices [72], named general matrix multiplication or GEMM. Filter-

wise sparsity corresponds to row pruning, whereas channel-wise and filter shape-wise sparsity

correspond to column pruning in GEMM. The GEMM matrix maintains a full matrix with number

of rows/columns reduced, thereby enabling GPU acceleration. This is illustrated in Figure 2.2, in

which Wn,m,k means the k-th element in the m-th channel of the n-th filter. In the results we will

use row pruning to represent the results of filter-wise sparsity in GEMM, and use column pruning

to represent the results of channel-wise and filter shape-wise sparsity.

2.4.2 The masked retraining step

For very small values of εi in (2.6), ADMM needs a large number of iterations to converge. How-

ever, in many applications, such as the weight pruning problem considered here, a slight increase

in the value of εi can result in a significant speedup in convergence. On the other hand, when

ADMM stops early the weights to be pruned may not be identically zero, in the sense that there
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Fig. 2.2: Illustration of 2D weight matrix for GEMM (left) and row-wise and column-wise sparsity (right)

will be small nonzero elements contained in Wi. To deal with this issue, we first perform the Eu-

clidean projection to guarantee that the structured pruning constraints are satisfied. Next, we mask

the zero weights and retrain the DNN with non-zero weights using training sets (while keeping

the masked weights 0). In this way test accuracy (solution quality) can be partially restored. Note

that the convergence is much faster than training the original DNN, since the starting point of the

retraining is already close to the point which can achieve the original test/validation accuracy.

2.4.3 Overall illustration of our proposed framework

We take the weight distribution of every (convolutional or fully connected) layer on LeNet-5 as an

example to illustrate our systematic weight pruning method. The weight distributions at different

stages are shown in Figure 2.3. The subfigures in the left column show the weight distributions

of the pretrained model, which serves as our starting point. The subfigures in the middle column

show that after the convergence of ADMM for moderate values of εi, we observe a clear separation

between weights whose values are close to zero and the remaining weights. To prune the weights

rigorously, we set the values of the close-to-zero weights exactly to zero and retrain the DNN

without updating these values. The subfigures in the right column show the weight distributions

after our final retraining step. We observe that most of the weights are zero in every layer. This

concludes our weight pruning procedure.

As mentioned before, the computation time for the ADMM procedure is similar to the training

of the original DNN, and the single retraining step converges much faster than the original training.
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Fig. 2.3: Weight distribution of every (convolutional or fully connected) layer on LeNet-5. The subfigures
in the left column are the weight distributions of the pretrained DNN model (serving as our starting point);
the subfigures of the middle column are the weight distributions after the ADMM procedure; the subfigures
of the right column are the weight distributions after our final retraining step. Note that the subfigures in the
last column include a small number of nonzero weights that are not clearly visible due to the large number
of zero weights.
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Algorithm 1 An overall illustration of our proposed StructADMM framework
Input: Pretrained model
Initialize {Z0

i } and {U0
i }

Set j = 0 and k = 0.
Set T as the number of iterations of ADMM
Set β as the number of epochs in every iteration of ADMM
for k ≤ T do

for j ≤ β do
Solve problem (2.7) using one epoch of SGD or ADAM

end for
Update {Zk+1

i } according to (2.9)
Update {Uk+1

i } according to (2.5)
if Condition (2.6) is satisfied then

Break for loop
end if

end for
Perform the Euclidean projection according to (2.9) to guarantee that the structured pruning
constraints are satisfied. Then mask the zero weights and retrain the DNN with the non-zero
weights.

Consequently, the total computation time of our method is less than training the original DNN

twice, which is much faster than the iterative pruning and training method in [73]. An overall

illustration of our proposed StructADMM framework is shown in Algorithm 1.

2.5 Methods to improve pruning rate

2.5.1 Progressive DNN weight pruning

The first motivation of the progressive framework is that during the implementation of the single-

step weight pruning framework, we observe that there are a number of unpruned weights with

values very close to zero. The reason is the `2 regularization nature in ADMM regularization step,

which tends to generate very small, non-zero weight values even when they are not pruned. As

the remaining number of non-zero weights is already significantly reduced during weight pruning,

simply mapping these small-value weights to zero will result in accuracy degradation. On the other

hand, this motivates us to perform weight pruning in a multi-step, progressive manner. The weights
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that have been pruned in the previous step will be masked and only the remaining, non-zero weights

will be considered in the subsequent step.

The second motivation of the progressive framework is to reduce the search space for weight

pruning within each step. After all, weight pruning problems are essentially combinatorial op-

timizations. Although recently demonstrated to generate superior results on this type of prob-

lems [74, 75], ADMM-based solution still has a superlinear increase of computational complexity

as a function of solution space. As a result, the complexity becomes very high with ultra-high

compression rates (i.e., very large search space) beyond what can be achieved in prior work. The

progressive framework, on the other hand, can mitigate this limitation and reduce the total training

time (to 2× or slightly higher than training time of the original DNN).

Similar approach that masking the zero weights in the model generated from the previous

iteration of pruning has been applied in [12, 42], but our motivation is different from these works.

Magnitude-based pruning method is used in [12,42] , this method is heuristic and the pruning rate

have to be iteratively increased to avoid accuracy loss. One-step of our ADMM-based method can

achieve much higher pruning rate than iterative magnitude-based pruning method without accuracy

loss. And our major purpose of using progressive method is to reduce the search space in each step

to achieve ultra-high pruning rate.

Also, masking the zero weights is not necessary for our method to reduce the search space. In

our experiment we find that even if we do not mask the zero weights pruned in each step when we

start a new step, the value of the unimportant weights still keep close to zero. This is because the

ADMM-based regularization term prevent these unimportant weights to move away from zero. In

conclusion, if we start from a model which is already pruned, the search space for our ADMM-

based method is being reduced no matter if we mask the zero weights or not. We choose to mask

the zero weights to make the training more rigorous.

Figure 2.4 illustrates our proposed progressive DNN weight pruning method on StructADMM

framework. The single-step ADMM-based weight pruning is performed multiple times, each as a

step in the progressive framework. The pruning results from the previous step serve as intermediate
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Fig. 2.4: An illustration our proposed progressive DNN weight pruning method on StructADMM frame-
work.

results and starting point for the subsequent step. Through extensive investigations, we conclude

that a two-step progressive procedure will be in general sufficient for weight pruning, in which

each step requires approximately the same number of training epochs as original DNN training.

Further increase in the number of steps or the number of epochs in each step will result in only

marginal improvement in the overall solution quality (e.g., 0.1%-0.2% accuracy improvement).

2.5.2 Network purification and unused path removal

After ADMM-based structured weight pruning, we propose the network purification and unused

path removal step for further weight reduction without accuracy loss. First, as also noticed by prior

work [45], a specific filter in layer i is responsible for generating one channel in layer i + 1. As

a result, removing the filter in layer i (in fact removing the batch norm results) also results in the

removal of the corresponding channel, thereby achieving further weight reduction. Besides this

straightforward procedure, there is further margin of weight reduction based on the characteristics

of ADMM regularization. As ADMM regularization is essentially a dynamic, `2-norm based regu-

larization procedure, there are a large number of non-zero, small weight values after regularization.

Due to the non-convex property in ADMM regularization, our observation is that removing these

weights can maintain the accuracy or even slightly improve the accuracy occasionally. As a result,

we define two thresholds, a column-wise threshold and a filter-wise threshold, for each DNN layer.

When the `2 norm of a column (or filter) of weights is below the threshold, the column (or filter)

will be removed. Also the corresponding channel in layer i+1 can be removed upon filter removal
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in layer i. Structures in each DNN layer will be maintained after this purification step.

2.6 Numerical results

2.6.1 Experiment results for structure pruning

First, we compare our method with the two configurations of the SSL method [14] on

AlexNet/CaffeNet. The first has no accuracy degradation (Top-1 error 42.53%) and average spar-

sity of 33.3% on conv2-conv5. We note that the 1st CONV layer of AlexNet/CaffeNet is very

small with only 35K weights compared with 2.3M in conv2-conv5, and is often not the optimiza-

tion focus [14, 35]. The second has around 2% accuracy degradation (Top-1 error 44.66%) with

total sparsity of 84.4% on conv2-conv5. The first configuration focuses on column sparsity only.

The second configuration focuses on a combined row (filter) and column sparsity.

Table 2.1 shows the comparison of our method with the first configuration of SSL. We generate

configuration with no accuracy degradation compared with original model (the original model of

our work is higher than that in SSL). We can achieve a much higher degree of sparsity of 79.2%

on conv2-conv5. This corresponds to 4.8× weight pruning rate, which is significantly higher

compared with 1.5× pruning in conv2-conv5 in [14].

Table 2.1: Comparison of our method and SSL method on column sparsity without accuracy loss on
AlexNet/CaffeNet model for ImageNet data set

Method Top-1 Acc
Loss

Statistics conv1 conv2 conv3 conv4 conv5 conv2-5

SSL [14] 0%
column
sparsity

0.0% 20.9% 39.7% 39.7% 24.6% 33.3%

pruning
rate

1.0× 1.3× 1.7× 1.7× 1.3× 1.5×

our method 0%

column
sparsity

0.0% 70.0% 77.0% 85.0% 81.0% 79.2%

GPU1× 1.00× 2.27× 3.35× 3.64× 1.04× 2.58×
GPU2× 1.00× 2.83× 3.92× 4.63× 3.22× 3.65×
pruning
rate

1.0× 3.3× 4.3× 6.7× 5.3× 4.8×
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Table 2.2: Comparison of our method and SSL method on column and row sparsity with less than 2%
accuracy loss on AlexNet/CaffeNet for ImageNet data set

Method Top-1 Acc
Loss

Statistics conv1 conv2 conv3 conv4 conv5 conv2-5

SSL [14] 2.0%
column
sparsity

0.0% 63.2% 76.9% 84.7% 80.7%
84.4%§

row spar-
sity

9.4% 12.9% 40.6% 46.9% 0.0%

pruning
rate

1.1× 3.2× 7.7× 12.3× 5.2× 6.4×

our method 0.7%

column
sparsity

0.0% 63.9% 78.1% 87.0% 84.9%
86.3%§

row spar-
sity

9.4% 12.9% 40.6% 46.9% 0.0%

CPU× 1.05× 2.82× 6.63× 10.16× 5.00× 6.16×
GPU1× 1.00× 1.28× 4.31× 1.75× 1.52× 2.29×
GPU2× 1.00× 2.34× 6.85× 6.99× 4.15× 5.13×
pruning
rate

1.1× 3.1× 7.3× 14.5× 6.6× 7.3×

our method 2.0%

column
sparsity

0.0% 87.5% 90.0% 90.5% 90.7%
93.7%§

row spar-
sity

9.4% 12.9% 40.6% 46.9% 0.0%

CPU× 1.05× 8.00× 14.68× 14.22× 7.71× 11.93×
GPU1× 1.00× 2.39× 5.34× 1.92× 2.04× 3.15×
GPU2× 1.00× 4.92× 12.55× 8.39× 6.02× 8.52×
pruning
rate

1.1× 9.2× 16.8× 19.8× 8.4× 15.0×

§ Total sparsity accounting for both column and row sparsity.

We test the actual GPU accelerations using two GPUs: GPU1 is NVIDIA 1080Ti and GPU2

is NVIDIA TX2. The acceleration rate is computed with respect to the corresponding layer of

the original DNN executing on the same GPU and same setup. One can observe that the average

acceleration of conv2-conv5 on 1080Ti is 2.58×, while the average acceleration on TX2 is 3.65×.

These results clearly outperform the GPU acceleration of 49% reported in SSL [14] without ac-

curacy loss, as well as the more recent work [35]. The acceleration rate on TX2 is higher than

1080Ti because the latter has a high parallelism degree, which will not be fully utilized when the

matrix size GEMM of a CONV layer is significantly reduced. Another technique cuDNN can use

implicit GEMM for better performance than cuBLAS, but we still outperform it on the inference
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Table 2.3: Structured pruning results on ResNet-18 model for ImageNet data set.

Method Prune rate Top 5 accuracy
Original 1.0× 89.0%
DCP [66] 1.5× 88.9%
DCP [66] 2.0× 87.6%
Our method (column prune) 2.5× 89.0%
Our method (filter + column prune) 3.0× 88.7%

Table 2.4: Structured pruning results on ResNet-50 model for ImageNet data set.

Method Prune rate Top 5 accuracy
Original 1.0× 92.7%
ThiNet-50 [76] 2.0× 90.0%
ThiNet-30 [76] 3.3× 88.3%
NISP [63] 1.8× 90.2%
Efficient ConvNet [64] 1.4× 91.1%
DCP [66] 2.0× 92.3%
Our method (filter prune) 2.7× 91.9%
Our method (filter + column prune) 2.7× 92.3%

time without accuracy loss. For example, We compare our result in Table 2.1 to the baseline re-

sults with cuDNN, our inference time with cuBLAS is also 2.8x lower than the result with baseline

cuDNN on original, uncompressed DNN on TX2 GPU.

Table 2.2 shows the comparison with the second configuration of SSL. With similar (and

slightly higher) sparsity in each layer as SSL, we can achieve less accuracy loss. With the same

relative accuracy loss (a moderate accuracy loss within 2% compared with original DNN), a higher

degree of 93.7% average sparsity of conv2-conv5 is achieved, translating into 15.0× weight prun-

ing. The actual GPU acceleration results are also high: 3.15× on 1080Ti and 8.52× on TX2. One

can clearly see that the speedup on 1080Ti saturates because the high parallelism degree cannot

be fully exploited. The acceleration on CPU can be higher under this setup, reaching 11.93× on

average on conv2-conv5.

Figure 2.5 shows the convergence behavior of ADMM regularization (in StructADMM frame-



26

Fig. 2.5: Convergence behavior of the ADMM regularization procedure for the convolutional layers 2-5 of
AlexNet.

work, single-step ADMM), using the experiment that achieves 4.8× structured pruning rate on

AlexNet without accuracy loss. We can observe that ADMM regularization converges in around

12 iterations. The number of ADMM iterations is generally 9 - 12 for most of test cases. In each

iteration, we need around 10% to 20% of the number of epochs as original DNN training.

Additionally, in Table 2.3 and Table 2.4, we demonstrate the structured (filter or column) prun-

ing results on ResNet-18 and ResNet-50 models for ImageNet data set. We compare with a list of

prior work, and these prior work focus on filter pruning only (we do not find prior work on column

pruning on these two models). As shown in the tables, we achieve simultaneously higher pruning

rate (weight parameter reduction rate) and higher accuracy compared with prior work, when only

applying filter (row) pruning. Also, we can observe that column pruning results in higher pruning

rate and/or higher accuracy compared with filter pruning. This is because of the higher flexibility in

column pruning by modifying filter shapes. For large-scale GPU/CPU acceleration when GEMM
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computation is utilized, column pruning (and potentially effective combination with filter pruning)

will be more effective than filter pruning only.

2.6.2 Experiment results for non-structured pruning

We evaluate our method for non-structured pruning on AlexNet and VGG-16 for ImageNet data

set. Since we propose a progressive, multi-step weight pruning framework, we achieve a higher

pruning rate than the single-step ADMM method in the early version of our work [77] on AlexNet.

We also achieve much higher pruning rate compared with other prior work.

Table 2.5: Comparisons of weight pruning results on AlexNet model for ImageNet data set.

Method Top-5 Acc. No. Para. Rate
Uncompressed 80.3% 61.0M 1×

Network Pruning [73] 80.3% 6.7M 9×
Optimal Brain Surgeon [40] 80.0% 6.7M 9.1×

Low Rank and Sparse Decomposition [78] 80.3% 6.1M 10×
Fine-Grained Pruning [48] 80.4% 5.1M 11.9×

NeST [13] 80.2% 3.9M 15.7×
Dynamic Surgery [39] 80.0% 3.4M 17.7×

Single-step ADMM [77] 80.2% 2.9M 21×
Hoyer-Square [67] 80.2% 2.86M 21.3×

Progressive Weight Pruning 80.2% 2.02M 30×
Progressive Weight Pruning 80.0% 1.97M 31×

Table 2.6: Comparisons of weight pruning results on VGG-16 model for ImageNet data set.

Method Top-5 Acc. No. Para. Rate
Uncompressed 88.7% 138M 1×

Network Pruning [73] 89.1% 10.6M 13×
Optimal Brain Surgeon [40] 89.0% 10.3M 13.3×

Low Rank and Sparse Decomposition [78] 89.1% 9.2M 15×
Progressive Weight Pruning 88.7% 4.6M 30×
Progressive Weight Pruning 88.2% 4.1M 34×

Table 2.5 presents the weight pruning comparison results on the AlexNet model between our

proposed method and prior work. Our weight pruning results clearly outperform the prior work, in
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that we can achieve 31× weight reduction rate without loss of accuracy. Our progressive weight

pruning also outperforms the single-step ADMM weight pruning in [77] that achieves 21× com-

pression rate.

Table 2.6 presents the comparison results on VGG-16. These weight pruning results we

achieved clearly outperform the prior work, consistently achieving the highest sparsity in the

benchmark DNN models. On the VGG-16 model, we achieve 30× weight pruning with com-

parable accuracy with prior work, while the highest pruning rate in prior work is 19.5×. We also

achieve 34× weight pruning with minor accuracy loss.

In summary, the experimental results demonstrate that our framework applies to a broad set

of representative DNN models and consistently outperforms the prior work. It also applies to the

DNN models that consist of mainly convolutional layers, which are different with weight pruning

for prior methods. These promising results will significantly contribute to the energy-efficient

implementation of DNNs in mobile and embedded systems, and on various hardware platforms.

2.7 Summary

In this chapter, we proposed a unified, systematic framework of structured weight pruning for

DNNs. It is a unified framework for different types of structured sparsity such as filter-wise,

channel-wise, shape-wise sparsity as well as non-structured sparsity. By incorporating stochastic

gradient descent with ADMM, our framework updates regularization target analytically in each

iteration. Based on ADMM, we further propose a progressive weight pruning framework and a

network purification and unused path removal procedure, in order to achieve higher pruning rate

without accuracy loss. In our experiments, we achieve 2.58× and 3.65×measured speedup on two

GPUs without accuracy loss. The speedups reach 3.18× and 8.52× on GPUs and 10.5× on CPU

when allowing moderate accuracy loss of 2%, and reaches 7.6× on the Adreno 640 mobile GPU.

Our pruning rate and speedup clearly outperform prior work.



29

CHAPTER 3

A UNIFIED DNN WEIGHT PRUNING

FRAMEWORK USING REWEIGHTED

OPTIMIZATION METHODS

3.1 Introduction

DNNs have achieved impressive results in many fields including image classification [3], natural

language processing [6], autonomous vehicles [79], etc. The state-of-the-art DNNs have large

model size and computational requirement, which impedes the critical requirements (e.g., real

time, low power) in the inference phase. To address these challenges, prior works have focused on

developing DNN model compression techniques, such as weight pruning [12, 14, 39, 77].

The objective of DNN weight pruning is to reduce the number of non-zero elements in the

weight matrix while maintaining the prediction accuracy. Early works in weight pruning utilize

a static, magnitude-based method [12] or `1-based regularization [14] to explore sparsity in DNN

models. Although these methods can prune the weights without accuracy loss, they are heuristic

and can only find a small parts of non-critical weights to prune. To overcome the accuracy degra-

dation while further prune the DNNs, several works [66, 69, 80, 81] propose more well-developed
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methods to increase the pruning rate based on the sparsity types proposed by [14]. Recently,

reference [77] used the alternating direction method of multiplier (ADMM) [82] to solve the `0

constraint problem and achieve good performance on pruning rate without accuracy loss. With

the powerful ADMM optimization framework, pruning problems are re-formed into optimiza-

tion problems with the dynamically updated regularization terms bounded by the designated hard

constraint sets which enable arbitrary desired pruning dimensions to fulfill the vast design space.

However, ADMM suffers from long convergence time due to the strong non-convexity of the `0

constraints. Additionally, it is a highly time-consuming process to set the hyperparameters manu-

ally in a hard constraints problem, which intrinsically is a heuristic exploration that mainly relies

on the experiences of the designer, and the derived hyperparameters are typically sub-optimal. It

is imperative to find a better solution to solve the pruning problem with high efficient and self-

adaptive regularization that can automatically determine pruning hyperparameters and maintain

accuracy.

In this paper, we propose a unified DNN weight pruning framework with dynamically updated

regularization terms bounded by the designated constraint, which can generate both non-structured

sparsity and different kinds of structured sparsity. In non-structured pruning, we need to reduce

the `0 norm of the weight matrix, but it is an intractable problem since `0 norm is non-convex and

discrete. To deal with this issue, we solve the reweighted `1 problem [83] as the proxy of `0 prob-

lem. Structured pruning requires not only the sparsity in weights but also the position of the zeros

elements. To generate different kinds of group sparsity, we propose to use a reweighted method on

group lasso regularization. In our proposed framework, we first use a reweighted method to regu-

larize the model, then remove the weights which are close to zero and mask the gradient of these

weights to ensure that they no longer update. We retrain the remaining non-zero weights to retrieve

the accuracy. We adopt the reweighted regularization method with designated sparsity types, which

avoids strongly non-convex `0-norm based hard constraints in the state-of-the-art ADMM formula-

tion, therefore accelerates the convergence and reduces the number of hyperparameters. Since the

loss function of DNNs is non-convex, when we use the reweighted method we also need to solve
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a non-convex problem and cannot achieve the globally optimal solution. This motivates us to use

the reweighted method again on the sparse model achieved in our first step. After implementing

the reweighted method for several more steps, we achieve higher pruning rate.

For both non-structured and structured pruning, our method achieve higher pruning rate than

state-of-the-arts while maintaining accuracy. For non-structured pruning, we achieve 630× prun-

ing rate on LeNet-5 for MNIST and 45× pruning rate on AlexNet for ImageNet with minor ac-

curacy loss. For structured pruning, we achieve 4.2× and 3.2× pruning rate on the convolu-

tional layers of ResNet-18 and ResNet-50 for ImageNet and 7.2× on the convolutional layers of

MobileNet-V2-1.0 for CIFAR-10 with negligible accuracy loss.

3.2 Related work

3.2.1 Static regularization-based pruning

Early works in weight pruning utilize a static, magnitude-based method or `1-based regularization

to explore sparsity in DNN models. With specified regularization dimensions on weight vectors,

we can perform different types of pruning method including non-structured pruning and struc-

tured pruning, but with limited compression rates and non-negligible accuracy degradation due to

the intrinsically heuristic and non-optimized approach. Non-structured pruning in [12, 84] itera-

tively prunes weights at arbitrary location based on their magnitude, resulting in a sparse model

to be stored in the compressed sparse column (CSC) format. Although this method achieves 12×

pruning rate on LeNet-5 using MNIST dataset and 9× pruning rate on AlexNet using ImageNet

dataset, it leads to an undermined processing throughput because the indices in the compressed

weight representation cause stall or complex workload on highly parallel architectures. To over-

come the limitation of the general non-structured weight pruning, recent works [14, 66] proposed

to incorporate regularity or “structures" in weight pruning, including filter pruning, channel prun-

ing, and filter shape pruning. Structured pruning targets at generating regular and smaller weight

matrices based on `1 regularization to eliminate overhead of weight indices and achieve higher
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acceleration in CPU/GPU executions. The weight matrix will maintain a full matrix but with re-

duced dimensions, and indices are no longer needed. As a result, it leads to much higher speedups.

However, it suffers from notable accuracy loss due to the poor solution quality.

3.2.2 Dynamic regularization-based pruning

Flourished by [77, 80, 85–87] with the powerful ADMM [82] optimization framework, pruning

problems are re-formed into optimization problems with the dynamically updated regularization

terms bounded by the designated constraint (i.e., pruning with specific dimensions or with any de-

sired weight matrix shapes) sets that involved into loss function during DNN training. As demon-

strated in the previous chapter, the ADMM approach decomposes an original pruning problem into

two subproblems, in which one can be solved by standard stochastic gradient decent (SGD) while

the other one can be solved by iteratively updating regularization terms with ADMM steps, thus

facilitates very high weight reduction and promising accuracy. Same as static regularization-based

pruning, the dynamic regularization-based pruning also achieves non-structured sparsity in [77,85]

and structured sparsity in [80, 87], but with significantly improved accuracy and compression re-

sults. In addition, it also achieves special pruning dimension such as hybrid sparsity studied in [86]

which can not be obtained by former. ADMM can effectively deal with a subset of combinatorial

constraints and yields high quality solutions, which associated constraints in the DNN weight prun-

ing belong to this subset of combinatorial constraints, making ADMM applicable to DNN mode

compression and achieves non-structured 246× compression on LeNet-5 with MNIST, 36× on

AlexNet with ImageNet and structured 4.8× on AlexNet and 2× on ResNet-18 with ImageNet.

3.3 Problem statement

We observe that many early works use static methods on the weight pruning of DNNs, e.g. the

magnitude based methods in [12] and the `1 regularization method in [14]. We propose two hy-

potheses based on these methods. First, some weights with small magnitude are critical to maintain
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(a) Distribution of all weights 
and critical weights in pretrained model

(b) Distribution of all weights 
and critical weights in l1 regularized model
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Fig. 3.1: Comparisons of the distribution of all weights and critical weights (remaining weights after
pruning) in the second fully connected layer (FC-2) of a pretrained AlexNet model and `1 regularized model.

CONV-1 CONV-2 CONV-3 CONV-4 CONV-5 FC-1 FC-2 FC-3

Fig. 3.2: Weight distribution of all layers in AlexNet after our reweighted `1 regularization method

the accuracy of the model, thus we cannot prune the weights simply based on their magnitude. Sec-

ond, the `1 norm is not a good approximation of the `0 norm, and using the `1 regularization will

penalize some critical weights to values close to zero. These two hypotheses motivate us to find

a better approximation for the `0 norm in order to generate highly sparse model without accuracy

loss.

We prune an AlexNet using the reweighted method to verify our two hypotheses. Fig. 3.1 shows

the histogram of the weights in the second fully connected layer (FC-2) of AlexNet. In Fig. 3.1 (a),

the red area is the histogram of the original weight distribution without pruning (we omit the top

part of the distribution due to space limitations), and the blue area is the distribution after removing

97.9% of the weights by the reweighted method without accuracy loss. We can observe that the

critical weights (remaining weights after pruning) are approximately uniformly distributed, which

means that some weights with small magnitude are also critical. This verifies our first hypothesis.

In Fig. 3.1 (b), the red area is the histogram of the weights after regularizing the FC-2 layer using `1
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regularization. Comparing with the red area of Fig. 3.1 (a), `1 regularization reduces the magnitude

of the weights in the entire network. The critical weights, shown in the blue area of Fig. 3.1 (a),

have a different distribution after `1 regularization is applied, as shown in the blue area of Fig. 3.1

(b). It is clear that `1 regularization penalizes a lot more critical weights towards zero, as is shown

in the high peak of the blue area. After pruning, those critical weights will be forced to zero, and

thus may negatively impact the model quality. This is because `1 regularization casts equal penalty

on all weights or weight groups. This violates the original intention of weight pruning, which is to

remove the “non-critical" weights instead of “small" weights, thus it is not a good approximation

for `0 regularization, which verifies our second hypothesis.

Besides static methods used in the early works, a recent work [77] focuses on `0 norm based

optimization with an ADMM-based hard constraint approach and achieves good performance on

DNN pruning without accuracy loss. This method first formulates weight pruning as an optimiza-

tion problem with a hard constraint on `0 norm, and then uses ADMM [82] to solve the problem.

In the ADMM-based solution framework, the regularization term is dynamically updated in each

iteration, and it achieves better performance compared with the work based on static methods.

However, because of the hard constraint on the `0 norm, the degree of sparsity in each DNN layer

needs to be pre-specified. This fact limits the flexibility of the ADMM-based method. In reality,

when the degree of sparsity undefined, it is hard to determine the numbers of weights to prune for

each layer. Therefore, ADMM-based method may take an excessive amount of time to tune the

parameters to achieve the desired pruning rate without accuracy loss.

In this paper, we propose to use a reweighted method for DNN weight pruning. It is a dynamic

regularization-based method, where in each iteration the penalties on different weights are dynam-

ically updated. Different from the ADMM-based method in which the hyperparameters need to be

tuned, we only need to set a single penalty parameter in our method, the value of this parameter is

easy to set and we will discuss it in Section 3.5.After training with our reweighted regularization

method, we can decide the degree of sparsity in each layer based on the distribution of weights. For

example, the weight distribution of each layer in AlexNet after our reweighted `1 regularization
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method is shown in Fig. 3.2. We can observe that most of the weights with large magnitude are dis-

tributed in the range of 0.01 to 0.1, and most of the weights with small magnitude are smaller than

0.0001. This means small weights are 100× or more smaller than large weights. Thus, removing

the weights with magnitude smaller than 0.0001 has a minor effect on the accuracy of the DNN.

Meanwhile, we do not need to specify the pruning rate for each layer as it will be determined dy-

namically by our proposed reweighted regularization method. Note that our method is essentially

different from magnitude-based method. Magnitude-based method directly removes the part of

weights with small magnitude. While in our method, the weights are divided into two parts based

on the magnitude after the DNN is trained with reweighted regularization method. And one part

of the weights is significantly smaller than the other part. We only remove the part of significantly

small weights which have minor contribution for the DNN. However, some of the small weights

removed by magnitude-based method have critical contribution to the DNN.

3.3.1 Non-structured pruning

Consider an N -layer DNN, the weights and biases of the i-th layer is respectively denoted by Wi

and bi, and the collection of weights and biases of all the layers is respectively denoted by {Wi}Ni=1

and {bi}Ni=1. The loss function associated with the DNN is denoted by f
(
{Wi}Ni=1, {bi}Ni=1

)
. In

DNN training, we minimize the loss function to increase the accuracy. For the non-structured

weight pruning problem, our aim is to reduce the number of non-zero elements in the weight

matrix while maintaining the accuracy. Therefore, we need to minimize the summation of the loss

function and the `0 regularization term as follows,

minimize
{Wi},{bi}

f
(
{Wi}Ni=1, {bi}Ni=1

)
+ λ

N∑
i=1

‖Wi‖`0 ,

where λ is the penalty parameter to adjust the relative importance of accuracy and sparsity.

The problem with the `0 norm is intractable, thus we use a reweighted `1 method [83] to ap-

proximate the `0 norm. For the reweighted `1 method, we instead solve the problem

minimize
{Wi},{bi}

f
(
{Wi}Ni=1, {bi}Ni=1

)
+ λ

N∑
i=1

‖P (l)
i ◦Wi‖`1 , (3.1)
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where R(P
(l)
i ,Wi) = ‖P (l)

i ◦Wi‖`1 , the operator ◦ denotes element-wise multiplication, and P (l)
i

is the collection of penalties on different weights, which is updated in every iteration to increase

the degree of sparsity beyond the `1 norm regularization. In each iteration, we denote the solution

of Wi by W (l)
i and update Pi by setting P (l+1)

i = 1

|W (l)
i |+ε

, where | · | denotes the absolute value

and ε is a small parameter to avoid dividing by zero. In our experiment ε = 0.001 works well. All

operations above are performed element-wise.

3.3.2 Structured pruning

Filter-wise pruning and shape-wise pruning are a subset of structured pruning. Different from

non-structured pruning, structured pruning requires not only the sparsity in weights but also the

position of the zeros elements [14]. To generate different kinds of group sparsity, we propose to

use the reweighted method on the group lasso regularization [88]. Problem (3.1) is also applicable

to structured pruning. For filter-wise pruning, the regularization term is

R(P
(l)
i ,Wi) =

A∑
a=1

‖P (l)
i,a ◦ (Wi)a,:,:,:‖2

F ,

where (Wi)a,:,:,: denotes the a-th filter of Wi, and Pi,a is updated by P (l+1)
i,a = 1

‖(Wi)la,:,:,:‖2F +ε
.

For shape-wise pruning, the regularization term is

R(P
(l)
i ,Wi) =

B∑
b=1

C∑
c=1

D∑
d=1

‖P (l)
i,b,c,d ◦ (Wi):,b,c,d‖2

F ,

where (Wi):,b,c,d denotes the collection of weights located at position (:, b, c, d) in every filter and

Pi is updated by P (l+1)
i,b,c,d = 1

‖(Wi)l:,b,c,d‖
2
F +ε

.

3.4 A unified algorithm for non-structured and structured

sparsity

In [83], the reweighted `1 method initializes all the penalties on different weights to one. In our

problem, since we have pretrained models, we initialize Pi using the parameters Wi in the pre-
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Algorithm 2 Unified reweighted method on DNN pruning
Input: pretrained model
Initialize Pi
Set l = 1
Set T as the number of iterations of the reweighted method
for l ≤ T do

Solve the regularization Problem (3.1) using SGD or ADAM
Update P (l+1)

i using the solution of W (l)
i

end for
Remove the weights (or group of weights) which are close to zeros and retrain the DNN using
the non-zero weights

trained model. We use SGD or ADAM [34] to solve the regularization problem (3.1). We set

the parameters of the pretrained model as the starting point of the first iteration of the reweighted

method, and we set the solution obtained after one iteration of the reweighted method as the start-

ing point of the next iteration. The above approaches we used (the way to initialize Pi and set

starting point) can reduce the total computational time in the reweighted method. After using the

reweighted method, we remove the weights (or group of weights) that are close to zero and retrain

the DNN using the remaining non-zero weights. Algorithm 2 summarizes a single step of our

proposed method.

Then we mask the gradients of the weights we already set to zeros (these zero weights will no

longer change), and use reweighted method to generate further sparsity based on the model found

in the first step. We observe that after the first step, we obtain a sparse model with sparsity larger

than state-of-the-art works [77, 85]. However, we can further increase the degree of sparsity by

using the reweighted method repeatedly.

Since the loss function in the regularization problem is non-convex, we cannot find the globally

optimum of this problem. This impacts the performance of the reweighted method to search for a

model with high degree of sparsity in a single step. However, if we use the single step repeatedly,

we can keep the balance between the degree of sparsity and accuracy of the model in each step.

Then we can finally achieve a highly sparse model without accuracy loss. More specifically, we use

a moderate λ and apply the reweighted method for several steps, and thus obtain a highly sparse
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model with competitive accuracy.

3.5 Numerical results

In this section, we evaluate our proposed framework for both non-structured pruning and structured

pruning on different DNN models. We implement our non-structured pruning method on AlexNet

[3] models for ImageNet ILSVRC-2012 dataset. We also implement our structured pruning method

on ResNet-18 and ResNet-50 [5] models for ImageNet dataset, and MobileNet-V2-1.0 [89] model

for CIFAR-10 dataset.

For the penalty parameter λ, it is used for adjusting the relative importance of accuracy and

sparsity. Excessively small λ fails to regularize enough non-critical weights to values close to

zero and excessively large λ is fails to minimize the loss function and the model accuracy cannot

be maintained. In our experiment we find an appropriate way to tune λ. In the regularization

problems (3.1), when we adjust λ to set the value of the regularization term in the range of

4l ≤ λ
N∑
i=1

R(P
(1)
i ,W

(0)
i ) ≤ 8l,

we achieve good pruning rate without accuracy loss. Where W (0)
i is the weights in pretrained

model, and P (1)
i is derived by W (0)

i , and l is the training loss of the pretrained model.

3.5.1 Non-structured pruning on LeNet-5 & AlexNet

LeNet-5 on MNIST

We first evaluate the performance of our non-structured pruning method on LeNet-5 model using

MNIST dataset. The comparisons of our method and previous methods are shown in Table 3.1.

We achieve 630× pruning rate with 99.0% accuracy and 301× pruning rate with 99.2% accuracy.
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Table 3.1: Comparisons of overall weight pruning results on LeNet-5 using MNIST data set.

Method Accuracy Pruning rate
Uncompressed 99.2% 1×

Iterative Pruning [12] 99.2% 12.5×
One-step ADMM [77] 99.2% 71.2×

Optimal Brain Surgery [39] 98.3% 111×
Progressive ADMM [85] 99.2% 200×

Our method 99.2% 301×
Our method 99.0% 630×

Table 3.2: Comparisons of overall non-structured weight pruning results on AlexNet model for ImageNet
dataset.

Method Top-5 accuracy Accuracy loss Pruning rate
Uncompressed 80.2%/82.4% 0.0% 1×

Iterative Pruning [12] 80.3% −0.1% 9.1×
Optimal Brain Surgery [39] 80.0% 0.2% 17.7×

Hoyer-Square [67] 80.2% 0.0% 21.3×
One-step ADMM [77] 80.2% 0.0% 21×

Progressive ADMM [85] 82.0% 0.4% 36×
Our method (one-step) 82.0% 0.4% 37×

Our method 82.3% 0.1% 40×
Our method 82.0% 0.4% 45×

AlexNet on ImageNet.

Table 3.2 shows the non-structured pruning results. In order to highlight the difference of the

obtained accuracy by using different pruning methods, we use the relative accuracy loss against

the baseline accuracy of each method. Note that the pruning rates of early works are less than or

around 20×. A recent work [85] achieves 36× pruning rate with 82.0% top-5 accuracy. We use

the same baseline as [85] and achieves 45× pruning rate with 82.0% top-5 accuracy.
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Table 3.3: Structured pruning results on ResNet-18 for ImageNet dataset.

Method Sparsity type Pruning rate Top-1/Top-5
Original N/A 1.0× 69.6%/89.0%

DCP [66] filter & shape 1.5× 69.2%/89.0%
Channel Gating [90] filter & shape 1.9× 68.8%/ N/A

Our method shape 3.0× 69.2%/89.0%
Our method filter & shape 4.2× 68.7%/88.5%

Table 3.4: Structured pruning results on ResNet-50 for ImageNet dataset.

Method Sparsity type Pruning rate Top-1/Top-5
Original N/A 1.0× 75.7%/92.7%

Geometric Median [43] filter & shape 1.7× 74.8%/92.3%
DCP [66] filter & shape 2.0× 75.1%/92.3%

CNN-FCF [69] filter & shape 2.1× 74.6%/92.2%
AutoPrune [81] filter & shape 2.2× 74.5%/ N/A

Struct-ADMM [80] filter & shape 2.7× N/A /92.3%
Our method filter & shape 3.2× 75.0%/92.3%

3.5.2 Structured pruning on ResNet-18, ResNet-50 and MobileNet-V2-

1.0

ResNet-18 on ImageNet.

Table 3.3 shows the structured pruning results. DCP [66] only achieves 1.5× pruning rate without

accuracy loss. Channel Gating [90] method achieves 1.9× pruning rate with minor accuracy loss.

In our proposed method, we achieve 3.0× pruning rate without accuracy loss. We also imple-

ment filter-wise sparsity together with shape-wise sparsity on ResNet-18, and totally achieve 4.2×

pruning rate with 0.5% accuracy loss.

Table 3.5: Structured pruning results on MobileNet-V2-1.0 for CIFAR-10 dataset

Method Sparsity type Conv. pruning rate Accuracy
Original N/A 1.0× 94.5%

DCP [66] filter & shape 1.4× 94.7%
Our method filter & shape 7.2× 94.6%
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ResNet-50 on ImageNet.

Table 3.4 shows the structured pruning results. The recent works Geometric Median [43], Struct-

ADMM [80], CNN-FCF [69] and DCP [66] achieve 1.7× to 2.2× pruning rate with minor or no

accuracy loss. In our proposed method, we achieve 3.2× pruning rate with 92.3% Top-5 accuracy.

MobileNet-V2-1.0 on CIFAR-10.

We demonstrate the results of our structured pruning method on MobileNet-V2-1.0 for CIFAR-10

dataset in Table 3.5. We achieve 7.2× pruning rate without accuracy loss, which is significantly

higher than 1.4× in DCP [66].

Overall, using the same training trails, our method can achieve higher pruning rate than the

prior works. For small to large-scale dataset, our proposed method significantly outperforms the

state-of-the-art in terms of pruning rate and accuracy, leading to light weight storage and compu-

tation.

3.6 Discussion on inference acceleration

The computations in the the convolutional layers of DNNs are usually transformed to matrix mul-

tiplications by converting the weight tensors and feature map tensors to matrices [72], which is

called general matrix multiplication (GEMM). In GEMM, filter-wise pruning corresponds to row

pruning, and shape-wise pruning corresponds to column pruning. Combining filter-wise and shape-

wise sparsity can directly reduce the dimension of weight matrix in GEMM by removing zero rows

and columns, which can achieve notable speedup on CPU and GPU platforms. In this paper, we

achieve higher overall pruning rate for the combination of filter-wise and shape-wise pruning com-

pared with prior works, e.g. we achieve 3.2× structured pruning rate on the convolutional layers

of ResNet-50 for ImageNet dataset, which is 45% higher than 2.2× in [81]. The sparse model with

higher structured pruning rate can achieve higher speedup on CPU and GPU platforms.
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3.7 Summary

In this paper, we propose a unified DNN weight pruning framework with dynamically updated reg-

ularization terms bounded by the designated constraint, which can generate both non-structured

sparsity and different kinds of structured sparsity. In our proposed framework, we first use

reweighted method to regularize the model, then remove the weights which are close to zero

and mask the gradient of these weights to ensure that they no longer update, and we retrain the

remaining non-zero weights to retrieve the accuracy. Experimental results demonstrate that we

achieve higher pruning rate than state-of-the-arts for both non-structured and structured pruning

with negligible accuracy degradation.
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CHAPTER 4

GENERATION OF LOW DISTORTION

ADVERSARIAL ATTACKS VIA CONVEX

PROGRAMMING

4.1 Introduction

Deep neural networks (DNNs) continue to show extraordinary performance in a variety of tasks,

such as image recognition [3–5], speech recognition [6, 7], and natural language processing [91].

However, recent research shows that DNNs are vulnerable to adversarial attacks [23, 92]. Adver-

sarial attacks, also known as adversarial examples, are generated by incorporating imperceptible

perturbations into the original input data in order to mislead the prediction of DNNs [93, 94].

Research on the robustness of DNNs follows two directions in general. The first is to enhance

the robustness of DNNs, in order to increase the degree of difficulty for adversarial attacks to

fool DNNs [19–22]. The second is to design adversarial attack methods to test the robustness of

DNNs [23–27]. These two aspects reciprocally benefit each other towards hardening DNNs, and

our research in this chapter belongs to the latter one.

Adversarial attacks can be either untargeted or targeted. In untargeted attacks, adversarial
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examples are generated to fool DNNs’ prediction towards a label other than the correct one [95].

In targeted attacks, adversarial examples are designed to force the DNNs to classify the data with

a desired incorrect target label [23]. In this chapter, we focus on the problem of targeted attack

generation, as such attacks are commonly regarded as being stronger [26].

Despite the fact that the loss functions of DNNs are non-convex, most adversarial attack gener-

ation problems in the literature are solved by gradient descent; for example [34] solves the C&W

attack problem via ADAM. Recent papers on certifying the robustness of DNNs employ relax-

ations to formulate convex optimization problems [96, 97].

In contrast to these methods, in this chapter we first formulate the adversarial attack generation

problem as one with a convex objective function but non-convex constraints. We then design an

algorithm which iteratively solves a related convex problem. We prove that upon convergence of

our iterative algorithm, the obtained solution is feasible for the original (non-convex) problem. We

achieve 100% attack success rate on both the original undefended models and the adversarially-

trained models. Our distortions of the `∞ attack are respectively 31% and 18% lower than the

C&W attack for the best case and average case on the CIFAR-10 data set.

4.2 Related work

4.2.1 Gradient descent based attack methods

L-BFGS attack [23]: The L-BFGS attack is the first attack based on optimization. It aims to

minimize the cross-entropy loss of the adversarial example and the target label, while minimizing

the `2 distortion of the adversarial example and original data.

FGM attack [24] & IFGM attack [92]: The fast gradient method (FGM) attack uses the gradient

of the loss function to find the direction in which the intensity of pixels should be changed. It

is an attack that is designed to be fast rather than to pursue low distortion in the original data.

The iterative fast gradient method (IFGM) attack is a refinement of the FGM attack which takes

multiple smaller steps instead of a single step on gradient descent.
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C&W attack [26]: Based on the basic ideas of L-BFGS attack, C&W attack design their own

objective functions instead of cross-entropy loss, which help them achieve 100% attack successful

rate. Besides on `2 attack, C&W also design iterative methods for the `0 and `∞ attack, in which

the objective functions are non-differentiable. C&W attack is state-of-the-art in the adversarial

attacks on DNNs.

4.2.2 Related work on convex programming and mixed integer linear

programming

Robustness certification of DNNs: Recently, convex optimization methods have been used to

certify the robustness of DNNs rather than to generate adversarial attacks. Examples include the

use of linear programming in [96], quadratic programming in [97], and semidefinite programming

in [98].

Binarized neural networks attack: The paper [99] presents a new method based on mixed integer

linear programming to attack binarized neural networks. The generation of low distortion attacks

on binarized neural networks is a non-convex problem, where the binary nature of the activation

functions is responsible for the lack of convexity. The authors use the property that the output of

every layer is composed of zeros and ones to translate the lack of convexity into binary constraints.

This presents a special case in which the non-convex problem can be solved by mixed integer linear

programming.

4.2.3 Representative defense method

Defensive distillation [25]: Defensive distillation uses distillation for the purpose of improving

the robustness of a neural network. In the defensive distillation method, we need to train a teacher

network model at “high temperature” at first and then employ the teacher network to produce soft

labels for the training data set. Later, the created soft labels are used to train a distilled model.

Finally, we reduce the temperature to low values when we test the accuracy of the distilled model.
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Adversarial training [100]: In adversarial training, adversarial examples with correct labels are

mixed into the training data set. The neural network is then retrained to increase its robustness.

4.3 Problem statement

Consider an N -layer DNN, where the weights and biases in the i-th layer are respectively denoted

by Wi and bi, and that all the layers in the DNN are fully connected. Assume that x0 is a vector

representation of an image in the test set, and that x is an adversarial example that we wish to

generate. The example x has the property that it is a small perturbation of x0 but is classified as

belonging to the incorrect target class t by the DNN.

The output of the first layer of the DNN to input x is

y1 = σ(W1x + b1).

Here, y1 and b1 are vectors, and σ(·) is the non-linear activation function which acts elementwise

on its vector argument. This function is generally chosen to be the ReLU function [70] in state-of-

the-art DNNs, which is defined as

σ(τ) =


τ if τ ≥ 0,

0 if τ < 0.

In a DNN the output of one layer is the input to the next, and thus the output of the i-th layer for

i = 2, . . . , N − 1 is

yi = σ(Wiyi−1 + bi).

The output before the softmax function (the collection of logits) is

z = WNyN−1 + bN .
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The logits are input into the softmax function to calculate the scores of different classes. The

class with the highest score will determine the classification made by the DNN. Since the softmax

function is an increasing function, the class with the highest logit will achieve the highest score

and become the classification result. For a targeted adversarial attack, the target class t should have

the highest logit, which means

(z)t = max(z),

where (z)t is the t-th element in the vector z. The above equation can be equivalently rewritten as

z ≤ (z)t1,

where 1 is the column vector of all ones. The above inequality ensures the success of the targeted

attack. To ensure that x is an imperceptible perturbation of x0 we minimize the Lp distortion

between the adversarial example and the original data. Namely, we minimize

‖x− x0‖p,

which is a convex function of x for p ≥ 1. Also, to ensure the adversarial example yields a valid

image we impose the constraint

0 ≤ x ≤ 1.

We can now formulate the adversarial attack problem as

minimize
x, yi, z

‖x− x0‖p

subject to y1 = σ(W1x + b1)

yi = σ(Wiyi−1 + bi), i = 2, . . . , N − 1

z = WNyN−1 + bN

z ≤ zt1, 0 ≤ x ≤ 1.

(4.1)
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This optimization problem has a convex objective and convex inequality constraints. However,

σ(·) is a nonlinear function which renders the equality constraints, and therefore the optimization

problem as a whole, non-convex.

4.4 Problem relaxation and proposed algorithms

In this section, we propose an algorithm which iteratively solves a convex relaxation of (4.1) to

obtain an approximate solution. This approximate solution is feasible in the sense that it satisfies

all the constraints in (4.1).

Since σ(·) acts elementwise on its argument, we can consider the effect of σ(·) as an element-

wise multiplication of the input vector with a binary vector ai whose elements are zero/one based

on the sign of the elements of the vectors W1x + b1 and Wiyi−1 + bi,

y1 = a1 ◦ (W1x + b1),

yi = ai ◦ (Wiyi−1 + bi), i = 2, . . . , N − 1,

where ◦ denotes elementwise vector multiplication.

Due to the dependence of ai on the sign of Wiyi−1 + bi, the equality constraint yi = ai ◦

(Wiyi−1 + bi) is still non-convex. We break this dependence by using an iterative procedure in

which the sign of Wiyi−1 + bi, computed from the solution of the previous iteration, is used to

form ai in the current iteration. Concretely, rather than solve the non-convex problem (4.1), we



49

solve for k = 0, 1, . . . , T the convex problem

minimize
x, yi, z

‖x− x0‖p + λ‖x− x(k)‖2

subject to y1 = a
(k)
1 ◦ (W1x + b1)

yi = a
(k)
i ◦ (Wiyi−1 + bi), i = 2, . . . , N − 1

z = WNyN−1 + bN

z ≤ zt1, 0 ≤ x ≤ 1.

(4.2)

We denote by x(k+1),y
(k+1)
i , z(k+1) the solution of problem (4.2) at iteration k, and let x(0) = x0.

We set the value of a
(k)
1 according to

(a
(k)
1 )j =


1 if (W1x

(k) + b1)j ≥ 0,

0 if (W1x
(k) + b1)j < 0,

(4.3)

where (v)j denotes the jth element of the vector v and j takes all values between one and the

dimension of the vector a1. We employ a special procedure to compute the values of a
(k)
i . Rather

than use y
(k)
i from the previous iteration, we propagate forward through the layers the value x(k)

of x from the previous iteration and denote the resulting values by y
[k]
i . To make this precise, we

find a
(k)
1 from (4.3) and set y

[k]
1 = a

(k)
1 ◦ (W1x

(k) + b1). We then find a
(k)
2 from

(a
(k)
2 )j =


1 if (W2y

[k]
1 + b2)j ≥ 0,

0 if (W2y
[k]
1 + b2)j < 0,

and set y
[k]
2 = a

(k)
2 ◦ (W2y

[k]
1 + b2). We continue this procedure so that for i = 2, . . . , N − 1,

(a
(k)
i )j =


1 if (Wiy

[k]
i−1 + bi)j ≥ 0,

0 if (Wiy
[k]
i−1 + bi)j < 0.

(4.4)
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We emphasize that problem (4.2) is convex and can therefore be solved efficiently using convex

optimization tools.

This motivates Algorithm 3: We iteratively solve (4.2), using (4.3) and (4.4) to update a
(k+1)
i ,

until the condition a
(k+1)
i = a

(k)
i , i = 1, . . . , N − 1 is satisfied. We initialize the algorithm by

setting x(0) = x0.

Proposition 1. If for some k we have

a
(k+1)
i = a

(k)
i , i = 1, . . . , N − 1, (4.5)

then the solution x of (4.2), denoted by x(k+1), is a feasible solution of problem (4.1).

PROOF: See Appendix A.1.

The parameter λ characterizes the relative importance of the two terms in the objective function

of (4.2): A small value of λ de-emphasizes the second norm, which results in a solution with lower

distortion and therefore better performance; a large value of λ emphasizes the second norm, which

helps achieve convergence (at the expense of performance) when (4.2) is solved iteratively by

penalizing the difference of the optimal x between two consecutive iterations.

This motivates Algorithm 4: We choose a small value of λ and check the convergence of

Algorithm 3. If convergence, as determined by the satisfaction of condition (4.5), is not achieved

then we increase the value of λ and apply Algorithm 3 again; if convergence is achieved then we

have found a value of λ that results in a feasible solution. The advantage of this process is that

when λ is small, the optimization problem (4.2) is allowed to explore the x-space for a solution with

small distortion. Therefore, our aim is to find the smallest value of λ that results in convergence

(in our experiments such a value of λ could always be found); we refer to this value as λ̂, and refer

to the solution of Algorithm 3 with λ = λ̂ as x̂.

Remark: Once λ̂ is obtained, we may explore whether solutions with lower distortion than x̂

can be found as follows: We start from λ = λ̂ and apply Algorithm 3 with the important difference

that rather than setting x(0) = x0 we take x(0) = x̂. We then iteratively reapply Algorithm 3,
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Algorithm 3 Find approximate solution of (4.1) by iteratively solving (4.2)
Input: image x0, weights Wi, biases bi, parameter λ
Set x(0) = x0

Calculate a
(0)
i according to (4.3) and (4.4)

Set k = 0
for k ≤ T do

Solve problem (4.2) to obtain x(k+1)

Update a
(k+1)
i according to (4.3) and (4.4)

if Condition (4.5) is satisfied then
Break for loop

end if
Set k = k + 1

end for

Algorithm 4 Iterative method to guarantee convergence of Algorithm 3
Input: image x0, weights Wi, biases bi
Set parameter λ
repeat

Apply Algorithm 3
if Condition (4.5) is not satisfied then

Increase value of λ
end if

until Condition (4.5) is satisfied
Set x̂ to solution of Algorithm 3
Set λ̂ = λ

we decrease λ if convergence is achieved and otherwise increase λ, each time setting x(0) to be

the solution of Algorithm 3 from the previous iteration. In our experiments we find that applying

this methods for several iterations usually helps us find a solution with lower distortion than just

applying Algorithms 3 and 4.

4.5 Numerical results

We compare our proposed method with the IFGM attack [92] and the C&W attack [92], in which

the C&W attack is state-of-the-art adversarial attack on DNNs. In the C&W attack, the authors

proposed their method for `0, `2 and `∞ attacks, since `0 norm is non-convex, it is not applicable

for convex programming. Thus we compare our `2 and `∞ attacks with other two works. Our ex-
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perimental results demonstrate that the adversarial examples generated by our method have lower

distortion than the IFGM attack and the C&W attack on the MNIST [4] and CIFAR-10 [101] data

sets.

4.5.1 Experiment setup

We evaluate the performance of different attack methods on the LeNet-300-100 [4]. In this net-

work, the number of neurons in the two hidden layers are 300 and 100, respectively. The activation

functions after the hidden layers are chosen to be ReLU. The test accuracy of LeNet-300-100 on

the MNIST and CIFAR-10 data sets are around 98% and 57%, respectively. In our proposed algo-

rithm, we solve the convex problem by CVXPY [102,103], which is a tool for convex programming

in Python.

4.5.2 Attack success rate and distortion for the `2 attack

We test the `2 attack of our proposed method, the IFGM attack method and the C&W attack method

on the first 500 images in the test sets of the MNIST and CIFAR-10 data sets. For every image we

implement targeted attacks on its 9 incorrect labels. In the 4500 adversarial attacks in each data

set, both of the methods achieve 100% attack success rate (ASR), and the `2 distortion of different

attack methods on CIFAR-10 are shown in Table 4.1.

In both of the data sets, the performance of our method and the C&W attack are much better

than the IFGM attack. In the MNIST data set, our results are close to the C&W attack. While

in the larger data set CIFAR-10, we achieve lower distortion than the C&W attack on both of the

three cases.

4.5.3 Attack success rate and distortion for the `∞ attack

The data sets setup for the `∞ attack test is the same as the `2 attack. The results of different `∞

attack methods are shown in Table 4.2.
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Table 4.1: Comparisons of different `2 attacks for MNIST and CIFAR-10 data sets

Data Set Attack Method
Best Case Average Case Worst Case

ASR `2 ASR `2 ASR `2

MNIST
IFGM (`2) 100 1.14 100 1.93 100 2.83
C&W (`2) 100 1.10 100 1.73 100 2.35

Convex Programming (`2) 100 1.09 100 1.73 100 2.35

CIFAR-10
IFGM (`2) 100 0.168 100 0.740 100 1.339
C&W (`2) 100 0.158 100 0.648 100 1.114

Convex Programming (`2) 100 0.154 100 0.645 100 1.112

Table 4.2: Comparison of different `∞ attacks for MNIST and CIFAR-10 data sets

Data Set Attack Method
Best Case Average Case Worst Case

ASR `∞ ASR `∞ ASR `∞

MNIST
IFGM (`∞) 100 0.081 100 0.134 100 0.197
C&W (`∞) 100 0.076 100 0.117 100 0.156

Convex Programming (`∞) 100 0.074 100 0.114 100 0.152

CIFAR-10
IFGM (`∞) 100 0.0046 100 0.0198 100 0.0379
C&W (`∞) 100 0.0051 100 0.0181 100 0.0299

Convex Programming (`∞) 100 0.0035 100 0.0149 100 0.0256

On the `∞ attack, we achieve a notable improvement compared with the results of the C&W

attack. In the CIFAR-10 data set, we respectively reduce the `∞ distortion by 31% and 18% for

the best case and average case compared with the C&W attack on the `∞ attack.

4.5.4 Attack against adversarial training

We test the performance of our method under adversarial training [100] using data augmentation,

where we add 4500 adversarial examples with correct labels into the training data set. For these

adversarially-trained models, we find that the adversarial examples generated by our `∞ method

consistently have lower distortion compared with the adversarial examples generated by the C&W

method. We elaborate on these results for the `∞ case below.

In our first group of experiments, we generate adversarial examples, perform adversarial train-

ing, and attack adversarially-trained models, all using the same method (i.e., our convex program-

ming method versus the C&W method), and then compare their distortions against each other. On

MNIST, the average distortion of our method is 0.124, which is lower than 0.129 for the C&W
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method. On CIFAR-10, the average distortion of our method is 0.0231, which is 12% lower than

0.0262 for the C&W method.

In our second group of experiments, we implement adversarial training using adversarial exam-

ples generated by IFGM method, and then attack the adversarially-trained model using our method

and the C&W method. On MNIST, the average distortion of our method is 0.126, which is lower

than 0.132 for the C&W method. On CIFAR-10, the average distortion of our method is 0.0262,

which is 11% lower than 0.0295 for the C&W method.

4.6 Summary

In this chapter, we propose an innovative method for generating adversarial examples via convex

programming. Our method achieves a 100% attack success rate on both the original undefended

models and the adversarially-trained models. We also decrease the distortion (on both original un-

defended models and adversarially-trained models) of adversarial examples compared with state-

of-the-art attack methods.
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CHAPTER 5

A UNIFIED MIN-MAX FRAMEWORK FOR

ADVERSARIAL EXPLORATION AND

ROBUSTNESS

5.1 Introduction

Training a machine learning model that is capable of assuring its worst-case performance against

all possible adversaries given a specified threat model is a fundamental yet challenging problem,

especially for deep neural networks (DNNs) [23, 24, 26]. A common practice to train an adversar-

ially robust model is based on a specific form of min-max training, known as adversarial training

(AT) [24, 104], where the minimization step learns model weights under the adversarial loss con-

structed at the maximization step in an alternative training fashion. In practice, AT has achieved

the state-of-the-art defense performance against `p-norm-ball input perturbations [105].

Although the min-max principle is widely used in AT and its variants [31, 104, 106, 107], few

works have studied its power in attack generation. Thus, we ask: Beyond AT, can other types of

min-max formulation and optimization techniques advance the research in both adversarial attack

and robustness exploration? In this chapter, we give an affirmative answer corroborated by the



56

substantial performance gain and the ability of self-learned risk interpretation using our proposed

min-max framework on several tasks for adversarial attack and defense.

We demonstrate the utility of a general formulation for minimizing the maximal loss induced

from a set of risk sources (domains). Our considered min-max formulation is fundamentally differ-

ent from AT, as our maximization step is taken over the probability simplex of the set of domains.

Moreover, we show that many problem setups in adversarial attacks and defenses can in fact be re-

formulated under this general min-max framework, including attacking model ensembles [28, 29],

devising universal perturbation to input samples [30] and generalized AT over multiple types of

threat models [31, 32]. However, current methods for solving these tasks often rely on simple

heuristics (e.g., uniform averaging), resulting in significant performance drops when compared to

our proposed min-max optimization framework.

Contributions (i) We indicate the utility of min-max optimization beyond AT by proposing a

general and theoretically grounded framework on adversarial attack and defense. As a byproduct

and an exclusive feature, by tracking the learnable weighting factors associated with multiple do-

mains, our method can provide tools for self-adjusted importance assessment on the mixed learning

tasks.

(ii) With the aid of min-max optimization, we propose a unified alternating one-step projected

gradient descent (APGD) attack method, which can readily be specified to generate model en-

semble attack, and universal attack over multiple images. In theory, we show that APGD has

an O(1/T ) convergence rate, where T is the number of iterations. In practice, we show that

APGD obtains 17.48%, 35.21% and 9.39% improvement on average compared with PGD attack

on CIFAR-10.

(iii) We propose a generalized AT scheme under mixed types of adversarial attacks and demon-

strate that the diversified attack ensemble helps adversarial robustness. Compared with vanilla AT,

our new training scheme leads to better worst-case robustness even if the defender lacks prior

knowledge of the strengths of attacks.
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5.2 Related work

Recent studies have identified that DNNs are highly vulnerable to adversarial manipulations in

various applications [23,94,108–115], thus leading to an arms race between adversarial attacks [26,

27, 95, 105, 116–118] and defenses [25, 31, 104, 106, 107, 119–121]. One intriguing property of

adversarial examples is the transferability across multiple domains [122–125], which indicates a

more challenging yet promising research direction – devising universal adversarial perturbations

over model ensembles [28, 29], and input samples [30, 126, 127]. However, current approaches

suffer from a significant performance loss for resting on the uniform averaging strategy or heuristic

weighting schemes [29, 127]. As a natural extension following min-max attack, we study the

generalized AT under multiple perturbations [31, 32, 128, 129]. Finally, our min-max framework

is adapted and inspired by previous literature on robust learning over multiple domains [130–133].

5.3 Preliminaries

Consider K loss functions {Fi(v)} (each of which is defined on a learning domain), the problem

of robust learning over K domains can be formulated as [130–132]

minimize
v∈V

maximize
w∈P

∑K
i=1wiFi(v), (5.1)

where v and w are optimization variables, V is a constraint set, and P denotes the probability

simplex P = {w |1Tw = 1, wi ∈ [0, 1],∀i}. Since the inner maximization problem in (5.1) is a

linear function of w over the probabilistic simplex, problem (5.1) is thus equivalent to

minimize
v∈V

maximize
i∈[K]

Fi(v), (5.2)

where [K] denotes the integer set {1, 2, . . . , K}.
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Benefit and challenge from (5.1). Compared to multi-task learning in a finite-sum formula-

tion which minimizes K losses on average, problem (5.1) provides consistently robust worst-case

performance across all domains. This can be explained from the epigraph form of (5.2),

minimize
v∈V,t

t, subject to Fi(v) ≤ t, i ∈ [K], (5.3)

where t is an epigraph variable [134] that provides the t-level robustness at each domain.

In computation, the inner maximization problem of (5.1) always returns the one-hot value of

w, namely, w = ei, where ei is the ith standard basis vector, and i = arg maxi{Fi(v)}. However,

this one-hot coding reduces the generalizability to other domains and induces instability of the

learning procedure in practice. Such an issue is often mitigated by introducing a strongly concave

regularizer in the inner maximization step to strike a balance between the average and the worst-

case performance [130, 132].

Regularized formulation. Following [130], we penalize the distance between the worst-case

loss and the average loss over K domains. This yields

minimize
v∈V

maximize
w∈P

∑K
i=1wiFi(v)− γ

2
‖w − 1/K‖2

2, (5.4)

where γ > 0 is a regularization parameter. As γ → 0, problem (5.4) is equivalent to (5.1). By

contrast, it becomes the finite-sum problem when γ → ∞ since w → 1/K. In this sense, the

trainable w provides an essential indicator on the importance level of each domain. The larger the

weight is, the more important the domain is. We call w domain weights in this chapter.

5.4 Min-max power in attack design

To the best of our knowledge, few works have studied the power of min-max in attack generation.

In this section, we demonstrate how the unified min-max framework (5.4) fits into various attack

settings. With the help of domain weights, our solution yields better empirical performance and
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explainability. Finally, we present the min-max algorithm with convergence analysis to craft robust

perturbations against multiple domains.

5.4.1 A unified framework for robust adversarial attacks

The general goal of adversarial attack is to craft an adversarial example x′ = x0 + δ ∈ Rd to

mislead the prediction of machine learning (ML) or deep learning (DL) systems, where x0 denotes

the natural example with the true label t0, and δ is known as adversarial perturbation, commonly

subject to `p-norm (p ∈ {0, 1, 2,∞}) constraint X := {δ | ‖δ‖p ≤ ε, x0 + δ ∈ [0, 1]d} for a given

small number ε. Here the `p norm enforces the similarity between x′ and x0, and the input space

of ML/DL systems is normalized to [0, 1]d.

Ensemble attack over multiple models. Consider K ML/DL models {Mi}Ki=1, the goal is

to find robust adversarial examples that can fool all K models simultaneously. In this case, the

notion of ‘domain’ in (5.4) is specified as ‘model’, and the objective function Fi in (5.4) signifies

the attack loss f(δ; x0, y0,Mi) given the natural input (x0, y0) and the modelMi. Thus, problem

(5.4) becomes

minimize
δ∈X

maximize
w∈P

K∑
i=1

wif(δ; x0, y0,Mi)−
γ

2
‖w − 1/K‖2

2, (5.5)

where w encodes the difficulty level of attacking each model.

Universal perturbation over multiple examples. Consider K natural examples

{(xi, yi)}Ki=1 and a single model M, our goal is to find the universal perturbation δ so that

all the corrupted K examples can foolM. In this case, the notion of ‘domain’ in (5.4) is specified

as ‘example’, and problem (5.4) becomes

minimize
δ∈X

maximize
w∈P

K∑
i=1

wif(δ; xi, yi,M)− γ

2
‖w − 1/K‖2

2, (5.6)
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Algorithm 5 APGD to solve the min-max problem

1: Input: given w(0) and δ(0).
2: for t = 1, 2, . . . , T do
3: outer min.: fixing w = w(t−1), call PGD (5.7) to update δ(t)

4: inner max.: fixing δ = δ(t), update w(t) with projected gradient ascent (5.11)
5: end for

where different from (5.5), w encodes the difficulty level of attacking each example.

Benefits of min-max attack generation with learnable domain weights w. We can in-

terpret (5.5)-(5.6) as finding the robust adversarial attack against the worst-case environment that

an adversary encounters, e.g., multiple victim models, data samples, and input transformations.

The proposed min-max design of adversarial attacks leads to two main benefits. First, compared

to the heuristic weighting strategy (e.g., clipping thresholds on the importance of individual attack

losses [127]), our proposal is free of supervised manual adjustment on domain weights. Even by

carefully tuning the heuristic weighting strategy, we find that our approach with self-adjusted w

consistently outperforms the clipping strategy in [127]. Second, the learned domain weights can

be used to assess the model robustness when facing different types of adversary.

5.4.2 Min-max algorithm for adversarial attack generation

We propose the alternating one-step projected gradient descent (APGD) method (Algorithm 5) to

solve problem (5.4). For ease of presentation, we write problems (5.5), (5.6) into the general form

minimize
δ∈X

maximize
w∈P

∑K
i=1 wiFi(δ)− γ

2
‖w − 1/K‖2

2,

where Fi denotes the ith individual attack loss. We show that at each iteration, APGD takes only

one-step PGD for outer minimization and one-step projected gradient ascent for inner maximiza-

tion.
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Outer minimization Considering w = w(t−1) and F (δ) :=
∑K

i=1w
(t−1)
i Fi(δ) in (5.4), we

perform one-step PGD to update δ at iteration t,

δ(t) = projX
(
δ(t−1) − α∇δF (δ(t−1))

)
, (5.7)

where proj(·) denotes the Euclidean projection operator, i.e., projX (a) = arg minx∈X ‖x − a‖2
2

at the point a, α > 0 is a given learning rate, and ∇δ denotes the first-order gradient w.r.t. δ. If

p = ∞, then the projection function becomes the clip function. In Proposition 2, we derive the

solution of projX (a) under different `p norms for p ∈ {0, 1, 2}.

Proposition 2. Given a point a ∈ Rd and a constraint set X = {δ|‖δ‖p ≤ ε, č ≤ δ ≤ ĉ}, the

Euclidean projection δ∗ = projX (a) has the closed-form solution when p ∈ {0, 1, 2}.

1) If p = 1, then δ∗ is given by

δ∗i =

 P[či,ĉi](ai)
∑d

i=1 |P[či,ĉi](ai)| ≤ ε

P[či,ĉi](sign(ai) max {|ai| − λ1, 0}) otherwise,
(5.8)

where xi denotes the ith element of a vector x; P[či,ĉi](·) denotes the clip function over the in-

terval [či, ĉi]; sign(x) = 1 if x ≥ 0, otherwise 0; λ1 ∈ (0,maxi |ai| − ε/d] is the root of∑d
i=1 |P[či,ĉi](sign(ai) max {|ai| − λ1, 0})| = ε.

2) If p = 2, then δ∗ is given by

δ∗i =

 P[či,ĉi](ai)
∑d

i=1(P[či,ĉi](ai))
2 ≤ ε2

P[či,ĉi] (ai/(λ2 + 1)) otherwise,
(5.9)

where λ2 ∈ (0, ‖a‖2/ε− 1] is the root of
∑d

i=1(P[či,ĉi](ai/(λ2 + 1)))2 = ε2.
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3) If p = 0 and ε ∈ N+, then δ∗ is given by

δ∗i =

 δ′i ηi ≥ [η]ε

0 otherwise,
ηi =


√

2aiči − č2
i ai < či√

2aiĉi − ĉ2
i ai > ĉi

|ai| otherwise.

(5.10)

where [η]ε denotes the ε-th largest element of η, and δ′i = P[či,ĉi](ai).

PROOF: See Appendix A.

Inner maximization By fixing δ = δ(t) and letting ψ(w) :=
∑K

i=1 wiFi(δ
(t))− γ

2
‖w−1/K‖2

2

in problem (5.4), we then perform one-step PGD (w.r.t. −ψ) to update w,

w(t) = projP

(
w(t−1) + β∇wψ(w(t−1))︸ ︷︷ ︸

b

)
= (b− µ1)+ , (5.11)

where β > 0 is a given learning rate, ∇wψ(w) = φ(t) − γ(w − 1/K), and φ(t) :=

[F1(δ(t)), . . . , FK(δ(t))]T . In (5.11), the second equality holds due to the closed-form of projec-

tion operation onto the probabilistic simplex P [135], where (x)+ = max{0, x}, and µ is the

root of the equation 1T (b − µ1)+ = 1. Since 1T (b − mini{bi}1 + 1/K)+ ≥ 1T1/K = 1,

and 1T (b − maxi{bi}1 + 1/K)+ ≤ 1T1/K = 1, the root µ exists within the interval

[mini{bi} − 1/K,maxi{bi} − 1/K] and can be found via the bisection method [134].

Convergence analysis We remark that APGD follows the gradient primal-dual optimization

framework [133], and thus enjoys the same optimization guarantees.

Theorem 1. Suppose that in problem (5.4) Fi(δ) has L-Lipschitz continuous gradients, and X is

a convex compact set. Given learning rates α ≤ 1
L

and β < 1
γ

, then the sequence {δ(t),w(t)}Tt=1

generated by Algorithm 5 converges to a first-order stationary point1 in rate O
(

1
T

)
.

1The stationarity is measured by the `2 norm of gradient of the objective in (5.4) w.r.t. (δ,w).
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PROOF: See Appendix B.

5.5 Min-max power in defense

In this section, we show that the min-max principle can be used to generalize AT from a defender’s

perspective. Different from promoting robustness of adversarial examples against the worst-case

attacking environment (Sec. 5.4), the generalized AT promotes model’s robustness against the

worst-case defending environment, given by the existence of diversified `p attacks.

One key challenge in generalized AT is that the multiple `p perturbations overlap largely thus

weakening the diversity of inner threat models. To enhance the worst-case defending environment,

we propose quantifying and regularizing the diversity of `p attacks (Sec. 5.5.2) to gain complemen-

tary robustness from defense against diversified attacks.

5.5.1 A unified framework for adversarial training under mixed types

of adversarial attacks

Conventional AT is restricted to a single type of norm-ball constrained adversarial attack [104].

For example, AT under `∞ attack yields

minimize
θ

E(x,y)∈Dmaximize
‖δ‖∞≤ε

ftr(θ, δ; x, y), (5.12)

where θ ∈ Rn denotes model parameters, δ denotes ε-tolerant `∞ attack, and ftr(θ, δ; x, y) is the

training loss under perturbed examples {(x + δ, y)}. However, there possibly exist blind attacking

spots across multiple types of adversarial attacks so that AT under one attack would not be strong

enough against another attack [32]. Thus, an interesting question is how to generalize AT under

multiple types of adversarial attacks. One possible way is to use the finite-sum formulation in

the inner maximization problem of (5.12), namely, maximize{δi∈Xi}
1
K

∑K
i=1 ftr(θ, δi; x, y), where

δi ∈ Xi is the ith type of adversarial perturbation defined on Xi, e.g., different `p attacks.
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However, one can also map ‘attack type’ to ‘domain’ considered in (5.1). We then generalize

AT against the strongest adversarial attack across K attack types in order to avoid blind attacking

spots:

minimize
θ

E(x,y)∈Dmaximize
i∈[K]

maximize
δi∈Xi

ftr(θ, δi; x, y). (5.13)

In Lemma 1, we show that problem (5.13) can be equivalently transformed into the min-max form.

Lemma 1. Problem (5.13) is equivalent to

minimize
θ

E(x,y)∈D maximize
w∈P,{δi∈Xi}

K∑
i=1

wiftr(θ, δi; x, y), (5.14)

where w ∈ RK represent domain weights, and P has been defined in (5.1).

PROOF: See Appendix C.

Similar to (5.4), a strongly concave regularizer −γ/2‖w − 1/K‖2
2 can be added into the inner

maximization problem of (5.14) for boosting the stability of the learning procedure and striking a

balance between the max and the average attack performance. We finally remark that there was

an independent work [31] which also generalized AT under multiple perturbations. However, our

proposal is conceptually different from [31] as we generalize AT from the perspective of min-max

optimization.

5.5.2 Improved robustness via diversified `p attacks

It was recently shown in [136, 137] that the diversity of multiple neural networks improves ad-

versarial robustness of an ensemble model. Different from the previous work to promote model

diversity, we measure the diversity between adversarial attacks under a single ML model. Such an

attack diversity can be quantified through the similarity between perturbation directions, namely,

input gradients {∇δiftr(θ, δi; x, y)}i in (5.14). Since different `p perturbations overlap largely, we

examine whether or not the promotion of diversity among `p attacks is beneficial to adversarial
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robustness. We enhance the diversity through

h(θ, {δi}; x, y) := log det(GTG), (5.15)

where G ∈ Rd×K is a d × K matrix, each column of which corresponds to a normalized input

gradient∇δiftr(θ, δi; x, y) for i ∈ [K], and h(θ, {δi}; x, y) reaches the maximum value 0 as input

gradients become orthogonal. Note that a diversity regularizer was used for defense in [137], but

for promoting the diversity of ensemble models rather than perturbation directions under a single

model. With the aid of (5.15) and a strongly concave regularizer, we modify problem (5.14) to

minimize
θ

E(x,y)∈D maximize
w∈P,{δi∈Xi}

ψ(θ,w, {δi})

ψ(θ,w, {δi}) :=
K∑
i=1

wiftr(θ, δi; x, y)− γ

2
‖w − 1/K‖2

2

+ λh(θ, {δi}; x, y) (5.16)

The rationale behind (5.16) is that the inner maximization enforces the worst-case defending envi-

ronment: The adversary aims to enhance the effectiveness of attacks from diversified perturbation

directions. However, during outer minimization, the defender enhances the capability of the model

θ to defend those diversified attacks.

5.5.3 Min-max algorithm for generalized adversarial training

We next propose the alternating multi-step projected gradient descent (AMPGD) method to solve

the problem (5.16). We summarize AMPGD in Algorithm 6.

Algorithm 6 AMPGD to solve problem (5.16)
1: Input: given θ(0), w(0), δ(0) and K > 0.
2: for t = 1, 2, . . . , T do
3: given w(t−1) and δ(t−1), perform SGD to update θ(t)

4: given θ(t), perform R-step PGD to update w(t) and δ(t)

5: end for

Problem (5.16) is in a more general non-convex non-concave min-max setting, where the inner
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maximization involves both domain weights w and adversarial perturbations {δi}. It was shown

in [138] that the multi-step PGD is required for inner maximization in order to approximate the

near-optimal solution. This is also in the similar spirit of AT [104], which executed multi-step

PGD attack during inner maximization. At step 4 of Algorithm 6, each PGD step to update w and

δ can be decomposed as

w(t)
r = projP

(
w

(t)
r−1 + β∇wψ(θ(t),w

(t)
r−1, {δ

(t)
i,r−1})

)
,∀r ∈ [R],

δ
(t)
i,r = projXi

(
δ

(t)
i,r−1 + β∇δψ(θ(t),w

(t)
r−1, {δ

(t)
i,r−1})

)
,∀r, i ∈ [R], [K]

where let w
(t)
1 := w(t−1) and δ(t)

i,1 := δ
(t−1)
i . Here the superscript t represents the iteration index

of AMPGD, and the subscript r denotes the iteration index of R-step PGD. Clearly, the above

projection operations can be derived for closed-form expressions through (5.11) and Lemma 2. To

the best of our knowledge, it is still an open question to build theoretical convergence guarantees

for solving the general non-convex non-concave min-max problem like (5.16), except the work

[138] which proposed O(1/T ) convergence rate if the objective function satisfies a strict Polyak-

Łojasiewicz condition [139].

5.6 Numerical results

In this section, we first evaluate the proposed min-max optimization strategy on three attack tasks.

We show that our approach leads to substantial improvement compared with state-of-the-art attack

methods such as ensemble PGD [29] and expectation over transformation (EOT) [105, 140, 141].

We next demonstrate the effectiveness of the generalized AT for multiple types of adversarial per-

turbations. We show that the use of trainable domain weights in problem (5.16) can automatically

adjust the risk level of different attacks during the training process even if the defender lacks prior

knowledge on the strength of these attacks. We also show that the promotion of diversity of `p

attacks help improve adversarial robustness further.
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5.6.1 Min-max adversarial attacks
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Fig. 5.1: Ensemble attack against four DNN models on MNIST. (a) & (b): Attack success rate of adversarial
examples generated by average (ensemble PGD) or min-max (APGD) attack method. (c): Boxplot of weight
w in APGD adversarial loss. Here we adopt the same `∞-attack as Table 5.1.

In what follows, we show the great strength of min-max optimization also lies at the side of

attack generation. Note that problem formulations (5.5)-(5.6) are applicable to both untargeted

and targeted attack. Here we focus on the former setting and use C&W loss function [26, 104].

Ensemble attack over multiple models We craft adversarial examples against an ensemble

of known classifiers. Recent work [29] proposed an ensemble PGD attack, which assumed equal

importance among different models, namely, wi = 1/K in problem (5.5). Throughout this task,

we measure the attack performance via ASRall - the attack success rate (ASR) of fooling model

ensembles simultaneously. Compared to the ensemble PGD attack, our approach results in 40.79%

ASRall improvement averaged over different `p-norm constraints on MNIST, respectively. In what

follows, we provide more detailed experiment results and analysis.

In Table 5.1, we show that our min-max APGD significantly outperforms ensemble PGD in

ASRall. Taking `∞-attack on MNIST as an example, our min-max attack leads to a 90.16% ASRall,

which largely outperforms 48.17% (ensemble PGD). The reason is that Model C, D are more

difficult to attack, which can be observed from their higher test accuracy on adversarial examples.

As a result, although the adversarial examples crafted by assigning equal weights over multiple

models are able to attack {A, B} well, they achieve a much lower ASR in {C, D}. By contrast,

APGD automatically handles the worst case {C, D} by slightly sacrificing the performance on {A,

B}: 31.47% averaged ASR improvement on {C, D} versus 0.86% degradation on {A, B}.
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Table 5.1: Comparison of average and min-max (APGD) ensemble attack over four models on MNIST. Acc
(%) represents the test accuracy of classifiers on adversarial examples.

Box constraint Opt. AccA AccB AccC AccD ASRall Lift (↑)

`0 (ε = 30)
avg. 7.03 1.51 11.27 2.48 84.03 -

min max 3.65 2.36 4.99 3.11 91.97 9.45%

`1 (ε = 20)
avg. 20.79 0.15 21.48 6.70 69.31 -

min max 6.12 2.53 8.43 5.11 89.16 28.64%

`2 (ε = 3.0)
avg. 6.88 0.03 26.28 14.50 69.12 -

clip [127] 0.66 0.03 23.43 13.23 71.54 48.52%
min max 1.51 0.89 3.50 2.06 95.31 37.89%

`∞ (ε = 0.2)
avg. 1.05 0.07 41.10 35.03 48.17 -

clip [127] 0.66 0.03 23.43 13.23 71.54 48.52%
min max 2.47 0.37 7.39 5.81 90.16 87.17%

Effectiveness of learnable domain weights Figure 5.1 depicts the ASR of four models un-

der average/min-max attacks as well as the distribution of domain weights during attack generation.

For ensemble PGD (Figure 5.1a), Model C and D are attacked insufficiently, leading to relatively

low ASR and thus weak ensemble performance. By contrast, APGD (Figure 5.1b) will encode the

difficulty level to attack different models based on the current attack loss. It dynamically adjusts

the weight wi as shown in Figure 5.1c. For instance, the weight for Model D is first raised to 0.45

because D is difficult to attack initially. Then it decreases to 0.3 once Model D encounters the suf-

ficient attack power and the corresponding attack performance is no longer improved. It is worth

noticing that APGD is highly efficient because wi converges after a small number of iterations.

Figure 5.1c also shows wc > wd > wa > wb – indicating a decrease in model robustness for C, D,

A and B, which is exactly verified by AccC > AccD > AccA > AccB in the last row of Table 5.1

(`∞-norm). As the perturbation radius ε varies, we also observe that the ASR of min-max strategy

is consistently better or on part with the average strategy.

Comparison with stronger heuristic baselines Apart from average strategy, we compare

min-max framework with a stronger heuristic weighting scheme - loss clipping [127] in Table 5.1.

Briefly, we achieve substantial improvement over baselines consistently. Also, we show that even
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Table 5.2: Comparison of average and minmax optimization on universal perturbation over multiple input
examples. The adversarial examples are generated by 20-step `∞-APGD.

Setting K = 2 K = 4 K = 5 K = 10

Dataset Model Opt. ASRavg ASRgp Lift (↑) ASRavg ASRgp Lift (↑) ASRavg ASRgp Lift (↑) ASRavg ASRgp Lift (↑)

CIFAR-10

All-CNNs
avg. 91.09 83.08 - 85.66 54.72 - 82.76 40.20 - 71.22 4.50 -

min max 92.22 85.98 3.49% 87.63 65.80 20.25% 85.02 55.74 38.66% 65.64 11.80 162.2%

LeNetV2
avg. 93.26 86.90 - 90.04 66.12 - 88.28 55.00 - 72.02 8.90 -

min max 93.34 87.08 0.21% 91.91 71.64 8.35% 91.21 63.55 15.55% 82.85 25.10 182.0%

VGG16
avg. 90.76 82.56 - 89.36 63.92 - 88.74 55.20 - 85.86 22.40 -

min max 92.40 85.92 4.07% 90.04 70.40 10.14% 88.97 63.30 14.67% 79.07 30.80 37.50%

GoogLeNet
avg. 85.02 72.48 - 75.20 32.68 - 71.82 19.60 - 59.01 0.40 -

min max 87.08 77.82 7.37% 77.05 46.20 41.37% 71.20 33.70 71.94% 45.46 2.40 600.0%

adopting converged min-max weights statically leads to a huge performance drop on attacking

model ensembles, which again verifies the power of dynamically optimizing domain weights dur-

ing attack generation process.

Multi-image universal perturbation We evaluate APGD in universal perturbation on

MNIST and CIFAR-10, where 10,000 test images are randomly divided into equal-size groups

(K images per group) for universal perturbation. We measure two types of ASR (%), ASRavg

and ASRgp. Here the former represents the ASR averaged over all images in all groups, and the

latter signifies the ASR averaged over all groups but a successful attack is counted under a more

restricted condition: images within each group must be successfully attacked simultaneously by

universal perturbation. When K = 5, our approach achieves 35.21% improvement over the aver-

aging strategy under CIFAR-10.

In Table 5.2, we compare the proposed min-max strategy (APGD) with the averaging strategy

on the attack performance of generated universal perturbations. As we can see, our method al-

ways achieves higher ASRgp for different values of K. The universal perturbation generated from

APGD can successfully attack ‘hard’ images (on which the average-based PGD attack fails) by

self-adjusting domain weights, and thus leads to a higher ASRgp. Besides, the min-max universal

perturbation also offers interpretability of “image robustness” by associating domain weights with

image visualization.
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Fig. 5.2: Generalized AT of MLP models on MNIST. (a): Violin plot of weight w in APGD versus
perturbation magnitude ε of `2-attack in AT; (b): Model robustness under different AT schemes; (c): Model
robustness and diversity regularization in (5.15) vs. adversarial training epoch.

5.6.2 Robust training under multiple types of `p attacks

Table 5.3: Adversarial training on single attacks (`∞ and `2) and multiple attacks (avg. and minmax). The
perturbation magnitude ε for `∞ and `2 attacks are 0.2 and 2.0, respectively. (a) & (b) on MNIST; (c) & (d)
on CIFAR-10.

(a) MLP (b) LeNet

Opt. Acc-`∞ Acc-`2 Accmax
adv Accavgadv

natural 2.70 13.86 0.85 8.28

`∞ 77.70 69.17 66.34 73.43
`2 70.03 81.74 69.14 75.88

avg. 75.09 79.00 72.23 77.05

minmax 75.96 79.15 73.43 77.55
+ DPAR 76.92 79.74 74.29 78.35

Acc-`∞ Acc-`2 Accmax
adv Accavgadv

17.93 39.32 17.57 28.63

93.80 78.97 78.80 86.39
85.84 87.31 84.06 86.58

88.96 85.59 84.29 87.28

89.21 85.98 84.82 87.60
90.19 86.47 85.47 88.33

(c) ResNet34 (d) ResNet50

avg. + DPAR minmax + DPAR

Accmax
adv 32.63 33.97 34.71 35.22

avg. + DPAR minmax + DPAR

35.98 36.71 37.53 38.60

Compared to vanilla AT, we show the generalized AT scheme produces models robust to mul-

tiple types of perturbation, thus leads to stronger “overall robustness”. We measure the training

performance using two types of Acc (%): Accmax
adv and Accavgadv , where Accmax

adv denotes the test ac-

curacy over examples with the strongest perturbation (`∞ or `2), and Accavg
adv denotes the averaged

test accuracy over examples with all types of perturbations (`∞ and `2). Moreover, we measure the
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overall worst-case robustness Sε in terms of the area under the curve ‘Accmax
adv vs. ε’ (Figure 5.2b).

In Table 5.3, we present the test accuracy in different training schemes: a) natural training,

b) single-norm: vanilla AT (`∞ or `2), c) multi-norm: generalized AT (avg and min max), and

d) generalized AT with diversity-promoting attack regularization (DPAR, λ = 0.1 in problem

(5.15)). If the adversary only performs single-type attack, training and testing on the same attack

type leads to the best performance (diagonal of `∞-`2 block). However, when facing `∞ and `2

attacks simultaneously, multi-norm generalized AT achieves better Accmax
adv and Accavg

adv than single-

norm AT. In particular, the min-max strategy outperforms the averaging strategy under multiple

perturbation norms. DPAR further boosts the adversarial test accuracy, which implies that the

promotion of diversified `p attacks is a beneficial supplement to adversarial training. We also

observed for ResNets on CIFAR-10, our approach results in larger benefits (2 ∼ 3% improvement

on Accmax
adv ).

Effectiveness of domain weights and diversity promotion regularizer In Figure 5.2, we

offer deeper insights on the performance of generalized AT. During the training procedure we fix

ε`∞ (ε for `∞ attack during training) as 0.2, and change ε`2 from 0.2 to 5.6 (ε`∞ ×
√
d) so that

the `∞ and `2 balls are not completely overlapped [32]. In Figure 5.2a, as ε`2 increases, `2-attack

becomes stronger so the corresponding w also increases, which is consistent with min-max spirit

– defending the strongest attack. We remark that min max or avg training does not always lead to

the best performance on Accmax
adv and Accavg

adv, especially when the strengths of two attacks diverge

greatly (see Figure 5.2a, 5.2b). However, Figure 5.2b shows that AMPGD is able to achieve a rather

robust model no matter how ε changes (red lines), which empirically verifies the effectiveness of

our proposed training scheme. In terms of area-under-the-curve Sε, AMPGD achieves the highest

worst-case robustness: 6.27% and 17.64% improvement compared to the vanilla AT with `∞ and

`2 attacks. Lastly, we study the effectiveness of the proposed DPAR regularizer. Figure 5.2c

shows how the diversity (gradient orthogonality) of multi-norm attacks alters with the increase of

model robustness during the training procedure. Note that the larger the regularization term is, the

more diverse the multiple `p attacks are. Consequently, DPAR boosts the model robustness via
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promoting attack diversity (enforcing more diverse gradient directions).

5.7 Summary

In this chapter, we propose a general min-max framework applicable to both adversarial attack

and defense settings. We show that many problem setups can be re-formulated under this general

framework. Extensive experiments show that proposed algorithms lead to significant improvement

on multiple attack and defense tasks compared with previous state-of-the-art approaches. Our min-

max scheme also generalizes adversarial training (AT) for multiple types of adversarial attacks,

attaining faster convergence and better robustness compared to the vanilla AT and the average

strategy. Lastly, we propose to promote the ensemble diversity of input gradients (corresponding

to different `p attacks) to further improve the defensive performance of the generalized AT.
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CHAPTER 6

ON THE OPTIMAL INTERDICTION OF

TRANSPORTATION NETWORKS

6.1 Introduction

Transportation networks, also known as flow networks, are networks in which mass enters through

source nodes and on-ramps, is routed through nodes/cells and directed links, and is removed at

sink nodes and off-ramps. The flow of mass is subject to (i) conservation of mass constraints, and

(ii) link capacity constraints. Traffic networks, water supply networks, and (routing of data packets

in) computer networks are all examples of transportation networks.

The cell transmission model of mass transfer developed by Daganzo [142, 143] captures com-

plex traffic behavior and transient phenomena, such as congestion effects and the propagation of

shocks. Ziliaskopoulos [144] used the cell transmission model to formulate the optimum traffic

assignment problem as a linear program. In an influential sequence of recent papers [145–148],

Como et al. and Savla et al. analyzed the robustness and resilience of transportation networks

under decentralized routing. In particular, they proposed routing policies that depend only on

local information and maximally delay congestion effects under adversarial perturbations to the

capacities of cells.
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In this chapter, we study the interdiction or attack on transportation networks, which for the

sake of concreteness we consider to be highway traffic networks. In this context it is of interest

to find a small set of cells whose failure at time zero, amplified and propagated by the system’s

dynamics, maximally disrupts the flow of traffic. This problem is combinatorial in nature and

intractable in general. Our work follows [1] in formulating the optimal interdiction problem as a

min-max optimization problem and subsequently employing duality to transform it to a standard

bilinear optimization problem.

We demonstrate that even without an explicit promotion of sparsity in the formulation, the

solution to the optimal interdiction problem is both sparse and binary. The solution is sparse in the

sense that the attacker’s best use of resources is to find the small set of most consequential cells in

the network, and it is binary in the sense that the attacker’s best choice is to fail these cells fully

(as opposed to partially).

Furthermore, motivated by the block coordinate gradient descent (BCGD) and block coordinate

descent (BCD) algorithms [149], we solve the bilinear problem by iteratively updating one set of

variables through a gradient-based step and then finding the globally optimal solution in the other

set of variables. Our numerical experiments demonstrate that our approach performs better in

comparison with methods reported in earlier work [1], and we find the globally optimal solution

in the small networks that we tested and for which the global optimum could be verified through

exhaustive search.

6.2 Dynamic model of transportation networks & informal

statement of optimal interdiction problem

In this section we first introduce the cell transmission model. We augment the model in a way that

allows for the irreversible failure of cells through two mechanisms: being attacked by an adversary

and reaching the jam threshold through the accumulation of mass. We then discuss a meaningful

formulation of the optimal interdiction problem subject to attacker resource constraints.
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The network is characterized by a directed graph, where we think of nodes as cells and of

edges as allowing for flows between neighboring cells. (In this work we use the words cell and

node interchangeably.) The temporal dynamics for the cell transmission model are governed in

part by [144, 150]

xi(t) = xi(t−1) + yi(t−1)− zi(t−1) (6.1a)

(conservation of mass on cell i)

yi(t) = vi(t) +
∑

jfji(t) (6.1b)

(total inflow to cell i = on-ramp flow + rerouted flow)

zi(t) = wi(t) +
∑

jfij(t) (6.1c)

(total outflow from cell i = off-ramp flow + rerouted flow)

for every i and t, where xi, yi, and zi, respectively denote the mass (i.e., number of vehicles) on,

the inflow to, and the outflow from, cell i; vi, wi respectively denote the mass entering the network

from on–ramp, and leaving the network from off–ramp, corresponding to cell i; fij denotes the

mass routed from cell i to adjacent cell j. The dynamics are additionally constrained to [144,150]

xi(t) ≥ 0, vi(t) ≥ 0, wi(t) ≥ 0, fij(t) ≥ 0 (6.2a)

(positivity of mass)

yi(t) ≤ κi, zi(t) ≤ κi (6.2b)

(inflow, outflow cannot exceed flow-capacity of cell)

yi(t) ≤ φi − xi(t), zi(t) ≤ xi(t) (6.2c)

(inflow cannot exceed remaining mass-capacity of cell,

outflow cannot exceed mass on cell)
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with the further restrictions that fij(·) = 0 if cells i and j are not adjacent, wi(·) = 0 if cell i does

not have an off–ramp, and vi(·) specified a priori. The parameter φi denotes the amount of mass

that results in cell i being jammed. Inequalities (6.2b)–(6.2c) result from piecewise linear “supply”

and “demand” functions [150].

We assume that all mass enters the network from on-ramps and possibly a source cell and that

it leaves the network through a sink cell. The source and sink cells have very large capacities.

Without loss of generality, we take the cell with the lowest index to be the source (when a source

cell is present) and the cell with the largest index to be the sink.

As in [1], we further augment the dynamics (6.1)–(6.2) with

κi ∈ {0, ψi},

zi(t) ≤ φi − xi(t), (6.3)

ψi denotes maximum mass can flow in or out of cell i during one time step, and φi is the same jam

mass as before. The constraints in (6.3), together with (6.2), capture two methods by which a cell

irreversibly fails:

• at time 0 an attacker reduces the capacity of cell i to zero, κi = 0;

• at time t0 ≥ 1 and as a result of the network’s dynamics the accumulated mass on cell i

reaches the jam threshold, xi(t0) = φi.

In both scenarios, once a cell has failed no mass can either enter or leave it thereafter.

We assume that the attacker operates under a limited budget e and that the ith entry of the

vector c characterizes the cost for the attacker of reducing κi from ψi to 0. This means that
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The attacker is subject to the constraint

cT (1− κ/ψ) ≤ e,

lTx(t) equals total mass at t on all cells except sink cell c denotes cost for the attacker of reducing

κi from ψi to 0. where 1 is the column vector of all ones and division by a vector is element-wise.

The above inequality is equivalent to

qTκ ≥ d

with q := c/ψ and d := 1T c− e.

Define l = [1, . . . , 1, 0]T , problem in this work can be (informally) stated as follows x(t) as

the vector whose ith entry is xi(t), with similar definitions for vectors y(t), z(t), f(t), v(t), w(t), κ,

and taking l = [1, . . . , 1, 0]T so that lTx(t) equals the total mass at time t on all cells except the

sink cell, our main problem in this work can be (informally) stated as follows.

Optimal Interdiction Problem: Given the temporal evolution model (6.1)–(6.3) and a budget on

the total amount of failures, for the time horizon 0, 1, . . . , t find a sparse set of cells whose failure

at time 0 maximizes the total travel time
∑t

t=0 l
Tx(t).

We formulate the optimal interdiction problem as a game in which an attacker acts as the

player who goes first and, subject to budget constraints, fails the most critical nodes at time 0 so

as to maximize the total travel time of the mass. A centralized network operator then acts as the

player who goes second and, subject to the dynamics (6.1)–(6.3), routes the mass so as to minimize

its total travel time.

The optimal interdiction problem

maximize
κ

min
x,y,z,f,w

(∑t
t=0 l

Tx(t)
)
− γ card(ψ − κ), (6.4)

where the inner minimum is taken over the governing dynamics (6.1)–(6.3), given initial con-

ditions x(0), y(0), z(0), and prescribed on-ramp flows. The outer maximization is performed over
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κi ∈ {0, ψi} and qTκ ≥ d. The cardinality function card(·) counts the number of nonzero entries

of its vector argument and γ is a non-negative scalar that characterizes the relative importance of

the two terms in the objective. Here, the cardinality term serves to additionally enforce a sparse set

of failures, i.e., to promote the sparsity of the vector ψ − κ.

6.3 Formal statement of optimal interdiction & its reformu-

lation as bilinear program

In this section we mathematically formulate optimal interdiction as a max-min problem with a

linear objective and linear constraints. We then employ duality to obtain an equivalent formulation

as a maximization problem with a bilinear objective and linear constraints.

Stacking the optimization variables x(t), y(t), z(t), f(t), w(t) into the vector u(t), and stacking

u(1), u(2), . . . , u(t) to form the vector u,

We state optimal interdiction problem as

maximize
κ

minimize
u

pTu

subject to Au = b, Gu ≤ Hκ+ h

0 ≤ κ ≤ ψ, qTκ ≥ d

(6.5)

where A, b,G,H, h, p are appropriately defined matrices and vectors. Here, we have relaxed each

of the constraints κi ∈ {0, ψi} to 0 ≤ κi ≤ ψi and have eliminated the cardinality term that was

present in (6.4). However, we will demonstrate in the next section that the solution to (6.5) is

indeed sparse and that all but (at most) one of the κi belong to {0, ψi}. This is the main theoretical

contribtuion of this work.

We next employ duality as in [1] to turn the max-min problem (6.5) into a standard maximiza-
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tion problem. Problem (6.5) is equivalent to

maximize
κ,λ,ν

−bTν − hTλ− λTHκ

subject to ATν +GTλ = −p, λ ≥ 0

0 ≤ κ ≤ ψ, qTκ ≥ d

(6.6)

ν : dual variables corresponding to the equality constraint and λ respectively are the dual variables

corresponding to the equality and first inequality constraints in (6.5). The objective function in

(6.6) is bilinear in the variables λ and κ and is therefore nonconcave. In general it is intractable

to find the global maximum of a nonconcave function. In the next section we propose an effective

numerical method to solve (6.6), which is the main algorithmic contribution of this work. For

small examples, where an exhaustive search is feasible, we demonstrate that the solution found by

our algorithm is the same as the globally optimal solution.

6.4 Guaranteed sparsity and binary property of failures

Proposition 3. When the budget is not enough to fail all cells, there is an optimal solution of

maximize
κ,λ,ν

−bTν − hTλ− λTHκ

subject to ATν +GTλ = −p, λ ≥ 0

0 ≤ κ ≤ ψ, qTκ = d

(6.7)

that solves (6.6). Furthermore, this solution has the property that all but (at most) one of the κi

belong to {0, ψi}.

PROOF: See Appendix D.

Proposition 3 demonstrates the sparsity of optimal failures. The attacker orders the nodes in

terms of their importance, as determined by (A.20)–(A.21), and fails them fully in descending
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order of importance until he has exhausted his budget. Since it is only meaningful that the attacker

has limited resources/budget, this results in a sparse set of failed nodes.

6.5 Proposed method for solving problem (6.7)

This section contains our main algorithmic results. We solve the bilinear problem by iteratively

updating one set of variables through a gradient-based step and then finding the globally optimal

solution in the other set of variables. And our numerical experiments demonstrate that our approach

performs better in comparison with methods reported in earlier work [1].

Although the objective function of problem (6.7) is bilinear in the variables, but the constraints

on κ and {λ, ν} are independent. If we fix one set of variables and solve for the other, we can

decompose problem (6.7) into two linear programs

maximize
κ

−λTHκ

subject to 0 ≤ κ ≤ ψ, qTκ = d

(6.8)

and
maximize

λ,ν
−bTν − hTλ− λTHκ

subject to ATν +GTλ = −p, λ ≥ 0.

(6.9)

In our experiments we find that if we update the variables by iteratively solving linear programs

(6.8) and (6.9) we rapidly converge to a sub-optimal solution of problem (6.7), which inhibits the

search for the global optimum.

Motivated by block coordinate gradient descent (BCGD) and block coordinate descent (BCD)

[149], we aim to solve problem (6.7) by iterating between updating κ using a gradient-based step

and finding the globally optimal solution of {λ, ν}. Generally, projected gradient descent is used

as the one-step update for a constraint problem, which first employs gradient descent to update the

variable and then obtains its Euclidean projection onto the constraint set. In this chapter we use
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the adaptive moment estimation (Adam) algorithm [151] instead of gradient descent in the update

of κ. We will refer to this procedure as the projected Adam algorithm.

The Adam algorithm adds bias-correction terms based on the root mean square prop (RM-

SProp) [152] and the adaptive gradient (Adagrad) [153] algorithms, and it is demonstrated to be

robust and well-suited to a wide range of convex and non-convex problems [151]. In the case of

solving (6.7), the momentum term in Adam helps us avoid early convergence to a sub-optimal

point. In our experiments, we observe that when we use the projected Adam algorithm our solu-

tions are much better than those found by projected gradient descent.

To begin, we use the fact that maximizing the objective function of problem (6.8) over κ is

equivalent to

minimize
κ

λTHκ. (6.10)

In our projected Adam algorithm, we first use Adam to update κ, for which we compute

g(k+1) =
∂(λTHκ)

∂κ
= HTλ,

ρ(k+1) = β1ρ
(k) + (1− β1)g(k+1),

σ(k+1) = β2σ
(k) + (1− β2)g(k+1) ◦ g(k+1),

ρ̂(k+1) =
ρ(k+1)

1− βk+1
1

, σ̂(k+1) =
σ(k+1)

1− βk+1
2

,

with the update of κ given by

κ(k+1) = κ(k) − ηρ̂(k+1)
√
σ̂(k+1)+ε1

, (6.11)

where ◦ denotes element-wise vector multiplication and division by vectors is performed element-

wise; ε is a parameter with small values to prevent division by zero (generally chosen to be 10−8),

the initial values of ρ(0) and σ(0) is zero, and the parameters β1 and β2 respectively are chosen to

be 0.9 and 0.999; 1 is the column vector of all ones and η is the step size of the Adam algorithm.
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Next we find the Euclidean projection of κ(k+1) onto the constraint set by solving the linear

program

minimize
κ

‖κ− κ(k+1)‖2
2

subject to 0 ≤ κ ≤ ψ, qTκ = d.

(6.12)

In every iteration, after solving (6.12) we use κ(k+1) to denote the solution of (6.12) rather than the

result of (6.11). We then set κ = κ(k+1) in problem (6.9) and solve the linear program to obtain

{λ(k+1), ν(k+1)}. This concludes one iteration of our algorithm.

Algorithm 7 Our proposed algorithm to solve problem (6.7)

1: initialize λ(0)

2: for k = 0, 1, . . . , kmax do
3: Set λ = λ(k), find κ(k+1) using projected Adam algorithm (6.11)–(6.12).
4: Set κ = κ(k+1), find {λ(k+1), ν(k+1)} by solving linear program (6.9).
5: end for

Algorithm 7 summarizes our proposed iterative method for solving problem (6.7). In our ex-

periments we observe that the number of needed iterations is reduced if we initialize λ(0) using

the sub-optimal solution found by solving linear programs (6.8) and (6.9) iteratively, instead of a

using a random point in the constraint set. The details of the initialization of λ(0) is discussed in

Algorithm 8.

Algorithm 8 Initialization of λ(0)

1: given κ(0) = ψ
2: for i = 0, 1, . . . , imax do
3: Solve problem (6.9) to find λ(i) and ν(i), set J (i)

1 as value of objective function.
4: Solve problem (6.8) to find κ(i+1), set J (i)

2 as value of objective function.
5: if J (i)

1 = J
(i−1)
2 and J (i)

2 = J
(i)
1 then

6: Break for loop.
7: end if
8: end for
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6.6 Numerical results

In this section we illustrate the utility of Algorithms 7 and 8 for solving problem (6.7). Our nu-

merical experiments also validate the theoretical results in Section 6.4. For all linear programs we

use CVXPY [154, 155], a tool for convex programming in Python. We implement Adam algorithm

(6.11) in Tensorflow [156]. We apply our approach to two different networks and compare the

results with those in [1].

6.6.1 Example 1

We evaluate the utility of our approach using the network shown in Figure 6.1, which is taken

from [1]. We prescribe that at each time step 2 units of mass enter nodes 1 and 9 through their

respective on-ramps. Node 11 is the sink cell. We take φ = 1.2ψ and t = 12. The cost, flow-

capacity, and initial mass vectors respectively are given by

c =

[
3, 2, 1, 2, 2, 1, 2, 1, 3, 2

]T
ψ =

[
4, 3, 3

2
, 3, 3, 3

2
, 3, 3

2
, 4, 3

]T
x(0) =

[
2, 1, 1, 1, 1

2
, 1

2
, 1

2
, 1

2
, 2, 2

]T
.

Our method URI [1] BRI [1] Exhaustive search
e Failures Failures Failures Failures
1 3 3 3 3
3 3,6,8 3,6,8 3,6,8 3,6,8
5 3,6,8,10 3,6,8,10 3,6,8,10 3,6,8,10

Table 6.1: Comparison of different numerical algorithms for network in Figure 6.1.

Table 6.1 shows that for budgets e = 1, 3, 5 both our numerical method and that proposed in [1]

successfully find the globally optimal attack (obtained through exhaustive search).
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Fig. 6.1: Network from [1]

6.6.2 Example 2

As a second example we use the network shown in Figure 6.2, which is a traffic network adapted

by [1] from [2]. We prescribe that at each time step 2 units of mass enter nodes 1,4 and 1 unit

of mass enter node 3, all through their respective on-ramps. Node 18 is the sink cell. We take

φ = 1.2ψ and t = 12. The cost, flow-capacity, and initial mass vectors respectively are given by

c =

[
3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 1, 3, 2

]T
ψ =

[
6, 3, 3, 6, 3, 3, 5, 5, 3, 3, 3, 3, 5, 5, 2, 5, 3

]T
x(0) =

[
2, 3, 3

2
, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3

2
, 2, 2, 2, 2

]T
.

Our method URI [1] BRI [1] Exhaustive search
e Failures Failures Failures Failures
3 15,17 15, (16) 15, (16) 15,17
4 15,17 15, (16) 15, (16) 15,17
6 15,16,17 15,16,17 15,16,17 15,16,17

Table 6.2: Comparison of different numerical algorithms for network in Figure 6.2.

Table 6.2 shows that for budget e = 6 both our numerical method and that in [1] find the

globally optimal attack (obtained through exhaustive search). In this case, the budget is enough to
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Fig. 6.2: Network from [1] based on [2, Chap. 19].

fully block the network; it is clear that failing nodes 15,16,17 is optimal since these failures prevent

any mass from leaving the network. For e = 3, 4 the problem is more challenging, as the budget

is no longer enough to fully block the network. Still, our proposed approach successfully finds the

globally optimal attack whereas the method in [1] does not.

6.7 Summary

In this chapter, we study the interdiction problem for transportation networks. We prove that the

solution to the optimal interdiction problem is both sparse and binary even without any sparsity

regularization or constraints in the formulation. We also propose a numerical method to solve the

bilinear network interdiction problem and find globally optimal solutions in the small networks we

tested.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

7.1 Summary

In this dissertation, we discuss the mathematical optimization algorithms for model compression

and adversarial learning on DNNs. For model compression, we introduce two different methods.

The first method is based on hard constraint, in which the pruning rate in each layer need to be

determined at the time when the problem is formulated. The second method is based on soft reg-

ularization, in which the pruning rate in each layer can be determined based on the distribution of

weights after convergence. For the above two methods, the first one works better if the users have

specific requirements on the size of part or all layers. And otherwise the second one is preferable.

For adversarial learning, we propose an adversarial attack generation method via convex program-

ming, which works for the DNNs with piecewise linear activation functions. such as ReLU. And

we propose a unified min-max optimization framework for the adversarial attack and defense on

DNNs over multiple domains.
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7.2 Future research directions

7.2.1 Efficient and robust neural architecture search

Neural architecture search (NAS) is an approach for automating the design of artificial neural

networks [157]. NAS has been applied to search for the architecture of DNNs which work well for

specific tasks. It would be highly desirable to use NAS to search for the DNN architecture which

is efficient for hardware implementation and robust to adversarial attacks. By combining the NAS

for efficient and robust DNN architecture with weight pruning and adversarial training, we can

further improve the implementation efficiency and adversarial robustness of DNNs.

7.2.2 Adversarial learning on graph neural networks

Graph neural networks which apply deep neural networks to graph data have achieved great per-

formance on different tasks, such as traffic speed forecasting [158]. However, the prior works

rarely discuss the robustness of graph neural networks. In our work, we propose to evaluate the

robustness of graph neural networks on traffic speed prediction when some links in the graph of

road networks are removed. First, we propose an algorithm to search the links which are sensitive

to the traffic speed prediction. When we constraint the total number of links can be removed from

the graph, removing the sensitive links searched by our method leads to much higher prediction

error compared with randomly removing the same amount of links.
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APPENDIX A

APPENDIX

A.1 Proof of Proposition 1, Chapter 4

We need to demonstrate that when condition (4.5) holds, the optimal solution of the convex prob-

lem (4.2) satisfies all the constraints in problem (4.1).

Recall that x(k+1), y
(k+1)
i , z(k+1) denote the solution of (4.2) at iteration k. Since the solution

satisfies the constraints, in particular we have

y
(k+1)
1 = a

(k)
1 ◦ (W1x

(k+1) + b1),

y
(k+1)
i = a

(k)
i ◦ (Wiy

(k+1)
i−1 + bi), i = 2, . . . , N − 1.

From a
(k+1)
i = a

(k)
i , we conclude that

y
(k+1)
1 = a

(k+1)
1 ◦ (W1x

(k+1) + b1), (A.1)

y
(k+1)
i = a

(k+1)
i ◦ (Wiy

(k+1)
i−1 + bi), i = 2, . . . , N − 1. (A.2)

According to (A.1) and the definition of y
[k]
1 we can derive that y

(k+1)
1 = y

[k+1]
1 . Similarly, from

(A.2), the definition of y
[k]
2 , and y

(k+1)
1 = y

[k+1]
1 , we obtain y

(k+1)
2 = y

[k+1]
2 . This procedure can
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be continued to show that y
(k+1)
i = y

[k+1]
i for i = 1, 2, . . . , N − 1. Therefore, equation (A.2) is

equivalent to

y
(k+1)
i = a

(k+1)
i ◦ (Wiy

[k+1]
i−1 + bi), i = 2, . . . , N − 1. (A.3)

Now, replacing k with k + 1 in the definition of a
(k)
i , equations (A.1) and (A.3) are respectively

equivalent to

y
(k+1)
1 = σ(W1x

(k+1) + b1),

y
(k+1)
i = σ(Wiy

(k+1)
i−1 + bi), i = 2, . . . , N − 1.

Recalling that the constraints involving z are the same in (4.1) and (4.2), the above argument im-

plies that x(k+1), y
(k+1)
i , z(k+1) satisfy the constraints in (4.1) and therefore characterize a feasible

point. This completes the proof of the proposition. �

A Proof of Proposition 2, Chapter 5

`1 norm When we find the Euclidean projection of a onto the set X , we solve

minimize
δ

1
2
‖δ − a‖2

2 + I[č,ĉ](δ)

subject to ‖δ‖1 ≤ ε,
(A.4)

where I[č,ĉ](·) is the indicator function of the set [č, ĉ]. The Langragian of this problem is

L =
1

2
‖δ − a‖2

2 + I[č,ĉ](δ) + λ1(‖δ‖1 − ε) (A.5)

=
d∑
i=1

(
1

2
(δi − ai)2 + λ1|δi|+ I[či,ĉi](δi))− λ1ε. (A.6)
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The minimizer δ∗ minimizes the Lagrangian, it is obtained by elementwise soft-thresholding

δ∗i = P[či,ĉi](sign(ai) max {|ai| − λ1, 0}).

where xi is the ith element of a vector x, P[či,ĉi](·) is the clip function over the interval [či, ĉi].

The primal, dual feasibility and complementary slackness are

λ1 = 0, ‖δ‖1 =
d∑
i=1

|δi| =
d∑
i=1

|P[či,ĉi](ai)| ≤ ε (A.7)

or λ1 > 0, ‖δ‖1 =
d∑
i=1

|δi| =
d∑
i=1

|P[či,ĉi](sign(ai) max {|ai| − λ1, 0})| = ε. (A.8)

If
∑d

i=1 |P[či,ĉi](ai)| ≤ ε, δ∗i = P[či,ĉi](ai). Otherwise δ∗i = P[či,ĉi](sign(ai) max {|ai| − λ1, 0}),

where λ1 is given by the root of the equation
∑d

i=1 |P[či,ĉi](sign(ai) max {|ai| − λ1, 0})| =

ε. Bisection method can be used to solve the above equation for λ1, starting with

the initial interval (0,maxi |ai| − ε/d]. Since
∑d

i=1 |P[či,ĉi](sign(ai) max {|ai| − 0, 0})| =∑d
i=1 |P[či,ĉi](ai)| > ε in this case, and

∑d
i=1 |P[či,ĉi](sign(ai) max {|ai| −maxi |ai|+ ε/d, 0})| ≤∑d

i=1 |P[či,ĉi](sign(ai)(ε/d))| ≤
∑d

i=1(ε/d) = ε.

`2 norm When we find the Euclidean projection of a onto the set X , we solve

minimize
δ

‖δ − a‖2
2 + I[č,ĉ](δ)

subject to ‖δ‖2
2 ≤ ε2,

(A.9)

where I[č,ĉ](·) is the indicator function of the set [č, ĉ]. The Langragian of this problem is

L = ‖δ − a‖2
2 + I[č,ĉ](δ) + λ2(‖δ‖2

2 − ε2) (A.10)

=
d∑
i=1

((δi − ai)2 + λ2δ
2
i + I[či,ĉi](δi))− λ2ε

2. (A.11)
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The minimizer δ∗ minimizes the Lagrangian, it is

δ∗i = P[či,ĉi](
1

λ2 + 1
ai).

The primal, dual feasibility and complementary slackness are

λ2 = 0, ‖δ‖2
2 =

d∑
i=1

δ2
i =

d∑
i=1

(P[či,ĉi](ai))
2 ≤ ε2 (A.12)

or λ2 > 0, ‖δ‖2
2 =

d∑
i=1

δ2
i = (P[či,ĉi](

1

λ2 + 1
ai))

2 = ε2. (A.13)

If
∑d

i=1(P[či,ĉi](ai))
2 ≤ ε2, δ∗i = P[či,ĉi](ai). Otherwise δ∗i = P[či,ĉi]

(
1

λ2+1
ai

)
, where λ2 is

given by the root of the equation
∑d

i=1(P[či,ĉi](
1

λ2+1
ai))

2 = ε2. Bisection method can be used to

solve the above equation for λ2, starting with the initial interval (0,
√∑d

i=1(ai)2/ε − 1]. Since∑d
i=1(P[či,ĉi](

1
0+1

ai))
2 =

∑d
i=1(P[či,ĉi](ai))

2 > ε2 in this case, and
∑d

i=1(P[či,ĉi](
1

λ2+1
ai))

2 =∑d
i=1(P[či,ĉi](εai/

√∑d
i=1(ai)2))2 ≤ ε2

∑d
i=1(ai)

2/(
√∑d

i=1(ai)2)2 = ε2.

`0 norm For `0 norm in X , it is independent to the box constraint. So we can clip a to the box

constraint first, which is δ′i = P[či,ĉi](ai), and then project it onto `0 norm.

We find the additional Euclidean distance of every element in a and zero after they are clipped

to the box constraint, which is

ηi =



√
a2
i − (ai − či)2 ai < či√
a2
i − (ai − ĉi)2 ai > ĉi

|ai| otherwise.

(A.14)
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It can be equivalently written as

ηi =


√

2aiči − č2
i ai < či√

2aiĉi − ĉ2
i ai > ĉi

|ai| otherwise.

(A.15)

To derive the Euclidean projection onto `0 norm, we find the ε-th largest element in η and call it

[η]ε. We keep the elements whose corresponding ηi is above or equals to ε-th, and set rest to zeros.

The closed-form solution is given by

δ∗i =

 δ′i ηi ≥ [η]ε

0 otherwise.
(A.16)

�

B Proof of Theorem 1, Chapter 5

Note that the objective function of problem (5.4) is strongly concave w.r.t. w with parameter γ,

and has γ-Lipschitz continuous gradients. Moreover, we have ‖w‖2 ≤ 1 due to w ∈ P . Using

these facts and [133, Theorem 1] or [159, Theorem 1] completes the proof. �

C Proof of Lemma 1, Chapter 5

Similar to (5.1), problem (5.13) is equivalent to

minimize
θ

E(x,y)∈Dmaximize
w∈P

K∑
i=1

wiFi(θ). (A.17)

Recall that Fi(θ) := maximizeδi∈Xi
ftr(θ, δi; x, y), problem can then be written as

minimize
θ

E(x,y)∈Dmaximize
w∈P

K∑
i=1

[wi maximize
δi∈Xi

ftr(θ, δi; x, y)]. (A.18)
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According to proof by contradiction, it is clear that problem (A.18) is equivalent to

minimize
θ

E(x,y)∈D maximize
w∈P,{δi∈Xi}

K∑
i=1

wiftr(θ, δi; x, y). (A.19)

�

D Proof of Proposition 3, Chapter 5.7

Problem (6.6) is equivalent to

maximize
λ,ν

maximize
κ

−bTν − hTλ− λTHκ

subject to ATν +GTλ = −p, λ ≥ 0

0 ≤ κ ≤ ψ, cT (1− κ/ψ) ≤ e

in which the inner maximization problem is

maximize
κ

−λTHκ

subject to 0 ≤ κ ≤ ψ, cT (1− κ/ψ) ≤ e.

(A.20)

Setting ωT = λTH , and denoting the ith element of a vector a by ai, the last problem becomes

maximize
κ

−
∑

iωiκi

subject to 0 ≤ κi ≤ ψi, i = 1, 2, . . .∑
ici(1− κi/ψi) ≤ e
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which is further equivalent to

maximize
κ

∑
iωi(ψi − κi)

subject to 0 ≤ ψi − κi ≤ ψi, i = 1, 2, . . .∑
i(ci/ψi)(ψi − κi) ≤ e.

Setting θi = ci/ψi and µi = ψi − κi the above problem can be rewritten as

maximize
µ

∑
iωiµi

subject to 0 ≤ µi ≤ ψi, i = 1, 2, . . .∑
iθiµi ≤ e.

Since both ci and ψi are positive for every i then θi is positive for i = 1, 2, . . . and the last problem

is equivalent to

maximize
µ

∑
i(ωi/θi)θiµi

subject to 0 ≤ θiµi ≤ θiψi, i = 1, 2, . . .∑
iθiµi ≤ e.

Setting τi = θiµi and recalling that θiψi = ci, the above problem can be rewritten as

maximize
τ

∑
i(ωi/θi)τi

subject to 0 ≤ τi ≤ ci, i = 1, 2, . . .∑
iτi ≤ e.

(A.21)

It can be shown that all the elements of H in (6.5) are non-negative. Since the elements of

λ also are non-negative and ωT = λTH , it follows that the elements of ω are non-negative and

therefore ωi/θi is non-negative for i = 1, 2, . . .. This implies that the objective function in (A.21)

is monotonically non-decreasing in every τi.
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When the attack budget is not enough to fail all cells in the network, e <
∑

ici, from the

monotonically non-decreasing property we conclude that there is a solution of (A.21) that satisfies∑
iτi = e. Clearly this implies that there is a solution of (A.20) which satisfies cT (1− κ/ψ) = e,

or equivalently qTκ = d. This proves that there is an optimal solution of (6.7) that solves (6.6).

Moreover, when e <
∑

ici, we solve

maximize
τ

∑
i(ωi/θi)τi

subject to 0 ≤ τi ≤ ci, i = 1, 2, . . .∑
iτi = e

is given by finding the index i1 for which ωi/θi is largest among all i and setting τi1 = ci1 if ci1 ≤ e

and τi1 = e if ci1 > e. If ci1 ≤ e we proceed by finding the index i2 for which ωi/θi is second-

largest among all i and setting τi2 = ci2 if ci1 + ci2 ≤ e and τi2 = e − ci1 if ci1 + ci2 > e. This

procedure is repeated until
∑

iτi = e. Thus all but (at most) one of the τi belong to {0, ci}, with

those τi corresponding to the largest values of ωi/θi equal to ci and those τi corresponding to the

smallest values of ωi/θi equal to 0. This implies that for every λ ≥ 0 there is a solution of

maximize
κ

−λTHκ

subject to 0 ≤ κ ≤ ψ, cT (1− κ/ψ) = e.

with the property that all but (at most) one of the κi belong to {0, ψi}, which in turn proves the

same property for problem (6.7). The proof of the proposition is now complete. �
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