14,526 research outputs found

    The Takayama and Judge Price and Allocation Models and its application in non-linear Price Transmission Analysis Approaches

    Get PDF
    Demand and Price Analysis, Research Methods/ Statistical Methods, C15, C18, C62,

    [my]-Bis(diphenylphosphanyl)borato-[kappa]2P:P'-bis[dicarbonyl([eta]5-cyclopentadienyl)iron(II)] tetrachloridoferrate(III) chloroform solvate

    Get PDF
    The title compound, [Fe2(C5H5)2(C24H22BP2)(CO)4][FeCl4]·CHCl3, is an oxidation product of CpFe(CO)2PPh2BH3. One pair of phenyl rings attached to the two different P atoms are almost parallel, as are the other pair [dihedral angles = 8.7 (5) and 8.9 (5)°]. The planes of the two cyclopentadienyl rings are inclined by 26.8 (7)° with respect to each other. The carbonyl groups at each Fe atom are almost perpendicular [C-Fe-C = 92.6 (6) and 94.3 (5)°]. Key indicators: single-crystal X-ray study; T = 173 K; mean σ(C–C) = 0.019 Å; R factor = 0.112; wR factor = 0.177; data-to-parameter ratio = 16.8

    Adenosinium 3,5-dinitrosalicylate

    Get PDF
    The crystal structure of adenosinium 3,5-dinitrosalicylicate, C10H14N5O4+烷H3N2O7-, shows the presence of a primary chain structure formed through homomeric head-to-tail cyclic R22(10) hydrogen-bonding interactions between hydroxy O- and both purine and amine N-donor and acceptor groups of the furanose and purine moieties of the adenosinium species. These chain structures are related by crystallographic 21 symmetry. Secondary hetero-ionic hydrogen bonding, involving the 3,5-dinitrosalicylate anion, including a cyclic R22(8) interaction between the carboxylate group and the protonated purine and amine groups of the adenosinium cation are also present, together with heteromolecular - interactions giving a three-dimensional hydrogen-bonded polymer structure.Full Tex

    Hydrogen-bonding synthons in lamotrigine salts: 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 2-[(2-carboxyphenyl)disulfanyl]benzoate in its monohydrate and anhydrous forms

    Get PDF
    Lamotrigine is a drug used in the treatment of epilepsy and related convulsive diseases. The drug in its free form is rather inadequate for pharmacological use due to poor absorption by the patient, which limits its bioavailability. On the other hand, the lamotrigine mol­ecule is an excellent hydrogen-bonding agent and this has been exploited intensively in the search for better formulations. The formulation presently commercialized (under the brand name Lamictal) is rather complex and includes a number of anions in addition to the active pharmaceutical ingredient (API). The title salts of lamotrigine, namely 3,5-di­amino-6-(2,3-di­chloro­phen­yl)-1,2,4-triazin-2-ium 2-[(2-carb­oxy­phen­yl)di­sul­fan­yl]benzoate monohydrate, C9H8Cl2N5+·C14H9O4S2-·H2O, (I), and the anhydrate, C9H8Cl2N5+·C14H9O4S2-, (II), contain a lamotriginium cation (L), a hydrogen di­thio­dibenzoate monoanion (D) and, in the case of (I), a disordered solvent water mol­ecule. Both L and D present their usual configurations severely twisted around their central C-C and S-S bonds, respectively. The supra­molecular structure generated by the many available donor and acceptor sites is characterized by a planar anti­symmetric motif of the form D-L-L-D, i.e. the structural building block. Although this characteristic motif is extremely similar in both structures, its conformation involves different donors and acceptors in its R22(8) central L-L homosynthon. The lateral R22(8) D-L hetero­synthons are, on the other hand, identical. These substructures are further connected by strong hydrogen bonds into broad two-dimensional structures, in turn weakly linked to each other. Even if the homo- and heterosynthons in (I) and (II) are rather frequent in lamotrigine structural chemistry, the composite tetra­meric synthon appears to be much less common. The occurrence of these motifs among lamotrigine salts and cocrystals is analyzed.Fil: Freire Espeleta, Eleonora. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Polla, Griselda Ines. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentin

    Tetra­aceto­nitrile­lithium tetra­iso­thio­cyanato­borate

    Get PDF
    The crystal structure of the title salt, [Li(CH3CN)4][B(NCS)4], is composed of discrete cations and anions. Both the Li and B atoms show a tetra­hedral coordination by four equal ligands. The aceto­nitrile and iso­thio­cyanate ligands are linear. The bond angles at the B atom are close to the ideal tetra­hedral value [108.92 (18)–109.94 (16)°], but the bond angles at the Li atom show larger deviations [106.15 (17)–113.70 (17)°]

    C62

    Get PDF
    C62 merupakan hasil pengecekan similaritas paper berjudul “Efek multilayer cu(1)/ni(1)/cu(2)/ni(2) terhadap kinerja sensor suhurendah ln2

    Glycyl-L-proline hemihydrate at 298 K

    Get PDF
    corecore