2,175 research outputs found

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    A New Paradigm in Split Manufacturing: Lock the FEOL, Unlock at the BEOL

    Full text link
    Split manufacturing was introduced as an effective countermeasure against hardware-level threats such as IP piracy, overbuilding, and insertion of hardware Trojans. Nevertheless, the security promise of split manufacturing has been challenged by various attacks, which exploit the well-known working principles of physical design tools to infer the missing BEOL interconnects. In this work, we advocate a new paradigm to enhance the security for split manufacturing. Based on Kerckhoff's principle, we protect the FEOL layout in a formal and secure manner, by embedding keys. These keys are purposefully implemented and routed through the BEOL in such a way that they become indecipherable to the state-of-the-art FEOL-centric attacks. We provide our secure physical design flow to the community. We also define the security of split manufacturing formally and provide the associated proofs. At the same time, our technique is competitive with current schemes in terms of layout overhead, especially for practical, large-scale designs (ITC'99 benchmarks).Comment: DATE 2019 (https://www.date-conference.com/conference/session/4.5

    A Survey on Integrated Circuit Trojans

    Get PDF
    Traditionally, computer security has been associated with the software security, or the information-data security. Surprisingly, the hardware on which the software executes or the information stored-processed-transmitted has been assumed to be a trusted base of security. The main building blocks of any electronic device are Integrated circuits (ICs) which form the fabric of a computer system. Lately, the use of ICs has expanded from handheld calculators and personal computers (PCs) to smartphones, servers, and Internet-of-Things (IoT) devices. However, this significant growth in the IC market created intense competition among IC vendors, leading to new trends in IC manufacturing. System-on-chip (SoC) design based on intellectual property (IP), a globally spread supply chain of production and distribution of ICs are the foremost of these trends. The emerging trends have resulted in many security and trust weaknesses and vulnerabilities, in computer systems. This includes Hardware Trojans attacks, side-channel attacks, Reverse-engineering, IP piracy, IC counterfeiting, micro probing, physical tampering, and acquisition of private or valuable assets by debugging and testing. IC security and trust vulnerabilities may cause loss of private information, modified/altered functions, which may cause a great economical hazard and big damage to society. Thus, it is crucial to examine the security and trust threats existing in the IC lifecycle and build defense mechanisms against IC Trojan threats. In this article, we examine the IC supply chain and define the possible IC Trojan threats for the parties involved. Then we survey the latest progress of research in the area of countermeasures against the IC Trojan attacks and discuss the challenges and expectations in this area. Keywords: IC supply chain, IC security, IP privacy, hardware trojans, IC trojans DOI: 10.7176/CEIS/12-2-01 Publication date: April 30th 202

    Hardware Trojan Attack and Defense Techniques

    Get PDF
    corecore