4,173 research outputs found

    A One Category Ontology

    Get PDF
    I defend a one category ontology: an ontology that denies that we need more than one fundamental category to support the ontological structure of the world. Categorical fundamentality is understood in terms of the metaphysically prior, as that in which everything else in the world consists. One category ontologies are deeply appealing, because their ontological simplicity gives them an unmatched elegance and spareness. I’m a fan of a one category ontology that collapses the distinction between particular and property, replacing it with a single fundamental category of intrinsic characters or qualities. We may describe the qualities as qualitative charactersor as modes, perhaps on the model of Aristotelian qualitative (nonsubstantial) kinds, and I will use the term “properties” interchangeably with “qualities”. The qualities are repeatable and reasonably sparse, although, as I discuss in section 2.6, there are empirical reasons that may suggest, depending on one’s preferred fundamental physical theory, that they include irreducibly intensive qualities. There are no uninstantiated qualities. I also assume that the fundamental qualitative natures are intrinsic, although physics may ultimately suggest that some of them are extrinsic. On my view, matter, concrete objects, abstract objects, and perhaps even spacetime are constructed from mereological fusions of qualities, so the world is simply a vast mixture of qualities, including polyadic properties (i.e., relations). This means that everything there is, including concrete objects like persons or stars, is a quality, a qualitative fusion, or a portion of the extended qualitative fusion that is the worldwhole. I call my view mereological bundle theory

    Unsupervised Graph-based Rank Aggregation for Improved Retrieval

    Full text link
    This paper presents a robust and comprehensive graph-based rank aggregation approach, used to combine results of isolated ranker models in retrieval tasks. The method follows an unsupervised scheme, which is independent of how the isolated ranks are formulated. Our approach is able to combine arbitrary models, defined in terms of different ranking criteria, such as those based on textual, image or hybrid content representations. We reformulate the ad-hoc retrieval problem as a document retrieval based on fusion graphs, which we propose as a new unified representation model capable of merging multiple ranks and expressing inter-relationships of retrieval results automatically. By doing so, we claim that the retrieval system can benefit from learning the manifold structure of datasets, thus leading to more effective results. Another contribution is that our graph-based aggregation formulation, unlike existing approaches, allows for encapsulating contextual information encoded from multiple ranks, which can be directly used for ranking, without further computations and post-processing steps over the graphs. Based on the graphs, a novel similarity retrieval score is formulated using an efficient computation of minimum common subgraphs. Finally, another benefit over existing approaches is the absence of hyperparameters. A comprehensive experimental evaluation was conducted considering diverse well-known public datasets, composed of textual, image, and multimodal documents. Performed experiments demonstrate that our method reaches top performance, yielding better effectiveness scores than state-of-the-art baseline methods and promoting large gains over the rankers being fused, thus demonstrating the successful capability of the proposal in representing queries based on a unified graph-based model of rank fusions

    (WP 2010-08) Neuroeconomics: Constructing Identity

    Get PDF
    This paper asks whether neuroeconomics will make instrumental use of neuroscience to adjudicate existing disputes in economics or be more seriously informed by neuroscience in ways that might transform economics. The paper pursues the question by asking how neuroscience constructs an understanding of individuals as whole persons. The body of the paper is devoted to examining two approaches: Don Ross’s neurocellular approach to neuroeconomics and Joseph Dumit’s cultural anthropological science organization approach. The accounts are used to identify boundaries on single individual explanations. With that space Andy Clark’s external scaffolding view and Nathaniel Wilcox’s socially distributed cognition view are employed

    Interactive Visual Explanation of Incremental Data Labeling

    Full text link
    We present a visual analytics approach for the in-depth analysis and explanation of incremental machine learning processes that are based on data labeling. Our approach offers multiple perspectives to explain the process, i.e., data characteristics, label distribution, class characteristics, and classifier characteristics. Additionally, we introduce metrics from which we derive novel aggregated analytic views that enable the analysis of the process over time. We demonstrate the capabilities of our approach in a case study and thereby demonstrate how our approach improves the transparency of the iterative learning process

    Action-Conditional Video Prediction using Deep Networks in Atari Games

    Full text link
    Motivated by vision-based reinforcement learning (RL) problems, in particular Atari games from the recent benchmark Aracade Learning Environment (ALE), we consider spatio-temporal prediction problems where future (image-)frames are dependent on control variables or actions as well as previous frames. While not composed of natural scenes, frames in Atari games are high-dimensional in size, can involve tens of objects with one or more objects being controlled by the actions directly and many other objects being influenced indirectly, can involve entry and departure of objects, and can involve deep partial observability. We propose and evaluate two deep neural network architectures that consist of encoding, action-conditional transformation, and decoding layers based on convolutional neural networks and recurrent neural networks. Experimental results show that the proposed architectures are able to generate visually-realistic frames that are also useful for control over approximately 100-step action-conditional futures in some games. To the best of our knowledge, this paper is the first to make and evaluate long-term predictions on high-dimensional video conditioned by control inputs.Comment: Published at NIPS 2015 (Advances in Neural Information Processing Systems 28

    Graph4Med: a web application and a graph database for visualizing and analyzing medical databases

    Get PDF
    Background: Medical databases normally contain large amounts of data in a variety of forms. Although they grant significant insights into diagnosis and treatment, implementing data exploration into current medical databases is challenging since these are often based on a relational schema and cannot be used to easily extract information for cohort analysis and visualization. As a consequence, valuable information regarding cohort distribution or patient similarity may be missed. With the rapid advancement of biomedical technologies, new forms of data from methods such as Next Generation Sequencing (NGS) or chromosome microarray (array CGH) are constantly being generated; hence it can be expected that the amount and complexity of medical data will rise and bring relational database systems to a limit. Description: We present Graph4Med, a web application that relies on a graph database obtained by transforming a relational database. Graph4Med provides a straightforward visualization and analysis of a selected patient cohort. Our use case is a database of pediatric Acute Lymphoblastic Leukemia (ALL). Along routine patients’ health records it also contains results of latest technologies such as NGS data. We developed a suitable graph data schema to convert the relational data into a graph data structure and store it in Neo4j. We used NeoDash to build a dashboard for querying and displaying patients’ cohort analysis. This way our tool (1) quickly displays the overview of patients’ cohort information such as distributions of gender, age, mutations (fusions), diagnosis; (2) provides mutation (fusion) based similarity search and display in a maneuverable graph; (3) generates an interactive graph of any selected patient and facilitates the identification of interesting patterns among patients. Conclusion: We demonstrate the feasibility and advantages of a graph database for storing and querying medical databases. Our dashboard allows a fast and interactive analysis and visualization of complex medical data. It is especially useful for patients similarity search based on mutations (fusions), of which vast amounts of data have been generated by NGS in recent years. It can discover relationships and patterns in patients cohorts that are normally hard to grasp. Expanding Graph4Med to more medical databases will bring novel insights into diagnostic and research
    • …
    corecore