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Abstract 

Background: Medical databases normally contain large amounts of data in a variety 
of forms. Although they grant significant insights into diagnosis and treatment, imple-
menting data exploration into current medical databases is challenging since these are 
often based on a relational schema and cannot be used to easily extract information 
for cohort analysis and visualization. As a consequence, valuable information regarding 
cohort distribution or patient similarity may be missed. With the rapid advancement 
of biomedical technologies, new forms of data from methods such as Next Generation 
Sequencing (NGS) or chromosome microarray (array CGH) are constantly being gener-
ated; hence it can be expected that the amount and complexity of medical data will 
rise and bring relational database systems to a limit.

Description: We present Graph4Med, a web application that relies on a graph data-
base obtained by transforming a relational database. Graph4Med provides a straight-
forward visualization and analysis of a selected patient cohort. Our use case is a data-
base of pediatric Acute Lymphoblastic Leukemia (ALL). Along routine patients’ health 
records it also contains results of latest technologies such as NGS data. We developed 
a suitable graph data schema to convert the relational data into a graph data structure 
and store it in Neo4j. We used NeoDash to build a dashboard for querying and dis-
playing patients’ cohort analysis. This way our tool (1) quickly displays the overview of 
patients’ cohort information such as distributions of gender, age, mutations (fusions), 
diagnosis; (2) provides mutation (fusion) based similarity search and display in a 
maneuverable graph; (3) generates an interactive graph of any selected patient and 
facilitates the identification of interesting patterns among patients.

Conclusion: We demonstrate the feasibility and advantages of a graph database for 
storing and querying medical databases. Our dashboard allows a fast and interactive 
analysis and visualization of complex medical data. It is especially useful for patients 
similarity search based on mutations (fusions), of which vast amounts of data have 
been generated by NGS in recent years. It can discover relationships and patterns in 
patients cohorts that are normally hard to grasp. Expanding Graph4Med to more medi-
cal databases will bring novel insights into diagnostic and research.
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Background
Medical databases are not only vitally important for providing accurate and timely health 
services but also crucial for an improvement of the work flow for doctors, researchers 
and health care providers. Managing a health database system is challenging because 
it needs to ensure (1) real-time access and analysis, (2) data security and sharing, (3) 
patient privacy while having to deal with very different data formats and users [1]. Tra-
ditional medical databases are usually relational or network-based. They are designed 
to manage the information that stores different data regarding a single entity. However 
as the volume and diversity of medical data continue to expand exponentially, peo-
ple realize that a relational model actually keeps “healthcare data locked, isolated and 
unused” [2]. More and more healthcare providers are migrating from relational to non-
relational database systems like graph databases and document data stores [3–5].

Medical graph databases

With the increasing amount of heterogeneous biological data obtained by novel technol-
ogies in the medical sector, graph databases have gained more attention as flexible and 
feasible storage systems [6] that help to find and understand complex hidden relation-
ships [7]. Biological pathways can also be modeled more efficiently in a graph database 
than in a traditional relational database, which results in an increased query perfor-
mance when traversing the knowledge graph  [8]. The integration of multi-omics data 
provides the ability to extract new knowledge from data but is challenging due to the 
high diversity and complexity of such data and requires novel approaches (e.g., as pro-
vided by graph database systems) [9]. One of the most popular graph database systems 
is the Neo4j graph data platform [10] (cf. Graph Databases). It was chosen for realizing 
medical data applications around the management of biological knowledge bases [8, 11] 
or the integration of data from multiple sources [12].

The usage of a graph database such as Neo4j to store, manage and query medical data 
often serves the purpose of building a backbone for a web application with easy user 
access. A web-based dashboard is a powerful tool for visualizing and analyzing the graph 
data as it makes the stored data available to the users in a comprehensible fashion by 
abstracting from the underlying graph database technology. Bukhari et al. [12] have used 
a Neo4j database to implement such an intuitive dashboard on top of it for browsing and 
visualizing immunological data in plots supporting the automatic translation of natural 
language queries to Cypher queries.Their web application lets users view immunology-
related data, e.g., age distributions of subjects in a study, via a graph-based and natu-
ral language query interface for a more intuitive usage. Our approach, in contrast, uses 
a dashboard that retrieves data for rendering with Cypher queries, that the user does 
not need to interact with but can if they are familiar with Cypher, for multiple visual 
representations of data in one page. The purpose of LinkedImm is to integrate different 
data sources into a linked graph, whereas our tool focuses on the analysis of a cohort of 
patients obtained from a relational database and transformed into a graph model.

The graph database BioGraphDB [13–15] also relies on Neo4j as one of the core tech-
nologies and has been used to build the BioGraph  [16] web application, which allows 
users to interactively query and analyze the integrated biological data, e.g., microRNA 
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or protein sequence data. Similar to LinkedImm, the BioGraph integrates data from 
multiple sources into a data graph with a manually derived graph schema to model the 
relationships between biological entities like genes and proteins. The schema was devel-
oped according to the results of the ETL processes whereas our proposal gives a gener-
ally applicable methodology to transform a relational to a graph data schema. The web 
application on top of BioGraph offers also only single visualizations of data at a time, 
that can be retrieved with several predefined queries with parameters or freely entered 
queries. Our dashboard is capable of visualizing an aggregation of different aspects for 
a more comfortable work flow. Another platform displaying multi-omics data in a web 
application has been developed in Graphomics  [11]. It combines a Neo4j database that 
maps the multi-omics data to a graph of connected entities, reactions and pathways with 
a relational SQLite database that stores the final results.

Medical background

The integration of Next Generation Sequencing (NGS) and related technologies to med-
icine have revolutionized the field and made personalized medicine possible. As large 
amounts of data are being generated and added to medical databases, their analysis and 
visualization becomes increasingly challenging. This greatly hampers our efforts to take 
full advantage of these new technologies. A specific example would be the pediatric 
acute lymphoblastic leukemia (ALL) database that we used in this study. In acute lymph-
oblastic leukemia the most common genetic drivers are gene fusions while mutations 
and copy number variations may also contribute  [17]. Over the last years, diagnostic 
samples of ALL were analyzed by RNA sequencing, panel sequencing and/or arrayCGH. 
RNA sequencing detects gene fusions much more efficiently than the traditional meth-
ods such as karyotyping or Fluorescence in  situ hybridization (FISH). Panel sequenc-
ing identifies mutations in selected DNA regions of interests. ArrayCGH is a powerful 
method that detects losses or gains of genomic regions. All these new technologies play 
critical roles in providing diagnostic, prognostic and treatment information. For exam-
ple, fusion result is one of the main criteria to stratify leukemia patients and identify 
patient similarities  [17]. However, the current relational databases lack the capacity 
to search and analyze patients based on fusion/mutation types. In contrast, similarity 
searches are simplified by using a graph-based database structure.

Our contribution

We introduce Graph4Med, a user-friendly, graph-based visualization tool for the analy-
sis of a cohort of patients. In particular, we extracted pediatric ALL cases from a rela-
tional database and transformed them into a graph schema tailored to our use case, 
which was derived from the relational schema. The extracted cohort was then stored in 
a Neo4j graph database and a web-based dashboard was built with NeoDash, a Neo4j 
dashboard building tool [18]. The rest of this work is organized as follows: First, we out-
line the limitations of the current relational system and the benefits of using a graph 
database in our use case in section “Use case scenario”. Then the section “Implementa-
tion” describes the process of modeling the graph database schema from the transforma-
tion of the relational schema into a graph schema, which is further converted into the 
final graph model. Then in the  “Results” section the system architecture and the built 
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application dashboard are elucidated. We further comment on the usability, significance 
and limitations of our implementation in the  “Discussion”. Finally, a summary of our 
contribution is given in the “Conclusion”.

Use case scenario
Current relational system

Currently our medical partner uses a system that employs a relational database and a 
graphical interface to interact with the patient data. According to the relational schema, 
the user can browse different concepts and navigate through the case of an individual 
patient by viewing data about the diagnoses, samples, tests, analyses or prescriptions 
in the form of tabular or unstructured data. Although it is possible to alter the stored 
records, there are no straightforward visualizations other than tables or sheets to obtain 
a comprehensive overview. This leads to overly complex and time intense work for the 
user to identify key aspects for the diagnosis or treatment of the subject. To this end, a 
dashboard improves the work flow by displaying the required and most valuable infor-
mation concisely and user-friendly.

In particular, the desired information in many scenarios is often scattered across mul-
tiple tables due to database normalization. The information inside these tables are only 
shown separately in the interface. To address certain questions, clinicians and research-
ers have to acquire information from different tables. However, the combination of mul-
tiple tables via joins in queries, that should aid to directly derive the same solution, often 
also impedes the work flow as these tables are quite overloaded and, thus, inefficient to 
work with. Additionally, the resulting joined table might contain redundant information 
inflating the amount of information the user has to deal with. Especially, if querying for 
a subgroup of patients, the non-redundant information usually needs to be aggregated 
carefully as otherwise records with redundant information are returned. To overcome 
these issues, the proposed system provides access to the information in an implicitly 
non-redundant fashion by using a graph database.

Further use cases not addressed by the former system are to examine common fea-
tures or correlations inside subgroups of patients and not just the individuals, which is 
an important aspect for research in general. Particularly regarding ALL, we believe that 
it is crucial to investigate on common fusions or mutations to gain valuable insights for 
diagnostics and treatment opportunities. Hence, the system is required to support the 
search for a specific subgroup by fusions and appropriate display of the gathered infor-
mation, for instance, by applying additional filters based on the age at diagnosis, sex or 
aneuploidy of the patients. If the case of an individual patient is identified to be of high 
interest, the next step usually is to find other cases being similar to the target patient. 
This functionality is also not in the scope of the old relational-based system as it would 
require a set of complex SQL queries or a separate application program to measure simi-
larity between patients.

Graph databases

Graph databases manage data by employing a graph data model using graph structures 
for the logical representation of data and their schema  [19]. The essential part comes 
from the mathematical formulation of graph theory that supplies the abstract data type. 
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Formally, a graph consists of a set of nodes (or vertices) and a set of edges to connect 
pairs of nodes. Edges can have a direction pointing from one node to another or be undi-
rected. In a labeled-property graph, both the nodes and edges are labeled and can have 
additional properties in the form of key-value pairs further characterizing the entities 
(nodes) and relationships (edges). In the context of a database, data are then obtained by 
formulating queries against the graph and data manipulations are performed by graph 
transformation operations.

One of the benefits of using a graph data model is that related information can be 
queried more easily. Starting from an individual patient or a common concept, e.g., the 
detection of a certain fusion or mutation, the graph can be traversed along multiple rela-
tionships step-by-step without having to consider unrelated data. The index-free adja-
cency ensures that the neighbors of a node (i.e., connected via an edge) can be directly 
accessed from the node itself and, thus, the lookup performance does not depend on the 
size of the graph resulting in a better scalability. Furthermore, queries are more flexible 
regarding the grouping and aggregation of data by returning subgraphs as query results. 
This capability implicitly eliminates duplicate answers on-the-fly as the same node is just 
returned once but with possibly multiple relationships/paths to other nodes. For exam-
ple, consider a scenario of multiple chained one-to-many relationships, e.g., various 
analyses, that themselves might have multiple results, can be done for each patient. In 
relational databases the grouping for findings per patient and analysis would lead to a 
table with potentially redundant information as each patient occurs once for each analy-
sis. The graph database, in contrast, would return a subgraph of patient nodes with paths 
via analysis nodes to result nodes. The graph structure inherently yields a powerful pos-
sibility for visualization of such subgraphs that facilitates the identification of complex 
relationships in the data by the user.

Neo4j is our choice of graph database management system that “stores and manages 
data in its more natural, connected state, maintaining data relationships that deliver 
lightning-fast queries, deeper context for analytics, and a pain-free modifiable data 
model” [10]. Neo4j is available in an open-source version and comes with a native graph 
database, the graph query language Cypher and libraries for graph analytics. It has a 
vivid community, a broad variety of tools and extensions, and is one of the most popular 
systems for storing data with a graph data model. The corresponding query language 
comes with an intuitive and logical syntax that is easy to learn and understand (e.g., 
documentation at https:// Neo4j. com/ docs/). This is important as our dashboard will use 
Cypher queries to populate the reports with data directly obtained from the database.

Implementation
Relational database schema

The data underlying the dashboard application was extracted from a relational 
database and mapped into a suitable graph data model. Figure  1 shows a simpli-
fied version of the relational database schema that was restricted to only comprise 
the features of the entities and core relationships between the different entities 
present that are relevant for the visualization of the ALL cases in the dashboard. 
Formally, the relational database schema R consists of the following main rela-
tions: Patient(id, name, gender, dob), Project(id, name), 

https://Neo4j.com/docs/
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Family(id, name), Order(id, type), Diagnosis(id, name, icd), 
DiagnosisAddition(id, description), AnalysisMaster(id, type), 
Analysis(id, order_id, master_id, material_id, result), 
DynamicField(analysis_id, field, name, value), Material(id, 
type), MaterialNumber(id, master_id, sub_type, sub_number) 
and Result(id, description, value).

These relations model the logical entities of our use case and the other relations 
are associative relations that implement the logical one-to-many or many-to-many 
relationships. Such relationships occur for the membership of patients in families 
and projects, the assignment of the patients’ diagnoses incl. addition, orders and 
materials, or the relation of analyses to results, that may aggregate multiple analyti-
cal results. The relation that represents the patient entity plays a central role (marked 
red) in the designed relational model. The other relations modeling logical entities 
can be differentiated into patient-specific or patient-agnostic relations. The relations 
Project, Family, Diagnosis, DiagnosisAddition and AnalysisMaster 
are patient-agnostic as they (generally) do not store information that depends on a 
specific patient but potentially link to every patient. The tuple (12345, ’Leu-

kemia Research’) in the relation Project, for instance, represents a research 
project named ’Leukemia Research’ with id 12345 and multiple patients as subjects. 
In contrast to this, the relations Order, Analysis, Result, DynamicField, 
Material and MaterialNumber are patient-specific and store information that 
belong to a specific patient. For instance, the relation Material can contain a tuple 
(98765, ’DNA’) representing a DNA sample with id 98765 that was obtained 
from a patient (as mapped by the MaterialPatient relation).

Fig. 1 Relational database schema. The schema of the relational database with primary key (PK) attributes 
indicated by bold names and foreign key (FK) relationships indicated by the grey lines connecting FK and PK 
attributes
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Schema graph transformation

Similar to Definition 1 in  [20], we constructed a relational schema graph RG = �N ,E� 
for the relational database schema R with a node na for each of the attributes a ∈ Xi of 
each relation schema Ri(Xi) in R . Each node na is labeled with the name of the relation 
Ri followed by a dot and the name of the attribute a, i.e. Ri.a . Before introducing edges, 
we merge the nodes of composite PK attributes into single nodes which are then labeled 
with Ri.PK  . This reduced the amount of nodes and edges for a simpler representation 
of the schema. Furthermore, the transformation of the schema graph to the graph data 
schema is simplified by the merge of PK attributes when creating the nodes representing 
the different entities. In the following, we refer to both single and composite PK attribute 
nodes as PK nodes. Also, we did not consider composite FKs but they could be handled 
in the same way as composite PKs by merging them into one single FK node. The general 
transformation steps towards the final graph data schema are: 

1. Create nodes labeled with Ri.a for relations Ri and their attributes a.
2. Merge nodes of composite PK attributes into single PK nodes.
3. Create directed edges from PK nodes to nodes of other attributes a of the same rela-

tion Ri.
4. Create directed edges from FK nodes to the respective PK nodes.
5. Merge sinks (i.e. nodes without any outgoing edges) that are all connected to the 

same PK node and have only one incoming edge into one node labeled Ri.attributes.
6. Merge PK hubs (i.e. nodes with incoming and outgoing edges) labeled Ri.a with only 

one outgoing edge to a (merged) sink with these sinks. The new entity nodes are 
labeled Ri and contain all attributes from the previously merged hub and sink.

7. Replace sources n (i.e. nodes without incoming edges) that are connected to exactly 
two entity nodes p and q and these two edges by an undirected edge e connecting p 
and q directly.

• Case 1: If n has no other edges, no other actions are required.
• Case 2: If n has an edge to a (merged) sink m, add the attribute(s) represented by 

m as property to e and remove m, too.
• Case 3: If n has an edge to a hub m with only one other edge to an entity node r 

containing only one additional attribute a next to the identifying attribute(s), add 
a as property to e and remove m and r from N.

  If none of the above cases is applicable, no merge is performed.

8. Resolve FK relations by edges:

• Case 1: Replace FK relations indicated by hubs nh with one incoming edge from 
an entity node m and one outgoing edge to an entity node o by an undirected edge 
directly connecting m and o.

• Case 2: If the FK relations is a source ns labeled Ri.a with outgoing edges to an 
entity node m and to a (merged) sink o, first merge ns and o (with all attributes 
except the FK attribute) into an entity node Ri . Then, connect the entity nodes m 
and Ri with an undirected edge.
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The obtained schema graph RG after applying steps 1-5 is shown in Fig.  2 but was 
split into two parts RG1 ∪ RG2 for a less overloaded visualization. The left part of the 
figure displays the schema graph around the Patient, Family, Project, Diagno-
sis and DiagnosisAddition relations and the right part displays the schema graph 
restricted to the Patient and the other relations. The PK property of attributes repre-
sented by the nodes are highlighted by a thicker outline (e.g., the node labeled Patient.id). 
The direct edges of RG visualized by arrows between the nodes indicate either the FK 
relationships between attributes or the relationship of PK to non-key attributes (e.g., the 
node OrderPatient.PK comprises the two attributes OrderPatient.patient_id 
and OrderPatient.order_id), which are references to patients and orders, respec-
tively. It also links the PK to the OrderPatient.order_date attribute character-
izing the date of order request. The (merged) sinks are colored green and the source are 
colored red.

Figure 3 shows the application of the transformation steps 6 and 7 to the first part RG1 
of the schema graph (left graph in Fig. 2) from left (step 6) to right (step 7). At the first 
stage, the nodes representing the patient, project, family, diagnosis and diagnosis addi-
tion entities were created by merging the hubs, that are PK nodes, with the connected 
attributes. This aggregated the entity-specific properties in one node. The source nodes 

Fig. 2 Schema graph. The constructed and compressed schema graph RG which is split into two parts 
RG1 ∪ RG2 (left and right, respectively). Nodes with a thick outline represent PK attributes. Sinks are colored 
green and sources are colored red

Fig. 3 Schema graph RG1 transformation. The transformation of the schema graph RG1 is depicted in two 
steps. The left panel shows how hubs and directly connected sinks were merged into new entity nodes 
(blue) in RG1 according to transformation step 6 (e.g., nodes Patient.id and Patient.attributes were merged into 
node Patient). Sources were transformed into edges connecting the previously created nodes directly (e.g., 
ProjectPatient.PK became the edge labeled InProject) as shown in the right panel (step 7)
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between exactly two of the new entity nodes (blue colored nodes in Fig. 3) were resolved 
as edges modeling the relationship between objects of the two entities. The simplest 
scenario (step 7.1) occured for transforming the sources labeled ProjectPatient.PK and 
FamilyPatient.PK into the relationships InProject and InFamily between patients and 
projects/families stating that a patient was participating in a research project or was 
member of a family, respectively.

For the third source labeled DiagnosisPatient.PK the transformation steps 7.2 and 7.3 
were applicable. In absence of the DiagnosisAddition relation, the direct relation-
ship between the Patient and Diagnosis node would simply be established by transform-
ing the source according to step 7.2. The relationship HasDiagnosis would then also 
incorporate the additional property for the date at which the certain diagnosis was made 
for the specific patient. Considering also the diagnosis addition, the ternary relation-
ship could not be modeled by a single relationship between two of the affected entities 
if the DiagnosisAddition relation stored more than just an id and description 
(i.e. further attributes regarding the characteristics of the addition or FK attributes link-
ing to other relations). However, the attributes DiagnosisPatient.addition and 
DiagnosisAddition.id constituting the FK relationship between a patient’s diag-
nosis and the (optional) addition to the diagnosis were consumed as defined in step 7.3 
because the DiagnosisAddition.description was pulled into HasDiagnosis as 
an additional attribute of the relationship, too.

The same transformations were applied to the other half of RG . This is visualized 
by the two graphs in Fig. 4 after subsequent application of each of the two previously 
described transformation steps 6 and 7. From the transformation step 6, we obtained the 
nodes Order, Analysis, Result, AnalysisMaster, MaterialNumber, Material and of course 
Patient (which was already shown in Fig.  3) with the respective attributes. Following 
the rules for transformation step 7, the sources OrderPatient.PK, ResultAnalysis.PK and 
MaterialPatient.PK were converted into edges labeled HasOrder, HasResult and Has-
Material, respectively.

Figure  5 visualizes the further processing of RG2 by the previously defined con-
version of FK relations into edges (step 8). In particular, the four hubs labeled 
MaterialNumber.master_id , Analysis.material_id , Analysis.master_id and 
Analysis.order_id fulfill the condition of linking two entities (i.e. they represent a FK 

Fig. 4 Schema graph RG2 transformation. The transformation of the schema graph RG2 is depicted in two 
steps. The left panel displays the merge of hubs and directly connected sinks into new entity nodes (blue) 
in RG2 according to transformation step 6 (e.g., nodes Patient.id and Patient.attributes were merged into 
node Patient). Sources were transformed into edges connecting the previously created nodes directly (e.g., 
OrderPatient.PK and OrderPatient .order_date became the edge labeled HasOrder with attribute order_date ) as 
shown in the right panel (step 7)
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relation between them), and, thus, were resolved as relationships in the graph data 
model according to step 8.1. These new edges, that were labeled CreatedFrom, OnMate-
rial, HasMaster and HasAnalysis, replace the four hub nodes in RG2 depicted in the left-
hand panel of Fig.  5. Furthermore, based on the source DynamicField.PK, that covers 
the analysis_id and field attribute of the DynamicField relation, and the sink 
DynamicField.attributes a new entity DynamicField and a new relationship HasDynam-
icField going out from it towards the entity Analysis were added to RG2 (step 8.2).

Use case specific data model adaptation

Under the consideration that the AnalysisMaster relation only contained a single 
attribute description next to the id attribute with the sole purpose of identify-
ing each record uniquely, the same information from the corresponding AnalysisMas-
ter entity could also be incorporated into each Analysis entity directly by declaring the 
description about a certain type of analysis as an attribute of the Analysis entity logically 
replacing the AnalysisMaster entity. As alternative to this strategy, we specified a node 
label for each of the different types of analysis that all inherit attributes and relationships 
from the general Analysis node label for a more fine-grained and intuitive modeling. On 
the one hand, this allowed the formulation of Cypher queries that either traverse analysis 
nodes regardless of the specific type of analysis or traverse nodes of a specific analysis 
type only. The definition of the data model in this way, on the other hand, could also uti-
lize even more sophisticated, deeper taxonomies. The effect of this restructuring is also 
shown in the right panel of Fig. 5 where the AnalysisMaster entity was “absorbed” by the 
Analysis entity that now also represented the node labels of the different analysis types 
(not visualized in this figure for the sake of simplicity).

Another transformation was applied to the entity nodes representing the material 
hierarchy obtained as biological samples from a patient (e.g., DNA or RNA material, 
from which sub-materials are produced by cultivation or preparation). We did not 
further distinguish between the subtypes of materials such as preparation or cultiva-
tion but rather model them as material themselves which were obtained from a main 
material. Hence, the MaterialNumber entity was merged into the Material entity and 

Fig. 5 Schema graph RG2 transformation. The further transformation of the schema graph RG2 is depicted 
in two steps. The left panel depicts how the remaining FK relations between some entities were resolved 
and how the respective nodes were replaced by relationships between the entities in RG2 according to 
transformation step 8. For instance, the reference from Analysis to Order via the FK Analysis.order_id was 
transformed to HasAnalysis. The graph data model was further refined and simplified by structural changes 
(e.g., pulling the AnalysisMaster into the Analysis entity) as depicted in the right panel
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then represented main materials and sub-materials produced from main materials. 
A node in the Neo4j database with the label Material is then either a main material 
with a unique number as id and a type value or it is a sub-material with an additional 
subnumber attribute. The optionality of such properties as well as the introduced self-
reference (i.e. the edge labeled CreatedFrom in the graph on the right panel in Fig. 5) 
appropriately mirrored the native dependence in the material hierarchy. Here, we 
decided not to model the materials analogously to the analyses with additional labels 
for the different types of material. This avoids an inflation of the model by too many 
node labels for the more than 50 material types.

To model the peculiarities of the different types of analyses recorded in the medical 
database which manifest in diverse results (e.g., mutations indicated by potentially 
multiple fusions as detected in the context of an RNA sequence analysis or the deter-
mined karyotype information based on an Array-CGH analysis) the relational schema 
contains multiple relations storing that analysis-dependent information as key-value 
pairs. For the implementation of our system, we, first, aggregated them logically into 
one placeholder relation called DynamicField representing all the different rela-
tions with specific key-value pairs for the results of the analyses. This relation resulted 
in the applied transformation of the relational schema to the graph data model to an 
entity DynamicField that is related to the Analysis entity via the relation HasDynam-
icField as depicted in Fig. 5.

As our dashboard is focused on the analytical results, we then further refined our 
graph data model at this place. There were multiple ways of how to restructure the 
model around the specific replacement of the DynamicField placeholder depending 
on the value type of the analytical result: 

1. A dynamic field can be restructured when pulling the respective entity node into the 
specific analysis by setting the stored name or key of the field as new attribute name. 
Such a restructuring is suitable if there are dedicated fields with a huge or even infi-
nite active domain that are also independent from other fields (e.g., a field with name 
q for some measured numerical value would be a reasonable extension to the cor-
responding analysis entity node as additional attribute). Creating an individual node 
for each possible value, in contrast, is obviously not feasible if there are too many 
possibilities.

2. If the data type of the dynamic field is multi-valued (e.g., a list of identified muta-
tions) or multiple dynamic fields constitute one logical entity that reasonably should 
be grouped together (e.g., some combination of fields represent an estimated result), 
a likelihood for the estimation and the next most likely estimation, the placeholder 
entity can be replaced with a more specific entity or set of entities. In our use case, 
one new node label named Fusion was inserted into the database that stands for a 
certain mutation or group of mutations. The information about each analysis that 
detected a fusion matching one of the mutations was then stored by establishing the 
relation HasFusion between the specific analysis node and the corresponding fusion 
node. This was an improvement as it resolved the dynamic fields even over differ-
ent types of analysis identifying mutations. Additionally, this facilitated queries and 
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the graph structure as patients with the same mutation(s) related to the same fusion 
node(s).

Results
Architecture and ETL

The final graph database model as obtained from the transformations of RG (cf. Imple-
mentation) and implemented in the Neo4j graph database as backbone of our 
Graph4Med system is shown in Fig. 6. The nodes model the different domains (i.e., the 
classes of objects stored in the graph) and the edges model the relationships between 
objects. The implemented model was equal to the union RG1 ∪ RG2 after the applied 
transformations (right graphs from Figs. 3 and 5). The Analysis node was still a generic 
node label from which other labels for more specific analysis types (e.g., the label Array-
CGHAnalysis for Array-CGH analyses) were derived. For the sake of a less overloaded 
graph these are not shown in Fig. 6. Here, we also show the Fusion node as a restruc-
turing of a dynamic field that was detected for different types of analysis (e.g., RNA 
sequence or Array-CGH analysis).

We used Python scripts to extract the patient cohort of pediatric ALL cases from the 
relational MS-SQL database server in an incremental fashion via SQL queries. Then, 
the obtained data were transformed into the graph data model using Neomodel [21], an 
Object Graph Mapper (OGM) for the Neo4j database system, and loaded into the Neo4j 
database instance. First the patients’ personal information (i.e. id, name, age, gender) 
were queried and added as nodes to mark the cohort. Subsequently all other related data 
(e.g., projects, orders, analyses) were queried for each patient of the cohort and linked to 
the related nodes according to the schema. We focused on the retrieval of general infor-
mation about the patient and related entities, e.g., diagnoses or lab results. The analytics-
related data concentrated on the results of various assays and methods, instead of raw 
data, e.g., raw NGS data, raw karyotype data. Our system is not intended to store the 

Fig. 6 Graph database model. The final graph database model as applied in the Neo4j database behind the 
web-based dashboard in Graph4Med. The nodes of this graph represent the different domains of the objects 
stored in the database and the edges indicate the relationships between two objects
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raw data, but instead the analytical results and related information, e.g., the materials on 
which the specific analyses were carried out, that contribute to the visualization regard-
ing the ALL cases in our proposed visualization tool. The setup of the Neo4j database 
took approx. 50-55 minutes and was scheduled to be updated once every night.

NeoDash dashboard builder

Based on this Neo4j database, the web-based dashboard building tool NeoDash [18] was 
deployed in a web server next to Neo4j and used to build a dashboard for the visualiza-
tion and analysis of the ALL cohort. Once the NeoDash web application is setup, it can 
be connected to any Neo4j database instance for a convenient development and usage 
of dashboards for displaying and analyzing the stored data. The main components of a 
dashboard are one or more pages that each contain a collection of reports, i.e., some 
sort of visualization of information. The reports are populated with the results of Cypher 
queries that are executed via the dashboard against database on-the-fly. A built-in query 
editor enables to formulate these queries for the reports based on the selected chart 
type, e.g., a bar chart. The definition of the dashboard structure itself can also be stored 
in Neo4j for a convenient versioning, sharing and on-demand loading of the developed 
dashboards. The modularity of dashboard pages with multiple reports increases the 
flexibility regarding the extension of the dashboard by adding reports or new pages on 
demand.

Our analysis dashboard consists of several pages to grant different views on the data 
being investigated. Each page comprises multiple reports presenting tabular, graph-
based, or chart-based visualizations of the patient data. In particular, our dashboard 
incorporates pages for the general overview and statistics of the full cohort, the detailed 
analysis of a specific subgroup of patients and the analysis of a single patient including 
the similarity comparison to other patients.

Cohort view

In the previously used relational database of this pediatric ALL cohort, it was always 
cumbersome to retrieve overall statistics. Doctors and researchers were required to per-
form the counting and selections from the exported tables themselves, which is time 
consuming and error-prone. It was almost impossible for them to generate visualizations 
of cohort statistics. In contrast, with our tool Graph4Med, they can now easily obtain 
up-to-date statistics and visualizations immediately. For example, in the cohort view 
page of our dashboard, the top two bar plots show the distribution of current age (top) 
or age at diagnosis (middle) (Fig. 7), which are both additionally grouped by the gender 
of the cohort patients. (Note: Due to data privacy reasons, we do not show the plots 
from the real data, but instead from artificially generated data). The number to the top 
left indicates the size of the cohort. In these bar plots, the stacked colors indicate the dis-
tribution grouped by gender. Green and orange indicate female and male, respectively. 
The bottom bar plot shows various non-ALL diagnosis grouped by gender. Because 
our cohort had a small percentage of non-ALL cases such as Acute Myeloid Leukemia 
(AML), pediatric and non-pediatric Myelodysplastic Syndrome (MDS), or Trisomy 21, 
it is very helpful to have the number and gender distribution of these comorbidity cases. 
These plots are useful for identifying relationships between age/gender and disease. 
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Moreover, our dashboard can displays other useful information in addition to age/gen-
der: The three drop down fields below the bar plot allow users to choose the values to 
plot on the X-axis, Y-axis and color group. For example, it is possible to show frequen-
cies instead of patients counts. Similarly, it is possible to display distributions of MRD 
(minimal residual disease) or material type instead of gender.

Subgroup view

As mentioned previously, leukemia is mostly driven by gene fusions and aberrant chro-
mosome numbers. They are the main factors for deciding B-ALL subgroups and play 
important roles in risk stratification  [17]. In Fig.  8a, we demonstrated the number of 
fusions per patient in the left panel, and a distribution of major B-ALL subgroups in the 
middle panel. The table on the right shows all the names of fusions and their aliases used 
in the database.

Because gene fusion and aneuploidy information are important for leukemia, we 
implemented a function to select certain fusion or aneuploidy type, and then visualize 
patients’ distribution within this subgroup. In the left panel of Fig. 8b, there is an auto-
completing selection field where users can enter the name of a subgroup, for example, 
CRLF2-P2RY8 was chosen in this case. In the middle and right panel of Fig. 8b , we dis-
play the age and gender distributions for this selected subgroup.

We also developed a graph view to demonstrate the relationships among patients. 
After selecting a certain subgroup, all the patients of this subgroup are displayed in a 
table (right panel of Fig. 9a). A maneuverable graph showing the relationships between 
patients (green nodes) and subgroups (yellow nodes) are displayed on the left. This graph 
can show different nodes depending on the needs. For example, in Fig.  9b, material 

Fig. 7 Cohort view. Dashboard page for general cohort information and statistics such as gender and age 
distribution. The three drop down fields below each bar plot allow to choose distributions other than gender 
and age. Note: due to data privacy reasons, the plots shown here were made from artificially generated data
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information (orange nodes) were added in relation to the patients and subgroup. Simi-
larly any other features (color of nodes) mentioned in Fig.  6 can be added. The exact 
value to display inside each node can be chosen by the drop-down menu on the bot-
tom, which has the same color scheme as nodes (more explanation in next section and 
Table 1). Our graph is flexible in that it can not only display any feature (color of nodes) 
of interests but users may also (1) drag the nodes for easier visualizations; (2) hover over 
or click on nodes and relationships to inspect their properties; (3) zoom in/out on any 
region of the graph.

Individual patient view

The traditional relational database was designed based on the management and health 
care for an individual patient. Its functionality is sufficient to retrieve information of a 
particular patient (e.g., a doctor checks the lab results and plans the treatment for one 

Fig. 8 Subgroup distribution. a The left panel shows the number of fusions per patient. The middle panel 
shows the distribution of 10 most frequent B-ALL subgroups. The table on the right lists all the fusion names 
and their aliases. b Age and gender distribution for selected fusion, “CRLF2-P2RY8” in this case. Note: Due to 
data privacy reasons, the plots shown here do not reflect the real distributions

Table 1 List of variables to display at graph reports for some node labels

Node label Alternative attribute

Patient (dark blue) id, name, gender, date of birth

Diagnosis (pink) name, icd code

Material (brown) id, type, description

Order (orange) id, type, date

Analysis (gray) id, analytical result

Fusion (light blue) name, other names
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patient). Here, we enhance this functionality by displaying an individual’s information 
in a compact, maneuverable graph. By a single glance, the users can grasp most of the 
details instead of going through the cumbersome and error-prone tabular process. The 
bottom left of Fig. 10 shows such a graph where different colors of nodes represent dif-
ferent types of information (features) for the selected patient. The user can dynamically 
adapt the value displayed on the nodes through the small drop-down menus at the bot-
tom of the graph. In this way, the node text can be set to any of the node attributes or 
some basic property such as the node label according to the data schema. For instance, 
currently in Fig. 10 the dark blue node presents the patient’s gender; the brown nodes 
depict a single material linked to the patient and analysis; the light grey nodes represent 
the fusions identified, which are PAX5 and CRLF2-P2RY8 in this case. Table 1 gives an 
overview for the alternative values that could be displayed on the nodes of each type 
(color). Furthermore, the tabular report in Fig. 10 gives an overview over the subgroup 

Fig. 9 Graph view of relationships. a Graph view of a selected subgroup. It shows the relationship between 
patients and subgroups. The table on the right lists all the patients belonging to this subgroup with their 
additional information such as age, karyotype, chromosomes etc. b Different features of patients (color of 
node) can be integrated, for example, patients materials (orange nodes) were chosen here as additional 
information. Note: due to data privacy reasons, the plots and table shown here were made from artificially 
generated data
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with one row per patient. The columns can be sorted and filtered and the user can also 
decide which columns to display or hide (e.g., the column with the patient ID is hidden 
here).

Graph4Med can also generate a patient similarity graph, which is shown on the bot-
tom right of Fig. 10. Here, we implemented a very simple similarity algorithm based on 
diagnosis, gene fusions, and aneuploidy which can be treated as a fusion. Depending on 
the needs of the specific medical use case, a more sophisticated similarity measure could 
be developed in the future. In our use case, the Jaccard index J (A,B) = A∩B

A∪B was applied 
to the target patient and all other candidates. It yields a value between 0 and 1 where 1 
indicates maximum similarity between target and candidate patient and 0 indicates no 
similarity between them. In the example shown on the bottom right of Fig. 10, the target 
patient (the node in the middle) is connected to all the patients that have a similarity 
exceeding a certain threshold. The width and color of the edges between nodes scale 
with the level of similarity: Bolder and darker connections represent a strong similarity 
and vice versa. In this example, we see two levels of similarity, thin light-green and thick 
blue.

Discussion
In Graph4Med, we converted a relational database to a graph database in Neo4j and fur-
ther built a dashboard on it. This tool is very well liked by our end users—clinicians, 
researchers and lab scientists. It not only provides meticulous visualizations other than 
tables and statistics of the whole cohort, but also enables to search patient subgroups 
based on fusions and aneuploidy, which are the most important factors in stratifying 

Fig. 10 Individual patient view. Presentation of an individual patient’s information in a table and graph (top 
right and bottom left panel). Bottom right is the result of the similarity search across the entire cohort with 
the selected patient in the middle. Note: due to privacy reasons, the plots shown here were made from 
artificially generated data
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leukemia patients. The former system did not support the search for patient subgroups 
nor the computation of statistics whereas these important aspects were effortlessly 
included in the dashboard reports. We also implemented a small algorithm to display 
patient similarities. The success of Graph4Med in the pediatric ALL database has already 
prompted interests among clinicians from other disease areas.

Table 2 summarizes the implementation of key features for the old and new system 
that have driven the development of Graph4Med. Our dashboard is designed to be user-
friendly with flexibility and interactivity to improve the efficiency of the current clinical 
practice. To this end, it overcomes several limitations of the former system, e.g., by pro-
viding various visualizations, broad overviews and summarizing statistics. The key fea-
ture to navigate individual cases is still kept while Graph4Med also enables the detection 
of complex relationships among patients and subpopulations in the dashboard pages. It 
allows each user to individually modify the visualizations and adapt them to his/her spe-
cific needs. (1) Users can select the contents to be displayed in the nodes on-demand. 
(2) Because there are very complex data structures in the original database even for one 
patient (see Fig. 9b), it is impossible to display all the nodes when we have more than 5 
patients. Our tool made it possible to choose what type (color) of nodes to display. (3) 
The Cypher queries for plots and tables are embedded in the dashboard and the query 
language is the only prerequisite for adding additional reports. It is possible for non-IT 
users to modify parameters and obtain the plots they desire.

As the structure of the dashboard itself is stored in the Neo4j database, it can be 
updated and extended easily. The users are allowed to share and load different versions 

Table 2 Comparison between the old relational system (RDB) and Graph4Med with evaluations 
from our end users. The figure references relate to implementation examples

Feature RDB Graph4Med User comments

Overview & general cohort statistics ✗ ✓ (Fig. 7) In the RDB, the DB administrator queries 
for the desired information summarizing a 
patient cohort in a table from which plots 
are generated manually with third-party 
tools. This usually takes several weeks in 
our practice, especially, if the query has to 
be adapted after seeing the first version 
of the plot.

Visualization of cohort/subpopulation ✗ ✓ (Fig. 8)

Visualization of relationships among 
patients

✗ ✓ (Fig. 9a)

Navigate through individual cases ✓ ✓
Gather a patient profile & visualize vari-
ous data of individual cases

✗ ✓ (Figs. 9b and 10) In the old system, users have to browse 
multiple tables to gather a profile of an 
individual case and there is no possibility 
of visualizing relationships among various 
data in such a profile (cf. Fig. 10)

Eliminate redundant answers ✗ ✓
Aggregate results ✗ ✓
Fusion-based search ✗ ✓ (Figs. 8b and 9a) Gene fusions are the most important driv-

ers for leukemia, and also the main bases 
for patient stratification, thus, searching 
for patients with the same fusion is very 
useful.

Patient similarity search ✗ ✓ (Fig. 10)
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of the dashboard at any time. Furthermore, this even gives the option to have access to 
multiple independent dashboards focusing on different use cases or research questions 
on the same underlying data set. The graph database also implicitly removes redundant 
answers with the graph structure and data aggregation becomes feasible than with the 
complex SQL queries and overloaded tables. This results in less overhead for the users 
who can skip the time intense step of filtering the redundant information from the 
tables.

Medical databases are constantly updated. Therefore, we update the Graph4Med 
database every night to keep the dashboard up-tp-date. Graph4Med currently has 2185 
patients with 4,919 analyses and 723 fusions detected and currently contains 64,677 
nodes and 77,129 relationships with a total size of approx. 400 MB. It takes about 50–55 
min to update the whole database.

Comparison with related medical dashboards

In Table 3 we compare Graph4Med with other medical visualization systems or dash-
boards on several high-level features. The column “System” lists the different medical 
visualization systems and dashboards. For each system, the table states the actual data-
base management sytem (col. “DBMS”) as well as the offered types of interfaces (col. 
“Interface”), e.g., a web application or command line interface (CLI). We evaluated the 
interactivity, i.e., the possibility to interact with the plots of the dashboard, and the flex-
ibility, i.e., the option to effortlessly extend the dashboard with new visualizations or 
reports, of the dashboards and the results are shown in the columns “Int” and “Flex”, 
respectively. The table column “Coll” refers to the capability of the system for collab-
oration in the sense of versioning or sharing extended dashboard versions with other 
users and “Exp” to the ability to export charts or download data from the tool. Table 3 
also contains a column “Data” that summarizes the types of data dealt with in the cor-
responding system.

Table 3 Comparison of medical visualization systems and dashboards. The implementation details 
on the database (“DBMS”), available interfaces (“Interface”) and the data (“Data”) are listed. The 
features interactivity (“Int”), flexibility (“Flex”), collaboration (“Coll”) and export(“Exp”) are assessed 
qualitatively

System DBMS Interface Int Flex Coll Exp Data

MyPal [22] Unknown Web, Mobile App ✓ ✗ ✗ ✓ Patient data, demographics, treatment, 
patient-reported outcomes

CovidGraph [23] Neo4j Web ✓ ✗ ✗ ✓ Publications, patents, clinical trials, 
genes, transcripts, proteins, pathways, 
statistics, systems biology data

OncoKB [24] MySQL Web, CLI ✓ ✗ ✗ ✓ Cancer mutations, drugs with cor-
responding cancer type & targeted 
mutations

BioGraph [16] Neo4j Web ✓ ✗ ✗ ✓ Genes, proteins, miRNA-related data, 
pathways, functional annotations

LinkedImm [12] Neo4j Web ✓ ✗ ✗ ✓ Immunological data, genes, pathways, 
transcriptional profiling data

Graph4Med Neo4j Web ✓ ✓ ✓ ✗ Patient diagnostic, genomic analysis 
results (incl. karyotyping, RNASeq, 
arrayCGH)
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Limitations

During our implementation, we also observed some technical limitations of building 
the dashboard by NeoDash and Neo4j. For example, (1) One cannot export the report 
charts, graphs or tables directly from the dashboard; (2) One can not select a certain 
sub-population after choosing a fusion type. It would be desirable if users can choose 
which patients from the table to include in the graph report (Fig. 9a). We would also like 
to mention that due to the complexity of our previously used database, we did not con-
vert all the different analysis types to our graph database. However, the missing analysis 
or any novel techniques can be integrated seamlessly in accordance to previously incor-
porated analysis. The results of FISH analyses that are also employed to identify gene 
fusions are not incorporated yet, for instance, which leads to smaller numbers of ETV6-
RUNX1 and BCR-ABL cases in the cohort statistics than they actually are.

As Neo4j and NeoDash are constantly improving, we should be able to improve the 
functionality of our dashboard such as exporting reports in the future. We are also 
interested to expand Graph4Med to other disease databases or to integrate additional 
sources of information. One future direction to extend Graph4Med would be to inte-
grate more data for the diagnostic pipeline such as gene expression and point mutation 
results. Incorporating these results or additional resources with bioinformatics data into 
Graph4Med could further facilitate the analytical capabilities of the system. We could 
also have more complex algorithms for measuring patient similarity when the use case 
is bigger and contains a rich diversity of diseases. For example, our collaborator at the 
Department of Human Genetics of the Medizininsche Hochschule Hannover also has a 
database for various, rare genetic diseases. We could design a new similarity algorithm 
considering various factors including age, gender, symptom, genetic factors. In the case 
of rare diseases, suggestions from patient similarity search will be especially useful in 
pinpointing treatment options.

Conclusion
In our work, we developed a flexible medical visualization tool including a web-based 
dashboard on top of a Neo4j graph database storing the application data. We presented 
a method on how to convert a relational database schema to a graph data model for the 
easy implementation of our dashboards with Cypher queries against the stored data 
graph. The visualizations provide the analytical capabilities in a convenient and interac-
tive fashion that were not possible in the old system. Our work proves the flexibility and 
feasibility of a graph database for managing medical data as it allows for an intuitive rep-
resentation of the structure of the medical data schema.
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