117 research outputs found

    Performance Analysis of Adhoc On Demand Distance Vector (AODV) and Destination Sequence Routing (DSR) protocols in Mobile Adhoc Networks (MANET)

    Get PDF
    This research paper compares the performance of MANET routing protocol such as Ad-hoc On Demand Distance Vector (AODV) and Destination Sequence Routing (DSR) protocol at different Node mobility and node density under different Traffic loads. The experimental data that i got are different from the original data because of several factors like random seed value, number of packets to be sent, packet size, start and end time during simulation and interdeparture time of the Constant Bit Rate generator etc. AODV produced control packets with more than 34 times and DSR more than 4 times when the traffic load was increased. However, DSR is less vulnerable to node mobility and node density in terms routing overhead and is also best suited for scalability compared to AODV

    Store and Haul: Improving Mobile Ad-Hoc Network Connectivity through Repeated Controlled Flooding

    Get PDF
    This work investigates the benefits and drawbacks of repeating controlled flooding at different intervals in mobile ad hoc networks (MANETs) to overcome episodic connectivity. Specifically, the thesis examines the efficiencies in repeating transmissions by quantifying the packet delivery ratio (PDR) and recording the resulting delays in different types of MANET scenarios. These scenarios mainly focus on partitions within the simulated networks by varying node density and mobility. The nodes store transmitted data and haul it across the MANET in the hope that it will come in range of a node that leads to the destination. A customized version of the Network Simulator 2 (ns-2) is used to create the simulations. A qualitative analysis follows and shows the cost and benefits of increased transmissions at varied time intervals

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    A Prey-Predator Defence Mechanism For Ad Hoc On-Demand Distance Vector Routing Protocol

    Get PDF
    This study proposes a nature-based system survivability model. The model was simulated, and its performance was evaluated for the mobile ad hoc wireless networks. The survivability model was used to enable mobile wireless distributed systems to keep on delivering packets during their stated missions in a timely manner in the presence of attacks. A prey-predator communal defence algorithm was developed and fused with the Ad hoc On-demand Distance Vector (AODV) protocol. The mathematical equations for the proposed model were formulated using the Lotka-Volterra theory of ecology. The model deployed a security mechanism for intrusion detection in three vulnerable sections of the AODV protocol. The model simulation was performed using MATLAB for the mathematical model evaluation and using OMNET++ for protocol performance testing. The MATLAB simulation results, which used empirical and field data, have established that the adapted Lotka-Volterra-based equations adequately represent network defense using the communal algorithm. Using the number of active nodes as a measure of throughput after attack (with a maximum throughput of 250 units), the proposed model had a throughput of 230 units while under attack and the intrusion was nullified within 2 seconds. The OMNET++ results for protocol simulation that use throughput, delivery ratio, network delay, and load as performance metrics with the OMNET++ embedded datasets showed good performance of the model, which was better than the existing conventional survivability systems. The comparison of the proposed model with the existing model is also presented. The study concludes that the proposed communal defence model was effective in protecting the entire routing layer (layer 2) of the AODV protocol when exposed to diverse forms of intrusion attacks

    Factors Impacting Key Management Effectiveness in Secured Wireless Networks

    Get PDF
    The use of a Public Key Infrastructure (PKI) offers a cryptographic solution that can overcome many, but not all, of the MANET security problems. One of the most critical aspects of a PKI system is how well it implements Key Management. Key Management deals with key generation, key storage, key distribution, key updating, key revocation, and certificate service in accordance with security policies over the lifecycle of the cryptography. The approach supported by traditional PKI works well in fixed wired networks, but it may not appropriate for MANET due to the lack of fixed infrastructure to support the PKI. This research seeks to identify best practices in securing networks which may be applied to new network architectures

    Resilience Evaluation and Enhancement in Mobile Ad Hoc Networks

    Get PDF
    Understanding network behavior that undergoes challenges is essential to constructing a resilient and survivable network. Due to the mobility and wireless channel properties, it is more difficult to model and analyze mobile ad hoc networks under various challenges. We provide a comprehensive model to assess the vulnerability of mobile ad hoc networks in face of malicious attacks. We analyze comprehensive graph-theoretical properties and network performance of the dynamic networks under attacks against the critical nodes using both synthetic and real-world mobility traces. Motivated by Minimum Spanning Tree and small-world networks, we propose a network enhancement strategy by adding long-range links. We compare the performance of different enhancement strategies by evaluating a list of robustness measures. Our study provides insights into the design and construction of resilient and survivable mobile ad hoc networks

    Multipath routing and QoS provisioning in mobile ad hoc networks

    Get PDF
    PhDA Mobile Ad Hoc Networks (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without utilizing any fixed based-station infrastructure and centralized management. Each mobile node in the network acts as both a host generating flows or being destination of flows and a router forwarding flows directed to other nodes. Future applications of MANETs are expected to be based on all-IP architecture and be capable of carrying multitude real-time multimedia applications such as voice and video as well as data. It is very necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes an on-demand Node-Disjoint Multipath Routing protocol (NDMR) with low broadcast redundancy. Multipath routing allows the establishment of multiple paths between a single source and single destination node. It is also beneficial to avoid traffic congestion and frequent link breaks in communication because of the mobility of nodes. The important components of the protocol, such as path accumulation, decreasing routing overhead and selecting node-disjoint paths, are explained. Because the new protocol significantly reduces the total number of Route Request packets, this results in an increased delivery ratio, smaller end-to-end delays for data packets, lower control overhead and fewer collisions of packets. Although NDMR provides node-disjoint multipath routing with low route overhead in MANETs, it is only a best-effort routing approach, which is not enough to support QoS. DiffServ is a standard approach for a more scalable way to achieve QoS in any IP network and could potentially be used to provide QoS in MANETs because it minimises the need for signalling. However, one of the biggest drawbacks of DiffServ is that the QoS provisioning is separate from the routing process. This thesis presents a Multipath QoS Routing protocol for iv supporting DiffServ (MQRD), which combines the advantages of NDMR and DiffServ. The protocol can classify network traffic into different priority levels and apply priority scheduling and queuing management mechanisms to obtain QoS guarantees
    • 

    corecore