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Abstract

Understanding network behavior that undergoes challenges is essential to constructing a

resilient and survivable network. Due to the mobility and wireless channel properties, it

is more difficult to model and analyze mobile ad hoc networks under various challenges.

We provide a comprehensive model to assess the vulnerability of mobile ad hoc networks

in face of malicious attacks. We analyze comprehensive graph-theoretical properties and

network performance of the dynamic networks under attacks against the critical nodes

using both synthetic and real-world mobility traces. Motivated by Minimum Spanning

Tree and small-world networks, we propose a network enhancement strategy by adding

long-range links. We compare the performance of different enhancement strategies by

evaluating a list of robustness measures. Our study provides insights into the design and

construction of resilient and survivable mobile ad hoc networks.
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Chapter 1

Introduction and Motivation

In a MANET (mobile ad hoc network) environment, nodes communicate with each other

without infrastructure. Networks can be established quickly in a decentralized and self-

organized manner. Communication between node pairs relies on multihop traffic for-

warding from other nodes. Historically, the original goal of MANETs was to provide

military communication in battlefields where the network cannot rely on a fixed infras-

tructure [1]. In the past decade, MANETs have begun to be widely utilized in many

real-world scenarios [2], such as VANETs (vehicular ad hoc networks) [3], WSNs (wire-

less sensor networks) [4], and PANs (personal area networks) [5]. With the exponential

growth of wireless devices, commercial and educational MANET applications have be-

come more attractive in our daily lives such as ad hoc communications during conferences,

wireless sensor networks, vehicular ad hoc networks, and social movements [2,6,7]. With

the emergence of driverless cars, using ad hoc networking for communications between

auto-piloted vehicles could be an emerging application in the near future. In addition,

with the fast growth of tablets, cellphones, and wearable devices in recent years, peo-

ple use wireless networks in their daily lives to an unprecedented level. Two companies

(Open Garden [8] and TextMe [9]) recently teamed up so that Android devices without

cellular or 802.11 access can text and make voice calls. When there is no direct access to
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the Internet, devices can access the Internet through a multihop chain of other devices

that have Internet access. MANETs have also been used in social movements, in which

the smart phone apps including FireChat [10, 11] and TwiMight [12, 13] allow ad hoc

communications without Wi-Fi or cellular connection.

However, due to the properties of wireless channels, the potential attacks and chal-

lenges are tremendously high [14]. Wireless networks are vulnerable due to the unreliable

medium and their open channels that have them subject to attacks such as eavesdropping

and jamming interference [15]. In addition, they have hidden/exposed-terminal problems

due to shared channels among the wireless devices.

Due to the dynamics and channel properties of mobile wireless networks, techniques

used to improve the disruption tolerance and network reliability for wired networks are

not sufficient in the wireless context [14]. The non-infrastructure, multihop, and mobile

aspects of MANETs pose an even greater challenge to reliable communications within the

network [2]. Dynamically changing topologies could lead to route change and packet loss.

Battery-powered devices used as transceivers and relayers of packets in ad hoc networks

have energy constraints. A resilient and survivable MANET needs to be established so

that network performance can remain above a certain level even under malicious attacks

or node failures. Traditional security approaches address the problem by protecting

each individual layer of the whole network stacks [16] and defending the network against

known and unknown security threats [16, 17]. Instead of designing intrusion protection

mechanisms to secure network stacks, we focus on the fault tolerance, resilience, and

survivability of MANETs from a topological perspective by assuming the existence of

network failures caused by all possible reasons.

The connectivity of underlying topologies of MANETs is essential to the normal func-

tioning of the entire network. Intelligent attackers intend to destroy the network using a

2



minimum amount of resources. The key players in the network are more prone to be the

target of the attack. One of the problems is how to identify critical nodes in dynamically

changing mobile wireless networks. The roles of nodes are associated with routing mecha-

nism used in the network. Communications in MANETs require a relatively high network

connectivity so that there are stable end-to-end paths between node pairs. MANETs are

different from delay-tolerant networks [18] that are usually sparsely-connected and use

store-and-forward and ferrying mechanisms to deliver packets. In this work, we propose

a model to address the problem of resilience assessment and enhancement of MANETs

from the perspective of networking science and graph theory. The detailed attack mech-

anisms are out of the scope of this work. We assess the critical points of MANETs which

are more likely be chosen as the attack target by intelligent attackers. Network structure

resilience can be improved by providing a certain level of diversity and redundancy. We

propose mechanisms to enhance the network topological structure which can mitigate

the impact of node attacks on the overall network performance.

1.1 Thesis Statement

In order to construct MANETs that are robust to network attacks, we need to under-

stand network behavior under intelligent node attacks. Nodes whose removal could result

in high impact on network performance are more likely to be the target of an attack.

Identification of the critical node set is known as NP-hard on general graphs [19]. Fur-

thermore, due to the dynamics of network topologies, it is nontrivial to identify the

critical nodes within the mobile networks. We exploit weighted centrality metrics as

node significance indicators for MANETs within a certain time window. Inspired by the

short path lengths in small-world networks, long-range links can be added to intermit-

tent MANETs using directional antennas. Simulations of critical node attacks against

3



MANETs in both improved and unimproved networks and analysis of corresponding

network performance would guide the design and construction of more resilient and sur-

vivable MANETs. Therefore, our thesis statement is:

Modeling of critical node attacks against mobile ad hoc networks leads to a

better understanding of the potential network vulnerabilities under intelligent

attacks. The evaluation of network enhancement strategies that can improve

the robustness in mobile ad hoc networks provides guidance to the design and

construction of resilient mobile wireless networks.

The goal of this dissertation is fivefold:

1. Present methods to model dynamic topologies and malicious attacks in MANETs;

2. Examine the impact of different centrality-based attacks on MANETs’ robustnesss;

3. Propose network topology enhancement mechanisms for MANETs;

4. Investigate the robustness of MANETs enhanced by using different strategies;

5. Gain understanding of how to design and construct resilient and survivable MANETs.

1.2 Proposed Solution

We propose a graph-theoretical model to simulate and analyze mobile wireless networks

under critical node attacks. In order to represent dynamic topologies abstractly, we

model the dynamic topologies of MANETs as time-varying graphs. Each snapshot of dy-

namic topologies can be represented as an adjacency matrix. Pairwise node interaction

within a certain time window size is aggregated as a weighted graph, in which the weights

denote link availabilities. Based on our representation of dynamic topologies, centrality

4



metrics are computed to indicate relative significance of each node in the network. We

simulate critical node attacks using both synthetic mobility models and real-world mo-

bility traces. Various network performance and graph theoretical measures are employed

to evaluate network resilience. A cross comparison between topological connectivity and

network throughput in the application layer is conducted. Next, we propose the network

enhancement strategy motivated by small-world network characteristics and evaluate var-

ious network robustness metrics of MANETs enhanced by link additions using different

strategies. We compare how the enhanced MANETs using different strategies survive the

centrality-based malicious attacks. We show how link additions to the MANETs trans-

forms the random geometric graphs to the small world networks. Our analyses provide

insight into the design of resilient MANETs.

1.3 Contributions

The main contributions of this dissertation are to:

1. Present a novel approach to model time-varying graphs. We aggregate network

topologies within certain time windows into a weighted graph.

2. Study the impact of centrality-based attacks on network robustness. Degree, close-

ness, betweenness, and eigenvector centrality are utilized for this study. We propose

a new flexible centrality metric that combines the advantages of both degree and

betweenness.

3. Contribute to the understanding of the network properties of dynamic mobile net-

works. This reveals the inherent characteristics of time-varying graphs.
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4. Measure network robustness using graph metrics such as algebraic connectivity

and network criticality. Different resilience metrics are used to compare network

performance under attacks from different aspects.

5. Assess vulnerabilities in MANETs that lead to a better understanding of how to

improve the resilience of MANETs.

6. Propose and evaluate topology enhancement mechanisms by adding long-range

links between longest-distance node pairs.

7. Evaluate network robustness of improved MANET topologies using both synthetic

and real-world mobility traces.

8. Provide a better understanding of how link addition transform the geometric ran-

dom network to small-world networks.

1.4 Relevant Publications

The research presented in this dissertation has resulted in a number of publications,

including the following:

Peer-Reviewed Proceedings

6. Dongsheng Zhang and James P.G. Sterbenz, “Measuring the Resilience of Mo-

bile Ad Hoc Networks with Human Walk Patterns,” in Proceedings of the 7th

IEEE/IFIP International Workshop on Reliable Networks Design and Modeling

(RNDM), Munich, Germany, October 2015.

5. Dongsheng Zhang and James P.G. Sterbenz, “Robustness Analysis of Mobile Ad

Hoc Networks Using Human Mobility Traces,” in Proceedings of the 11th IEEE/IFIP
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International Conference on Design of Reliable Communication Networks (DRCN),

Kansas City, MO, March 2015.

4. Dongsheng Zhang and James P.G. Sterbenz, “Analysis of Critical Node Attacks

in Mobile Ad Hoc Networks,” in Proceedings of the 6th IEEE/IFIP International

Workshop on Reliable Networks Design and Modeling (RNDM), Barcelona, Spain,

November 2014.

3. Dongsheng Zhang, Egemen K. Çetinkaya, and James P.G. Sterbenz, “Robustness

of Moible Ad Hoc Networks Under Centrality-Based Attacks,” in Proceedings of the

5th IEEE/IFIP International Workshop on Reliable Networks Design and Modeling

(RNDM), Almaty, Kazakhstan, September 2013.

2. Dongsheng Zhang, Egemen K. Çetinkaya, and James P.G. Sterbenz, “Modelling

Critical Node Attacks in MANETs,” in In Self-Organizing Systems, Lecture Notes

in Computer Science, Springer Berlin Heidelberg, vol. 8221, pp. 127–138, 2014.

1. Dongsheng Zhang, Santosh Ajith Gogi, Dan S. Broyles, Egemen K. Çetinkaya,

and James P.G. Sterbenz, “Modelling Attacks and Challenges to Wireless Net-

works,” in Proceedings of the 4th IEEE/IFIP International Workshop on Reliable

Networks Design and Modeling (RNDM), St. Petersburg, Russia, October 2012

(best paper award).

Extended Abstracts

1. Dongsheng Zhang, Santosh Ajith Gogi, Dan S. Broyles, Egemen K. Çetinkaya,

and James P.G. Sterbenz, “Modelling Wireless Challenges,” in Proceedings of the

18th ACM International Conference on Mobile Computing and Networking (Mobi-

Hoc), Istanbul, Turkey, August 2012.
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1.5 Additional Publications

Other publications that have resulted from the work during my Ph.D. studies are listed

as follows:

5. Mohammed J.F. Alenazi, Dongsheng Zhang, Yufei Cheng, and James P.G. Ster-

benz, “Epidemic Routing Protocol Implementation in ns-3,” to appear in Workshop

on ns-3 (WNS3), Spain, Barcelona, March 2015.

4. Mohammed J.F. Alenazi, Santosh Ajith Gogi, Dongsheng Zhang, Egemen K.

Çetinkaya, Justin P. Rohrer, and James P.G. Sterbenz, “Implementation of Aero-

nautical Network Protocols,” in Proceedings of the AIAA Infotech@Aerospace Con-

ference, Boston, MA, August 2013.

3. Santosh Ajith Gogi, Dongsheng Zhang, Egemen K. Çetinkaya, Justin P. Rohrer,

and James P.G. Sterbenz, “Implementation of the AeroTP Transport Protocol in

Python,” in Proceedings of the 48th International Telemetering Conference (ITC),

San Diego, CA, October 2012.

2. Mohammed Alenazi, Santosh Ajith Gogi, Dongsheng Zhang, Egemen K. Çetinkaya,

Justin P. Rohrer, and James P.G. Sterbenz, “ANTP Protocol Suite Software Im-

plementation Architecture in Python,” in Proceedings of the 47th International

Telemetering Conference (ITC), Las Vegas, NV, October 2011.

1. Egemen K. Çetinkaya, Justin P. Rohrer, Abdul Jabbar, Mohammed J.F. Alenazi,

Dongsheng Zhang, Dan S. Broyles, Kamakshi Sirisha Pathapati, Hemanth Narra,

Kevin Peters, Santosh Ajith Gogi, and James P.G. Sterbenz, “Protocols for Highly-

Dynamic Airborne Networks,” in Proceedings of the 18th ACM International Con-

ference on Mobile Computing and Networking (MobiHoc), Istanbul, Turkey, August

2012.
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1.6 Organization

In this chapter, we provide the overview and motivation for this dissertation. The remain-

der of the dissertation is organized as follows: Chapter 2 presents the background and

related work for this dissertation, which includes time-varying graphs, random geometric

graphs, small-world networks, centrality metrics, network challenge modeling, network

vulnerability, and network resilience quantification. In Chapter 3, we present our mod-

eling of dynamic topologies in MANETs and how we evaluate the impact of different

centrality metrics on the network flow robustness. We also introduce the two-step en-

hancement model that starts with adding bridging links to make a 1-connected network,

and then adds long-range links to further improve network resilience. In Chapter 4, an

in-depth topological analysis of synthetic and real-world mobility traces is presented. In

addition, we show the relationship between topological connectivity and network through-

put by running MANET routing protocols in ns-3. Two layers of resilience analysis are

presented so that resilience optimization could be addressed in each layer. In Chapter 5,

we propose a network enhancement mechanism by adding long-range links. Several en-

hancement mechanisms are compared by evaluating various graph robustness metrics of

both synthetic and real-world mobility traces. Finally, we conclude this dissertation and

discuss future works in Chapter 6.

9



Page left intentionally blank.

10



Chapter 2

Background and Related Work

In this chapter, we first present the graph theoretical background for this work, which

includes time-varying graphs, random geometric graphs, small-world networks, central-

ity, and network robustness metrics in Section 2.1. Related work about the modeling

and analysis of MANETs is given in Section 2.2, including network challenge modeling,

network vulnerability, and critical node problems. In Section 2.3, we discuss connectivity

management in MANET by using additional mobile agents nodes and applying topology

control techniques. Finally, we present resilience quantification model that can measure

MANET resilience based on a range of network operational states in Section 2.4. For the

consistency of variable representation, we use G = (N ,L) to represent a graph, where N

represents the set of nodes, and L to represent the set of links in a graph.

2.1 Graph Theoretical Background

TVGs (Time-varying graphs) have been used to model dynamic complex systems [20].

The mobile topologies of MANETs can be represented as TVGs. A RGG (random

geometric graph) is a spatial graph model in which nodes are connected if the distance

between nodes are less than a threshold value [21]. It is natural to model a snapshot of

mobile topologies as a RGG due to its limited radio transmission range. Inspired by the
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short average path length in small-world networks [22], short-cuts could be introduced

to MANETs to improve network connectivity. Centrality metrics were originally used to

describe relative significance of each individual in social network analysis [23]. They can

be used to the identify the significant nodes in MANETs. Various robustness metrics

will be introduced to measure MANET resilience from different perspectives.

2.1.1 Time-Varying Graphs

The notion of TVG is the natural means to represents a MANET. A TVG is defined as:

G = (N ,L, T , ρ, ζ) (2.1)

where N (G) and L(G) denote nodes and links that evolve over time [20]. T ⊆ T is

called the lifetime of the system; ρ : L × T → {0, 1}, is the link presence function that

indicates the availability of a specified link at a given time; ζ : L×T → T, is the latency

function that indicates the time needed to traverse a certain link L. Since both nodes

and links could be up or down, we added an additional parameter ν : N ×T → {0, 1} as

a counterpart of ρ, which denotes the availability of a specified node; therefore, we have

a new TVG model represented as [24]:

G = (N ,L, T , ρ, ζ, ν) (2.2)

In wireless environments, information propagates at a speed that is close to the velocity

of light and is far higher than the speed of mobile nodes; hence, the latency function

ζ is negligible in MANET scenarios. The footprint of a TVG G from t1 to t2 can be

represented as a static graph:

G [t1,t2) =
(
N ,L[t1,t2)

)
(2.3)
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such that ∀l ∈ L, l ∈ L[t1,t2) ⇔ ∃t ∈ [t1, t2) , ρ (l, t) = 1 [20]. Fundamentally, the foot-

print denotes an aggregation of node interactions within a certain time window [t1, t2).

A weighted static graph, representing node interactions during each time interval, can

be obtained by aggregating node interactions. The time interval between two instants

ti and tj can be denoted as τi,j = [ti, tj) ⊆ T . The link availability during interval τi,j

between pairwise nodes can be represented as the ratio of τa to the time window length

τi,j, where τa ⊆ τi,j is the time during which two nodes are within the transmission range

of each other and are able to communicate directly. By considering all pairs of nodes,

the availability matrix for each time window can be obtained, in which each element in

the matrix denotes the link availability of a certain pair of nodes with a value ranging

from 0 to 1. Availability matrices of varying granularities can be calculated based on the

different sizes of time windows. Traditional atemporal metrics such as centrality for a

static weighted graph can then be applied on the availability matrix. Temporal reach-

ability graphs have been introduced as time-varying directed graphs that can capture

the correlations between successive snapshots of dynamic topologies [25]. A combina-

torial model has been developed to capture time-varying characteristics of TVGs [26].

In SNA (social network analysis) and DTNs (delay-tolerant networks), temporal graph

metrics have been used to capture temporal characteristics [27, 28]. However, they are

not applicable to real-time MANETs since traditional MANET routing protocols require

stable end-to-end paths and do not allow data transmission if there is no route between

source and destination at the time of sending. This makes metrics such as temporal path

ineffective. In this work, we model dynamic networks as an aggregation of time-varying

topologies using traditional MANETs routing protocols.
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2.1.2 Random Geometric Graphs

In MANETs, when all nodes transmit with the same power, it is usually assumed that

their transmission ranges are similar. A snapshot of MANETs’ topologies can be rep-

resented as random nodes distributed in a two or three dimensional Euclidean space,

and there is a link between a pair of nodes if they stay within the transmission range

of each other. This model is identical to the RGG [29] and the continuum percolation

model [30]. A dynamic RGG model has been developed to analytically study a variation

of the Random Walk model for MANETs [31]. Percolation theory deals with the clusters

with the groups of neighboring occupied sites [30]. Basically, it describes the behavior

of connected clusters in a random graph. The percolation probability is the probability

that an arbitrary node belongs to a cluster of infinite size with nodes distributed with

Poisson intensity λ. Continuum percolation theory extends discrete percolation theory

to N -dimensional Euclidean continuous space. Continuum percolation has been used to

develop stochastic geometry models of MANETs, such as the coverage and connectiv-

ity of mobile wireless sensor networks [32]. Threshold density in continuum percolation

determines where there exists a giant component in random systems, which can be cal-

culated numerically from simulations with no known analytical derivation [32]. This is

the identical to the determination of critical transmission range in a MANET. It has

been shown, assuming each node in a MANET has constant power, there is a phase-

transitioning critical transmission power required to ensure with a high probability that

two nodes in the network can communicate with each other via multi-hop paths [33].

An accurate estimation for the smaller value of radius r can be made at which, a RGG

becomes connected with a high probability. This happens at the critical value rc for a
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RGG under the Euclidean distance in [0, 1)2,

πr2c =
log(n) +O(1)

n
(2.4)

where n is the number of nodes and in particular, rc is a sharp threshold for the con-

nectivity of RGGs. The phase transitions for several graph metrics, including network

connectivity, multi-path reliability, and neighbor count, have also been observed along

with the critical density threshold [34]. This is important for the configuration of wireless

transmission range in MANETs to maintain network connectivity while reducing energy

consumption. A simulation-based study has shown that the minimum value for the trans-

mission range can be calculated to maintain full connectivity in ad hoc networks with no

strong dependence on mobility models [35]. However, in order to have a well-connected

network with multiple paths form one node to the other, the node density has to be

far above the critical threshold [36]. The critical density threshold provides a guideline

for the selection of transmission range of MANETs. The transmission range can be set

higher than the critical threshold to achieve a high connectivity with a greater number

of multi-hop paths between node pairs, or it can be relaxed with a lower-than-critical

density to satisfy energy constraints but with added links to bridge the disconnected

component. An asymptotic distribution of the critical transmission radius and upper

bound on the critical neighbor number for k-connectivity has been obtained by modeling

MANETs as a uniform n-point process over a unit disc or square [37]. The above the-

oretical analysis assumes a Poisson node distribution in a unit space; whereas, in many

real-world cases, node distribution does not necessarily follow a certain probabilistic pat-

tern. In this dissertation, in addition to the analysis of synthetic mobility models that

generate traces with probabilistic distributions, we investigate a set of mobility traces

collected in real-world scenarios with irregular node distributions.
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2.1.3 Small-World Networks

In a small-world network, most nodes are not neighbors of one another, but can be

reached from every other via a small number of hops or steps. A small-world network is

characterized by a high average clustering coefficient as in regular networks, and a low

average path length as in random graphs. The WS (Watts-Strogatz) model constructs a

small-world network by rewiring the links in a regular graph with a probability p, which

allows for tuning the network between regularity and disorder [22]. Another method

to construct small-world networks is to add long-range links with a certain probability

to avoid the possible disconnection of the network in WS model arising from rewiring

process [38]. Decentralized algorithms to find paths between nodes have been proposed

with a new way to construct small-world networks by starting from a grid network and

then adding long-range links with a probability inversely proportional to the Euclidean

distance between two nodes [39].

A short average path length facilitates the quick transfer of information. The addition of

long-range links provides alternative short paths between some node pairs, which could

mitigate the reliability on the original central nodes before link additions. It has been

shown that the network connectivity and efficiency of international airline alliances can

be improved by providing complementary alliances of carriers as shortcut links [40]. Due

to the geographical constraints in MANETs, nodes are locally clustered with a high

average path length compared to random graphs. The structure of MANETs is more

like that of regular networks with a relatively high average clustering coefficient. While

most of the small-world networks in the real world are relational such as hyperlinks in

the web, MANETs fall into a different category. MANETs are categorized as the spatial

networks in which the existence of a link depends on the distance between a pair of nodes.

However, small-world effects have been exploited to improve connectivity in MANETs
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by assuming that each node is equipped with multiple radios [41]. More related work

about applying small-world networks characteristics to MANETs will be discussed in

Section 2.3.

2.1.4 Centrality Metrics

Centrality metrics (degree, closeness, and betweenness) can be traced back to applications

in human communications [42]. They have been used as important structural attributes

of social networks and later extended to many other fields [43]. Centrality metrics have

been utilized as the routing criteria in opportunistic network scenarios [28, 44]. Each of

these three metrics plays a different role in the network. Degree centrality is a measure

of node communication ability. Both closeness and betweenness centrality are related to

the shortest paths between all pairs of nodes. The closeness of a node is the inverse of

the sum of the shortest paths from that node. A node’s closeness is a measure of the

extent to which its communication capabilities are independent of the functioning (or

malfunctioning) of other nodes [43]. Betweenness is defined as the frequency that a node

falls on the shortest paths between pairwise nodes [43] and is a measure of the degree to

which it enables communication between other node pairs.

The unweighted centrality metrics represent the relationship between nodes as a binary

measure. However, a more accurate method might be required to describe fine-grained

relation between nodes. Generalized centrality definitions that can take into account

weighted graphs have been proposed to describe node relationship in a more accurate

way [45]. In these definitions, a tuning factor α is introduced to describe the relative

significance of link weights as compared to the number of links. Degree centrality of node

ni in a weighted graph is formally defined as:

Cwα
D (ni) = k

(1−α)
i ×

(
N∑
j=1

wij

)α

(2.5)
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where α is a non-negative tuning factor that can be set based on network scenarios, ki

is the number of neighbors, and wij represents the link weight between ni and nj [45].

With a network represented by an adjacency list, degrees of all nodes in the network

can be computed in O(|N | + |L|) time both for a weighted and unweighted graph by

breadth-first or depth-first traversing the graph once.

The calculation of betweenness and closeness relies on the identification and length of the

shortest paths. Similar to the adaptation for weighted degree centrality, both the number

of internal nodes on the shortest paths and the weight of these links are important to

identify a weighted shortest path. The weights are inverted to represent link cost instead

of link strength [46]. Hence, the shortest paths between two nodes j and k is defined as:

dwα (nj, nk) = min

(
1

(wjh)
α + · · ·+ 1

(whk)
α

)
(2.6)

where h represents the internal nodes between nj and nk, and α is the tuning factor

that controls the tendency towards link weights or the number of internal nodes [45]. A

weighted version of closeness of node i is calculated as:

Cwα
C (ni) =

[
n∑
j=1

dwα (ni, nj)

]−1
(2.7)

One major deficiency of this definition is that the distance between two nodes in different

disconnected components would be infinite. Instead of calculating the inverse of the sum,

the inverse of the distance can be calculated before summing them up. The inverse of the

distance between two nodes in different components will be 0. An improved definition of

closeness centrality is defined as

Cwα
C (ni) =

n∑
j=1

dwα (ni, nj)
−1 (2.8)

Similarly, by applying the adapted shortest path algorithm, the measure of weighted
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betweenness of node i can be obtained as:

Cwα
B (ni) =

∑
j

∑
k

gwαjk (ni)

gwαjk
(2.9)

where j < k and j 6= i 6= k, gwαjk is the total number of shortest paths between nj and

nk, and gwαjk (ni) is the number of shortest paths that include ni [45]. The calculation

of both closeness and betweenness is based on all-pair shortest paths algorithms. They

can be computed with O(|N ||L|+ |N |2 log |N |) time for weighted graph by augmenting

Dijkstra’s short path algorithm and O(|N ||L|) time for unweighted graph using modified

breadth-first search, both with a space cost of O(|N |+ |L|) [47].

Different from degree, closeness, and betweenness centrality metrics that weight every

node equally, the eigenvector centrality of a node not only depends on the number of

its neighbors but also the value of the neighbors’ centrality [48, 49]. The eigenvector

centrality CE (ni) of a node ni is defined as:

λCE (ni) =
N∑
j=1

wijCE (nj) (2.10)

where wjk represents the link weight between ni and nj and λ is the largest eigenvalue.

With a matrix notation of CE, Equation 2.10 yields λCE = ACE and this type of equation

can be solved by the eigenvalues and eigenvectors of A. The eigenvector can be computed

using power method [50]. PageRank is considered a variant of eigenvector centrality [51].

Even though centrality metrics capture how central a node is from various perspectives,

they might not always be effective to indicate structural importance of each node, as it

has been shown that those nodes whose removal could cause the most damage to the

network are not necessarily the nodes with high centrality values [52]. Section 2.2.2

introduces more background regarding the identification of the critical node set. We

propose a flexible metric based on dynamically selected centrality metrics in Chapter 3.
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2.1.5 Robustness Metrics

Algebraic connectivity, denoted as a(G), is defined as the second smallest eigenvalue of

the Laplacian matrix [53]. The Laplacian matrix of a graph G with n nodes is a n × n

matrix L(G) = D(G) − A(G), where D(G) is the diagonal matrix of node degrees and

A(G) is the symmetric adjacency matrix with no self-loops. The normalized Laplacian

matrix L(G) can be represented as:

L(G)(i, j) =


1, if i = j and di 6= 0

− 1√
didj

, if vi and vj are adjacent

0, otherwise

The algebraic connectivity of a complete graph is n for a n-node graph, and is 0 for

a disconnected graph. Algebraic connectivity has been widely used for topological op-

timizations and shown as more informative and accurate than the average node degree

when characterizing network resilience [54–56]. Different types of synthetically generated

topologies, including WS small-world, Gilbert random, and Barabási-Albert scale-free

networks, have been improved by rewiring links with the objective of increasing the al-

gebraic connectivity [56]. It has been shown that algebraic connectivity increases the

most when links are rewired between weakly-connected nodes. Another study improved

synthetically generated random ER (Erdős-Rényi) and BA (Barabási-Albert) graphs by

adding links to the existing topology [54].

Network criticality, denoted as τ(G), is a graph metric that measures the robustness of

networks against topological changes [57]. A smaller value of τ indicates higher network

robustness. We note that this metric is also called total resistance distance [58]. The
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normalized value of τ̂ is calculated as:

τ̂(G) =
2

|N | − 1
Trace(L+) (2.11)

where n is the number of nodes in a given graph, Trace(L+) is the trace of the Moore-

Penrose inverse of Laplacian matrix of the given graph [57].

Flow robustness, denoted as F(G), captures the maximum possible paths for a given

topology [59]. It is computed as the ratio of the number of reliable flows to the maximum

number of flows in the network. Let C be the set of components in graph G and the size

of ith (1 ≤ i ≤ k) component is denoted as ci. The flow robustness of a graph G is

calculated as:

F(G) =

∑k
i=1 ci(ci − 1)

|N |(|N | − 1)
, 0 ≤ F(G) ≤ 1 (2.12)

A flow is considered reliable if there exists at least one path between the source and

destination. The maximum number of traffic flows for a connected n-node network is

n(n − 1). The algorithm to compute flow robustness is based on the computation of

connected components, the complexity of which is O(|N | + |L|) by running a breadth-

first or depth-first search. Noting that the same approach has also been used to measure

network connectivity in [35, 60]. An important feature of flow robustness is that it can

capture network connectivity in disconnected networks; however, it cannot accurately

distinguish the connectivity level in connected networks. In contrast, graph metrics

such as k-connectedness, algebraic connectivity, and network criticality can be exploited

to evaluate connected networks with varying levels of connectivity; whereas, they are

ineffective to identify critical nodes in disconnected networks.

Average path length, denoted as l(G), is the average length of the shortest paths between

all node pairs. Let d(ni, nj) be the shortest path length between node ni and nj, and the
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average path length is calculated as:

l(G) =

∑
i 6=j d(ni, nj)

|N |(|N | − 1)
(2.13)

A small average path length has been observed in random networks such as ER graphs,

as well as in partially random networks such as WS small-world networks, which scales

as l(G) ∝ log(|N |) [22,61]. The estimation of average path length is of great importance

for network studies as it delivers basic information on a type of network geometry [62].

A small average path length indicates a small degree of separation between nodes in the

network, which allows for an efficient exchange of information among the network as

mentioned in Section 2.1.3.

Clustering coefficient of a node ni is given by the proportion of links between the neigh-

boring nodes divided by the number of links that could possibly exist between them. Let

ki be the number of neighbors of node ni and li be the number of links among those ki

nodes [22]. The local clustering coefficient Ci of the node ni can be calculated as:

Ci =
2li

ki(ki − 1)
(2.14)

The global clustering coefficient C(G) of the whole network is the average of all individual

clustering coefficients, which can be represented as:

C(G) =
1

|N |

|N |∑
i=1

2li
ki(ki − 1)

(2.15)

It has been observed that many real-world networks, such as social networks, have a

higher average clustering coefficient than random networks [63]. The small-world net-

works generated by rewiring links of regular networks retain the characteristic of the high

clustering coefficient of regular graphs [22].
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2.2 Modeling and Analyses of MANETs

Various approaches have been proposed to model wired and wireless communication

networks [64–66]. Network robustness and vulnerability assessment have been studied

for different types of real-world networks [19,67].

2.2.1 Network and Challenge Modeling

Ideas that are similar to dynamic topology modeling have been pursued in the sociology

literature [68,69]. Weighted graphs represent social interactions between people, and the

strength of weight describes the intensity of the relationship between people. The longer

duration of time individuals commit to others or the more frequently people interact with

each other, the stronger the ties or the friendship between these people tends to be. In the

communications network context, simulation framework that models area-based network

challenges in wired backbone communication networks has been developed [64,70]. Due

to the dynamics and channel properties of wireless networks, techniques used to improve

the disruption tolerance and network dependability, reliability, and availability for wired

networks are insufficient for wireless scenarios [14,15].

For wireless networks, a toolkit to represent obstacle presence and disaster scenarios has

been introduced in the ns-2 simulator [71,72]. A preliminary model of wireless challenges

have been presented [64, 70]. Fundamental mathematical properties of MANETs have

been studied with networks being modeled using a realistic log-normal shadowing radio

model [65, 73]. The graph connectivity of wireless multihop networks has been investi-

gated, and a mathematical derivation between node density and desired k-connectedness

has been shown [66]. The impact of the number of placement sources and node density

on the performance of WSNs using data centric routing has been examined [74]. Energy

saving techniques have been proposed to conserve energy in MANETs without sacrificing
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connectivity [75]; however, they have not considered network behavior under the poten-

tial challenges of malicious attacks or network element failures. Random spatial models

have been applied to various types of wireless networks that allow for standardized rapid

benchmarking of wireless network protocols [76]. It has been showed the transmitting

power can be adjusted to maintain a region-based connectivity in the presence of region

failure [77,78]. A grid partition technique has been used to identify the vulnerable zones

of wireless mesh networks, which can guide network designers to initiate proper network

protection against probabilistic region failures [79].

2.2.2 Network Vulnerability

Vulnerability assessment in case of potential malicious attacks is critical to network re-

silience design. A general graph-theoretical formulation of this problem is removing a

certain number of nodes in a graph to maximize the impairment against overall network

connectivity, which falls under the class of CNPs (critical node problems). The CNPs are

known to be NP-hard on general graphs [19]. Heuristics, branch and cut algorithms, and

dynamic programming algorithms have been proposed to solve CNPs; nonetheless, all of

them put certain constraints on graph structures such as trees, series-parallel graphs, or

sparse graphs [19, 80, 81]. As far as we know, no effective approximation algorithms for

weighted graph CNPs have been proposed.

Several localized algorithms has been proposed to detected critical links and nodes whose

removal would disconnect the graph [82–84]. However, they only consider whether or not

disconnect graph, but ignore how fragmentary the graph becomes. A framework that

models the network as a connected directed graph can evaluate network vulnerability by

investigating how many nodes are required to be removed so that network connectivity

can be degraded to a desired level [67]. Geographic vulnerabilities in networks are evalu-

ated by using 2- and all-terminal methods [85]. It should be noted that the definition of
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2- and all-terminal is different from the flow robustness metric. Critical node behavior

has been studied using network simulations by only considering discrete static connected

topologies [86,87]. Temporal network robustness is used to measure how communication

of a given time-varying network is affected by random attacks [88]; however, it does not

address the impact of critical node attacks that could result in higher degradation of

network performance.

2.3 Connectivity Management in MANETs

Considering the dynamic and intermittent connectivity of MANETs, there have been

various approaches proposed to maintain network performance in MANETs. Critical

network service and data can be buffered or replicated at multiple nodes and these nodes

can deliver data for each disconnected network component autonomously by manual de-

ployment [89–92]. Node trajectory modification has been used to avoid network partition

and ensure the packet delivery [82, 93]. Additional mobile nodes and topology control

techniques in MANETs have been widely used to reduce energy cost and improve network

connectivity.

2.3.1 Mobile-Agent-Based Improvement

Forwarding nodes with GPS capability that can adjust their locations are deployed

to assist network partitions in MANETs [94]. Connectivity of a disconnected ground

MANET can be improved by dynamically placing unmanned air vehicles (UAVs) as re-

lay nodes [95]. A gradient-based algorithm to determine the location of a single-UAV

has been defined to maximize various network connectivity measures [96]. A connec-

tivity management model has been proposed to conceptualize an autonomous topology

optimization for MANETs using multiple mobile agents [60]. A flocking-based dynamic
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MANET management system has been proposed to maintain and augment network con-

nectivity by using controlled mobile agent nodes [97]. One of the key challenges of

improving network connectivity by using mobile agents is how to determine the positions

where mobile agents should be deployed. Due to the dynamic topologies in MANETs, it

is critical that mobile agents be deployed to the designated area in a fast and accurate

manner. This requires a both fast algorithm to compute optimal positions to deploy mo-

bile agents and also a well-calculated placement of mobile agents while they are waiting

for the deployment.

2.3.2 Topology Control

Topology control is one of the most important techniques in MANETs to reduce energy

consumption and radio interference while maintaining network connectivity [98]. A dis-

tributed topology control algorithm that leverages on location information provided by

low-power GPS receivers to build a topology has been proven to minimize the energy re-

quired to to communicate with a given master node [99]. Topology control algorithms to

adjust transmit power have been proposed to achieve 1-connectedness and biconnectivity

in multihop wireless networks [100]. There are two main topology control approaches in

wireless networks, homogeneous and non-homogeneous [98]. In the homogeneous cases,

nodes are assumed to have the same transmission range, and the topology control prob-

lem is reduced to the determination of a transmission range to achieve certain graph

properties. In the non-homogeneous cases, different transmission ranges can be assigned

to each node as far as they do not exceed the maximum radio power. One of most

important topological feature in MANETs is connectivity, and many topology control

techniques have been proposed to maintain a connected network. The problem of assign-

ing a transmission range to each node such that the resulting network is connected with

minimum energy cost is called range assignment problem [101]. It has been shown that
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this problem is NP-hard in both two- and three-dimensional cases with an approximated

optimal solution generated from MST [101]. Imposing a topology that is too connected

would cause radio interference to occur, which could decrease the capacity of the net-

work. Hence, it is important that the network density is not too high while preserving

connectivity. A self-organizing small-world framework for MANETs has been proposed to

achieve better performance by rewiring existing omni-directional antennas as randomized

long-range directional links [102]. Small-world benefits in wireless networks have been

studied by adding long links between randomly chosen node pairs [41,103,104]. Nodes in

wireless networks are assumed to be equipped with multiple radios. Directional antennas

in wireless networks have been shown feasible to implement [105–108]. In this work, we

will also employ the small-world effects to enhance network connectivity by adding links

between long-path-length node pairs.

2.4 Quantifying Network Resilience

An evaluation framework has been developed to quantify network resilience in the pres-

ence of challenges using functional metrics [15, 109,110]. We will exploit this framework

to evaluate network resilience for various MANET scenarios under attacks based on dif-

ferent graph metrics in Chapter 4. Resilience R is characterized as the mapping between

network operational state N and service state P. Instead of evaluating the impact of

different network scenarios and attack measures separately, which would result in an

intractable number of cases, the service can be quantified based on varying operational

conditions.

Let the system S be represented by ` operational metrics NS = {N1, . . . , N`} with each

operational metric Ni (1 ≤ i ≤ `) being a set of m values for all possible settings

of the particular operational metric, Ni = {ni,1, . . . , ni,m}. The service state space is
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Figure 2.1: Resilience R measured in the state space

orthogonal to the operational state space. Let service parameters PS = {P1, . . . , P`}

represent the system S. Each service parameter Pi (1 ≤ i ≤ `) is in itself a set of m values

(representing all possible values of the particular service parameter), Pi = {pi,1, . . . , pi,m}.

The operational state space comprises all possible combinations of the operational metrics

and so does the service state space. An operational state N or service state P can

be defined as a subset of the complete operation or service state space. Since both

operational state space and the service state space could be multivariate, they can be

projected to one dimension via objective functions. The objective function could be

weighted linear combination or logical function (e.g., AND, OR) [110].

Network resilience can be evaluated in terms of network state transitions under various

network challenges. The network operational space N is divided into normal operation,

partially degraded, and severely degraded regions. The service space P is divided into

acceptable, impaired, and unacceptable regions. The resilience for a particular scenario

can be quantified as the total area of the square deducted by the area under resilience

trajectory. A service state transits when the state of a network is degraded by adverse
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events such as malicious attacks. In Figure 2.1, a network service state may take a

trajectory S0 → S1 if an adverse event occurs. The resilience value for S0 → S1 can be

calculated as the 1 minus the shaded area. Some adverse events could degrade network

states more severely than others. The trajectory S0 → S2 exhibits a state transition

worse than trajectory S0 → S1. The variance of network resilience under the impact

of different network events is denoted as ∆R. The striped area in Figure 2.1 illustrates

that S0 → S2 results in heavier service degradation than S0 → S1, and the difference is

∆R1↔2.
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Chapter 3

Modeling Approach

In this Chapter, we introduce our modeling approach of malicious attacks in MANETs

and enhancement strategies to improve MANET resilience. We first introduce the rep-

resentation of dynamic topologies as an aggregation of topological snapshots within a

certain time window size into a weighted static graph. We define a measure, mobility

coefficient, to determine the window size used for aggregation. We present a network at-

tack example that adaptively applies the node attacks based on centrality metrics. The

sum of flow robustness after each node attack is used to measure network robustness

under attacks. Next, we introduce the enhancement strategies to mitigate the intermit-

tent connectivity of MANETs and potential attacks against high centrality nodes. The

first step is to bridge the disconnected graph components. We propose a MST-based

algorithm that can combine disconnected graph components into a connected network

with minimum total energy cost. The network is still vulnerable in face of attacks against

the articulation points. Motivated by the robust network structure of small-world net-

works, we further enhance the network by adding long-range links among those node pairs

with the largest hop count, which could mitigate the dependence of the global network

connectivity on the originally high betweenness nodes.
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3.1 Attack Modeling

In real-time MANET communications, it is pivotal that nodes are available as transceivers

or relay nodes for each other. A network with a set of fixed nodes and links can be modeled

as a static graph. Two nodes are adjacent if they are within the transmission range of

each other (with no interference) and are connected if they can be reached via a multi-hop

path. We assume node pair communication is symmetric to simplify the graph model

for malicious attacks; therefore, undirected graphs are sufficient to model our network.

Empirical human contact networks have been shown to be predictable [111], which could

be utilized by malicious attackers to disrupt the normal operation of MANETs. Various

approaches are possible to obtain or predict network topologies in MANETs [16, 17,

112–114]. For the attacks based on the aggregated graphs, we assume that the future

positions of nodes are known in advance for application scenarios such as pre-programmed

networks.

A snapshot of dynamic topologies can be represented as a adjacency matrix. We construct

a weighted graph to represent network topologies within a certain range of time. Node

attacks can be exerted based on centrality metrics, that is, links incident to the node

of the highest centrality will be removed from the network, and the next node to be

attacked is identified based on centrality values of the updated network.

In this section, we first present the model to construct weighted link availability graphs

within certain time windows. Next, we present a metric to determine the aggregation win-

dow size by taking into account transmission range and average node velocities. Finally,

with an aggregated graph within a selected time window, weighted centrality metrics can

be calculated adaptively after the attack of each node. We measure the effects of different

centrality-based attacks by evaluating how much degradation of flow robustness with a
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varying percentage of node attacks, and the sum of flow robustness after the attack of

each node.

3.1.1 Constructing Link Availability Graphs

In a MANET environment, all the nodes are mobile and the pairwise node connectivity

is dynamic. The evolution of the network topologies can be described as a sequence of

static graphs. We aggregate all the interactions between nodes given a time range into a

static weighted graph, in which the link weights represent link availability between node

pairs. Figure 3.1 presents a scenario of MANET topologies at six consecutive time steps

and Figure 3.2 shows the aggregated graph and its representation as in a matrix. The

weight that denote link availability is computed as the ratio of the time duration of being

directly connected to the window size. For example, node 1 and 2 are only adjacent at

time t2 out of six time steps; hence, in the aggregated graph, the link weight between

them is 0.17. In contrast, node 5 and 6 are connected in all six time steps; therefore, the
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Figure 3.1: MANET topologies at six consecutive time steps
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Figure 3.2: Weighted link availability graph and its adjacency matrix

link weight between them is 1.

Our aggregation model differs from many existing aggregation approaches when dealing

with dynamic networks. Instead of having a binary weighted graph resulting from the

aggregation, our model uses the link availability to represent weights that takes into

account not only the existence of links between node pairs but also the intensity of node

interactions. Next, we describe how to determine the window size for aggregation.

3.1.2 Determining the Window Size

Dynamic topologies of MANETs can be modeled by aggregating time-varying graphs

within a certain time window into a static weighted graph. Based on differing number of

nodes, transmission range, and node velocities, the rate of topology changing varies. For

network topologies that change at different rates, a uniform aggregation window size is

inappropriate. Too small a window size for a low mobility topology results in redundancy
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and overhead of calculation; while too large a window size for a high mobility topology

leads to the inaccuracy of node significance measured by weighted centrality metrics.

Instead of using a uniform window size to aggregate, we compute the average time interval

during which the dynamic topologies stay relatively stable. For a given MANET scenario,

we define a new measure MC (mobility coefficient) as follows:

MC =
V ×Wa

r
(3.1)

where V is the mean velocity of mobile nodes, Wa is the window size selected for aggre-

gation, and r is the transmission range of the scenario. The product V ×Wa provides the

average distance traveled by a node within a given time window. Hence, the MC defines

the distance change within a given time window relative to the transmission range. Based

on a given MC, the window size Wa can be determined as:

Wa =
MC× r
V

(3.2)

A small value of MC results in a small aggregation time window, which provides more

accurate identification of critical nodes within the aggregated time than a large value

of MC. In Section 4.1.3, our results show that different centrality metrics demonstrate

dissimilar behavior with increasing mobility coefficients.

3.1.3 Applying Malicious Attacks

We have established a reference to determine aggregation window size. Given an ag-

gregated graph, attacks are applied adaptively against the important nodes. For each

attack target, the graph metrics will be recalculated. It has been shown that node at-

tacks based on recalculated centrality metrics cause more network damage than based on
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initial node centrality metrics [115]. We use flow robustness F to measure the effects of

different centrality-based attacks. We provide two perspectives to measure network flow

robustness. First, we use a fixed window size and apply node attacks against up to 50%

of the total number of nodes. We evaluate how network flow robustness is impacted by

varying percentage of node failures caused by malicious attacks using different centrality

metrics. As centrality metrics play different roles depending on the network connectivity,

they could cause different effects in terms of degrading network robustness. The second

method to measure network robustness is to calculate the sum of flow robustness under

increasing number of node attacks until there is no path available. We use an example

in Figure 3.3 to illustrate a simple scenario of attacking nodes in the topologies shown in

Figure 3.2 based on degree centrality. Node 5 is the original highest degree node. After

the attack of node 5, all the incident links are removed as shown in Step 1. Then, we

calculate the sum of flow robustness
∑
F for each of the six topologies during this time

window as shown in Table 3.1. Each column represents the step-by-step flow robustness

change for each topology snapshot. We use the mean value
∑
F to measure the damage

on MANETs caused by a particular type of malicious attacks, and in this case
∑
F is

1.311.

Table 3.1: F of time-varying graphs under node attacks

Step Attacked nodes Ft1 Ft2 Ft3 Ft4 Ft5 Ft6
0 None 1.0 1.0 0.667 1.0 0.667 1.0
1 5 0.667 0.667 0.2 0.2 0.2 0.133
2 5, 4 0.067 0.133 0.067 0 0.067 0.067
3 5, 4, 3 0 0.067 0 0 0 0
4 5, 4, 3, 1 0 0 0 0 0 0∑

F = 1.131 1.733 1.867 0.933 1.200 0.933 1.200

The above attack scenario assumes that we can accurately obtain the node positions in

the next time window. In many real-world scenarios, it might be impractical to predict
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Figure 3.3: Adaptive node attacks based on degree centrality

node positions in the future accurately. By utilizing the correlation of dynamic topologies,

we can apply attacks to high centrality nodes in current topological snapshot for the next

time window. In this case, we attack the nodes iteratively for all six time steps based on

degree centrality of the topology Gt1 . We call this strategy real-time attacks in this work.

In Chapter 4, we compare the attacks based on the aggregated graphs with attacks using

current topology for the next time window that is considered as real-time attack. Our

result will show that real-time attacks based on the centrality metrics of current topology

perform differently than using varying window sizes.

As mentioned in Section 2.1.4, each centrality metric has its advantages and disadvan-
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Figure 3.4: Disconnected graph consisting of fully-connected components

tages. We define a new flexible attack model that applies attacks against significant

nodes based on dynamically selected centrality metrics. In contrast to malicious attacks

using a single centrality metric, the flexible attack model intelligently chooses centrality

metrics to identify nodes with key roles based on global connectivity. In the case of

Figure 3.4, all nodes have the same 0 betweenness values. Betweenness-based attacks

will randomly select one node; whereas, attacks against one of the highest degree nodes

have the greatest impact on the network. The flexible attack strategy can overcome the

shortage of betweenness-based attacks in such scenarios. If we calculate the highest be-

tweenness node as nb and the highest degree node as nd, attacks will be applied against

node nb if CB(nb) + CD(nb) > CD(nd) and vice versa. The removal of node nd will impact

CD(nd) pairs of nodes; while the removal of node nb, if resulting in component partition,

will impact CB(nb) + CD(nb) pairs of nodes. The node whose removal impacts more pairs

of nodes will be selected as the attack target. The complexity of computing attack target

using flexible strategy is bounded by the computation complexity of node betweenness.
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3.2 Enhancement Modeling

Our enhancement modeling is established upon homogeneous MANETs with a uniform

transmission range assigned to each node. In addition, we assume that each mobile

node carries multiple unidirectional wireless antennas in addition to the omnidirectional

radio used for original MANET communications. It has been shown that directional

beamforming antennas have tremendous potential of being deployed in ad hoc networks

to improve network throughput and reduce end-to-end delay [116,117]. Routing strategies

and topology control techniques have been proposed in multi-radio wireless networks to

enhance network performance [118, 119]. The enhancement scheme is composed of two

steps. Due to the node mobility, the dynamic networks might be partitioned in certain

time instants even though the network is well-connected most of the time. We first add

the links to bridge the disconnected components of MANETs whenever network partition

occurs. The bridging links are computed based on the MST algorithm with minimized

total energy cost. Next, we add long-range links to MANETs to further improve the

resilience and survivability of networks in presence of malicious attacks. We present

four enhancement strategies including two random-based strategies, the longest-path-

based enhancement, and a heuristic that adding links to lowest degree nodes to optimize

algebraic connectivity.

3.2.1 Bridging Disconnected Components

In our MST model that bridges the disconnected graph components, the goal is to add

links to connect all graph components with a minimum sum of energy cost. We exploit

a widely used energy model [120–128] to assign the link weight based on the component

pair distance. The measurement of energy consumption of a wireless network interface
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when transmitting a unit message depends on the range of the emitter u:

E(u) = r(u)α (3.3)

where α is a real constant usually between 2 and 4, and r(u) is the transmission range of

the wireless node. In reality, however, it has a constant to be added in order to take into

account the overhead due to signal processing, minimum energy needed for successful

reception and MAC control messages [129]
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Figure 3.5: A minimum spanning tree to bridge the disconnected components

Figure 3.5 provides an example to using our MST-based approach to bridge a discon-

nected network consisting of 8 graph components. Each graph component can be rep-

resented as a node in the MST graph and the distance between two disconnected graph

components is measured by the shortest distance between any nodes in different graph

components. Assuming that α = 2 in Equation 3.3 and all receivers have the same power
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threshold for signal detection, the weight in our MST model is represented as the square

of the component-pair distance. The MST algorithm can be run on the fully-connected

weighted graph with 8 nodes, and the red dash lines in Figure 3.5 are the actual added

bridging links computed based on the MST algorithms.

There are two well-known greedy algorithms for the calculation of MSTs:

Kruskal ’s algorithm [130] starts with a list of links, sorted by cost, adding one link of

the least cost at a time to the constructed MST, if the newly added link does not create

a loop in the current MST. Otherwise, the link is skipped. The Kruskal ’s algorithm can

be implemented using a disjoint-set data structure to maintain several disjoint sets of

elements. Each set contains the nodes in one tree [131]. The running time of Kruskal ’s

algorithm is O(|L| log |N |).

Prim’s algorithm [132] starts from an arbitrary node in the constructed MST. It con-

structs the MST by adding one new link of at a time. The new link is selected as the

shortest link from nodes in the current version of the MST to nodes not currently in the

MST. The algorithm terminates when the constructed MST spans all the nodes. The

running time of Prim’s algorithm is O(|L| + |N | log |N |) by using a Fibonacci heap to

implement the min-priority queue [131].

The addition of long links to bridge disconnected components results in a 1-connected

network. The network is still vulnerable in face of node attacks or failures as it suf-

fers from single point-of-failure. All the nodes that are incident to the bridging links

(red dash lines in Figure 3.5) are the articulation points whose removal would immedi-

ately partition the network. As mentioned in Section 2.1.3, the short characteristic path

length in small-world network has been applied to wireless networks to improve net-

work reliability. We propose a network enhancement strategy by adding links between

the longest-distance node pairs along with two random enhancement strategies and one
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heuristic that optimizes the algebraic connectivity by adding links to the lowest degree

nodes. Our enhancement strategies assume that each mobile device carries multiple di-

rectional radios in addition to the omni-directional antennas used for normal MANET

communications.

3.2.2 Enhancement Strategies

We provide four MANET connectivity enhancement strategies by adding long-range links

to mitigate the reliance on the high betweenness nodes. Except for the PR (Pure random)

strategy, the other three enhancement strategies start by adding bridging links, and once

the network becomes 1-connected, they select the links based on respective algorithms.

• PR (Pure random) enhancement strategy iteratively adds a link between a ran-

domly selected node pair if there is no direct link between them. Otherwise, next

random node pair is selected.

• MR (MST random) enhancement strategy first adds links to bridge disconnected

graph components using MST algorithms. Then, it selects random links in the

same way as in pure random strategy.

• LD (Lowest degree) enhancement strategy is a heuristic that iteratively selects

links whose addition would result in the highest algebraic connectivity [133]. The

random adding heuristic can be simplified by only considering links that are incident

to the lowest degree nodes, as the network connectivity is bounded by minimum

node degree P (G is k-connected) ≤ P (dmin ≥ k) [134]. Before applying the lowest

degree heuristics, we first add the bridging links to obtain a connected network.

As network algebraic connectivity needs to be computed once for each heuristic

adding, this algorithm is much costly than other strategies.
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• LP (Long path) enhancement strategy also first adds links to bridge disconnected

graph components. Once the network becomes connected, this strategy selects the

node pair with the largest hop count (i.e. diameter). If there are multiple node

pairs having the same largest hop count, we randomly select one node pair. The

complexity of long path strategy depends on the cost to find the diameter, which

can be obtained by running all-pair-shortest-paths algorithm.

In Chapter 5, we will apply the four enhancement strategies to both synthetic and real-

world traces and compare how each strategy performs by evaluating various robustness

measures.
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Chapter 4

MANET Robustness Analysis

In this Chapter, we apply the proposed attack model to both synthetic and real-world

mobility traces. We first examine the graph-theoretical properties of synthetic mobility

traces generated using different parameters. We investigate the flow robustness of a

variety of MANET scenarios under various centrality-based attacks. We run ns-3 [135]

simulations to evaluate network performance by sending constant bit rate traffic on top

of MANET routing protocols. Finally, we employ the resilience quantification approach

mentioned in Section 2.4 to evaluate network resilience under a range of operational

states.

4.1 Synthetic Trace Analysis

In this section, we first evaluate a set of graph metrics for MANETs generated using

different combinations of network parameters. Then, we select a transmission range

for each node number as baseline scenarios. We analyze the sum of flow robustness

using a range of window sizes determined by node velocity, transmission range, and

mobility coefficient. We evaluate centrality-based attacks using both aggregated and

real-time topologies, and compare how the performance of different centrality metrics is

affected by the aggregation window size. Finally, we evaluate MANET routing protocols
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in ns-3 simulations and compare the PDR (packet delivery ratio) with flow robustness of

underlying topologies. The steps of modeling malicious attack in MANETs are shown as

follows:

1. Selecting a proper window size for aggregation according to average node velocities

2. Calculating node significance based on aggregated or current time network topology

3. Attacking nodes of high significance for the next time window iteratively

4. Measuring network flow robustness and other graph metrics under malicious attacks

4.1.1 Synthetic Scenarios

Without loss of generality, we choose a simulation area of 1000 × 1000 m2 with a node

number of 20, 50, and 100. Node velocities are set as a uniform distribution between

[0, 2], [5, 10], and [10, 20] m/s, which corresponds to the walking speed of pedestrians,

the speed of bicycles, and the city speed of automobiles respectively.

Table 4.1: Synthetic scenario parameters

Simulation area 1000× 1000 m2

Mobility trace duration 1000 s
Mobility model Gauss-Markov

Number of seeds 10
Number of nodes 20, 50, 100

Node velocity [0, 2], [5, 10], [10, 20] m/s

As it has been shown that the minimum transmission range to maintain full connectivity

in ad hoc networks can be calculated with no strong dependence on mobility models [35],

we concentrate our work on the impact of different attack strategies on the network

robustness and use the Gauss-Markov mobility model [136, 137] to simulate node move-

ments. Mobility traces are generated for every 0.1 s time interval. We will start with a
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Figure 4.1: Normalized giant component size

MANET of decent connectivity. As mentioned in Section 2.1.2, there is a critical trans-

mission range for MANETs that the network becomes connected with a high probability,

which is defined by Equation 2.4. Based on this equation, the critical transmission ranges

for 20, 50, and 100 nodes networks are 685, 495, and 380 m respectively in a 1000× 1000

m2 area. This guarantees an almost fully-connected MANET during the entire simula-

tion time by assigning long transmission ranges. One of the issues with using a large

transmission range is that it could cause a high wireless radio interference that degrades

network capacity. We first study the connectivity metrics of MANETs using varying

transmission ranges and select a value that is less than critical transmission range but

can still provide a decent network connectivity for MANETs. All the results are provided

as an average of 10 different runs with a 95% confidence interval.

Figure 4.1, 4.2, and 4.3 provide normalized giant component size, flow robustness, and

probability of MANETs being 1-connected with the transmission range between 25 and

475 m. For the metric of 1-connected probability, each snapshot of dynamic topologies are

47



flo
w

 r
ob

us
tn

es
s

transmission range [m]

100 nodes

50 nodes

20 nodes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250 300 350 400 450 500

Figure 4.2: Flow robustness

P
(1

-c
on

ne
ct

ed
)

transmission range [m]

100 nodes

50 nodes

20 nodes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250 300 350 400 450 500

Figure 4.3: Probability of being 1-connected

48



measured in a binary way, either connected or disconnected. The other two metrics, flow

robustness and giant component size, measure MANET connectivity in a more gradated

way. With 100 nodes, all three graph metrics increase from 0 to 1 more sharply than

50 and 20 nodes. Within a confined area, MANETs with a larger number of nodes are

more sensitive to the change of uniform transmission range. The probability of being

1-connected is a more strict measure than flow robustness and giant component size. For

example, with a transmission range of 150 m for 100-node networks, the probability of

being 1-connected is approximately 25%; however, both the normalized giant component

size and flow robustness are higher than 0.9. This indicates that the majority of nodes

are clustered in a connected component, with a small number of nodes disconnected

from the giant component. The sacrifice of flow robustness from these small portion of

disconnected nodes is trivial if we care about robustness for the entire network.

Table 4.2: Graph metrics of selected transmission ranges

# of critical tr. selected tr. avg. node # of flow giant prob. of
nodes range [m] range [m] degree components robustness component 1-connected

20 685 350 5.53 1.31 0.94 0.96 0.72
50 495 225 6.67 1.60 0.94 0.97 0.56

100 380 150 6.50 2.42 0.91 0.95 0.26

Hence, we select a transmission range for each node number that can provide a higher

than 90% flow robustness. We also present average node degrees, average number of

graph components for the network scenarios using selected transmission ranges shown

in Table 4.2. The normalized giant component sizes of all three scenarios are all above

95%, while there is a large difference in terms of 1-connectedness probability. There is

higher chance for nodes being isolated from the giant component with a large number

of node numbers. The average node degrees for three scenarios are close to each other,

which indicates the levels of potential wireless interference among neighboring nodes.

49



Table 4.3: Windows sizes for different scenarios with MC = 0.1 and 0.5

Window size [s] (MC = 0.1) Window size [s] (MC = 0.5)
Node number [0, 2] m/s [5, 10] m/s [10, 20] m/s [0, 2] m/s [5, 10] m/s [10, 20] m/s

20 35.0 4.7 2.3 175.0 23.3 11.7
50 22.5 3.0 1.5 112.5 15.0 7.5

100 15.0 2.0 1.0 75.0 10.0 5.0

The selection of a window size for aggregation is esentially a tradeoff between compu-

tation complexity and the accuracy of identifying significant nodes. According to the

transmission ranges suggested in Table 4.2, we examine how MANETs are affected by

various malicious attacks for all combined scenarios with MC values ranging from 0.1

to 0.5. Table 4.3 provides the window sizes for MC = 0.1 and MC = 0.5 computed

using Equation 3.2. We can observe that there is large variation of the window sizes for

different scenarios, which could be as small as 1 s for 100 nodes with [10, 20] m/s; the

window size could also be as large as 175 s for 20 node with [0, 2] m/s velocity.

4.1.2 Attacks Based on Aggregation

We first examine the flow robustness change under an increasing number of node attacks

using MC = 0.1. In Figure 4.4, we provide average network flow robustness under random

failures and various centrality-based attacks for 20 and 100 nodes scenarios. We apply

node attacks up to 50% of the total number of nodes. The betweenness-based attacks

result in the highest degradation of network flow robustness with node attacks up to

40% in both 20 and 100 nodes scenarios. When there are 50% of node being attacked,

all the centrality-based attacks converge to a similar value; however, they still have

a greater impact on the network than random node failures. Closeness-based attacks

degrade network flow robustness less than betweenness but cause greater damage than

others. It is worth mentioning that with 10% node attacks that cause relatively slight
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Figure 4.4: MANETs under simultaneous node attacks

51



damage in the networks, degree and eigenvector-based attacks have no greater impact

than random node failures. Especially, in 100 nodes networks, the removals of high

degree and eigenvector nodes result in even less damage on the network connectivity

than random nodes failures. With a small percentage of nodes being attacked, the nodes

with more neighbors play trivial roles in terms of its contribution to the global network

connectivity. This observation becomes more obvious in a larger network. In comparison,

the high-betweenness nodes play a more vital roles than other other centrality metrics.

Particularity, node betweenness can identify the most significant nodes better in the

100 nodes networks than in 20 nodes networks. This is because the calculation of node

betweenness relies on the all-shortest-paths in the network.

Figure 4.5 provides the sum of flow robustness that is equivalent to the area under

each curve in Figure 4.4 by extending to 100% of node attacks in x-axis. We use a

varying mobility coefficient that reflects a range of aggregation window sizes. In both

Figure 4.4a and Figure 4.4b, the sum of flow robustness increases slightly with MC

increasing from 0.1 to 0.5. As expected, with a larger aggregation window size, the high

centrality nodes become less accurate. The degree-based attacks are less affected by the

window size, which indicates from another perspective that the high degree nodes are

less affected by the change of dynamic topologies. All centrality-based attacks result

in a lower sum of flow robustness than random node failures. In 100 nodes scenarios,

degree- and eigenvector-based attacks are closer to random node failures than in 20 nodes

networks, while the gap between degree-based and betweenness-based attack are larger

in 100 nodes networks. This again demonstrates that all-shortest-paths based centrality

metrics including betweenness and closeness provide a more accurate identification of

significant nodes than other centrality metrics in terms of the nodes’ contribution to the

global connectivity.
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Figure 4.5: Sum of flow robustness with varying mobility coefficient

53



4.1.3 Real-Time Attacks

As we have already understood the relative effect of centrality metrics on the degradation

of flow robustness, we select degree, closeness, and betweenness centrality metrics to com-

pare real-time attacks to the attacks based on aggregation. We aslo include the flexible

attacks for real-time scenarios. Figure 4.6 and 4.7 presents the comparison of flow robust-

ness between real-time attacks and complete information attacks with 20 and 50 nodes.

The results for 100 nodes scenarios are shown in the Appendix A. For real-time attacks,

the priority of nodes to be attacked is determined according to the centrality metrics of

the initial topology of each time window, and for attacks with complete information, the

attack priority is computed based on the aggregated weighted graph of the entire time

window. As shown in Figure 4.6 and 4.7, flow robustness under complete information

centrality-based attacks is slightly lower than real-time attacks for the same metric as

expected, since attacks with complete information can identify significant nodes more

precisely by taking into account all the topological information within the time window.

It is worth noting that degree-based attacks using real-time topology information cause

almost the same damage as using aggregated topologies. This indicates that the highest

degree nodes are less affected by the topology change. In contrast, the closeness- and

betweenness-based attacks based on real-time information cause less damage than based

on the aggregated graphs. In particular, in the 50 nodes networks, the difference between

real-time and complete information attacks using closeness and betweenness is greater

than in the 20 nodes networks.

Figure 4.8 and 4.9 compare the sum of flow robustness
∑
F based on real-time and

aggregated topologies for 20 and 50 nodes information. The 100 nodes results are shown

in the Appendix A. Of all the curves shown in the two Figures, we compare the degree-,

closeness-, and betweenness-based attacks for both real-time and aggregated approach.
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Figure 4.6: 20 nodes MANETs under real-time simultaneous node attacks

flo
w

 r
ob

us
tn

es
s

node failure rate

rt degree

degree

rt closeness

closeness

rt flexible

rt betweenness

betweenness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5

Figure 4.7: 50 nodes MANETs under real-time simultaneous node attacks

In addition, we include the flexible centrality metric that overcomes the inefficiency

of betweenness in disconnected networks. The MC in the x-axis reflect the window
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sizes. With the increase of MC, the
∑
F for all attack strategies increases as expected.

The
∑
F increases faster in real-time closeness, betweenness, and flexible attacks than

in other scenarios. This means that aggregated approach can provide more accurate

identifications of high centrality nodes than using the real-time approach with a larger

window size. With MC = 0.1, closeness > rt-betweenness > rt-flexible > betweenness;

when MC increase to 0.5, rt-betweenness > rt-flexible > closeness > betweenness. It is

worth noting that the rt-flexible curve is always lower that rt-betweenness curve although

the difference is slight. The real-time centrality metrics based computed based on all-

paths-shortest-paths algorithms are more sensitive to the increase of window sizes. The

high closeness and betweenness nodes change faster than high degree nodes when the

global topological structure changes. Even though nodes are moving constantly within

the certain simulation area, the local structure of the entire network remains relatively

stable in that nodes with the highest degree centrality do not vary much within each

time window. The difference of flow robustness under real-time and complete information

attacks is slight with a small MC, which means that historical mobility trace information

can be exploited by malicious attackers to understand network topological structures and

then determine the most vital nodes to be attacked.

4.1.4 Simulations in ns-3

In this section, we select a list of network parameters shown in Table 4.4 to study the

network performance running MANET routing protocols. In the simulation, every node

sends constant bit rate traffic to every other node and we only select 20 nodes for ns-3

simulation since a high number of nodes results in severe network traffic collisions when

all of them attempt to send packets to other nodes at the same time. We use PDR

(packet delivery ratio) to measure network performance in the application level, which

is computed as the ratio of delivered packets to the total number of packets being sent
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Figure 4.8: 20 nodes MANETs under real-time simultaneous node attacks
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Figure 4.9: 50 nodes MANETs under real-time simultaneous node attacks

out. We use AODV as the routing protocols as it provides the highest baseline PDRs

without being attacked.
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Table 4.4: Simulation parameters of synthetic traces in ns-3

Number of iterations 10
Traffic generation time 1000 s

Transmission range 350 m
Simulation area 1000× 1000 m2

Mobility model Gauss-Markov
Number of nodes 20

Window size 35 s (MC = 0.1)
Physical channel 802.11g (54 Mb/s)
Routing protocol AODV

Node velocity [0, 2] m/s
Traffic model CBR (constant bit rate)
Traffic type UDP
Traffic flows 380 (20× 19)

We compute the window size based on MC = 0.1. The simulation results present PDRs

of networks under different centrality-based attacks. Many factors could lead to the vari-

ation of end-to-end throughput, such as AODV routing table updates, hidden terminals,

and network congestion, even though we try to minimize the impact of these factors

in our simulation. We compare PDR with flow robustness that provide the underlying

theoretically highest network performance under attacks. In order to display each curve

in the plots clearly, we only select random, degree, and betweenness centrality for the

comparison. As shown in Figure 4.10, the analytical flow robustness is always slightly

higher than the PDR as expected, since flow robustness is a theoretical upper limit for

PDR if all packets can be delivered with no delay whenever there is an available path. For

both PDR and flow robustness, the relationship for network performance under attacks

always follows as: random > degree > betweenness.

It is apparent that centrality metrics based on either aggregated graph or instant topol-

ogy become less precise if we increase the window size. Flow robustness of underlying

topologies is essential to the quality of service in the application layer. Ideally, if all the

packets can be delivered across different layers instantly, PDR under the same types of
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Figure 4.10: ns-3 vs. topological analysis with 20 nodes

attacks should be almost equal to flow robustness. In theory, flow robustness provides the

best network performance under certain types of attacks. As network density increases,

wireless channel effects and packet loss/drop during transmission could degrade network

performance more heavily in the application layer.

4.2 Real-World Trace Analysis

The synthetic trace analysis provides insights into how MANETs are affected by centrality-

based attacks in general cases. In the real-world scenarios, network parameters such as

moving areas and distribution of node positions might be more case-specific. For ex-

ample, the simulation area are usually not in regular shapes in the real-world sites. In

addition, the positions of all nodes might not follow a Poisson distribution and the move-

ment of nodes might not follow a Gauss-Markov pattern. In this section, we employ

human mobility traces collected from five different sites [138] to evaluate our malicious
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attack model. These traces were originally used to study the statistics of human mobility

pattern and the similarity between humans’ walking and Lévy Walks [139]. The data

sets provided are 30 seconds average of GPS coordinates recorded using Garmin 60CSx

handhold devices. Table 4.5 presents basic information regarding the five traces.

Table 4.5: Five sites of real-world mobility traces

KAIST Orlando NewYork NCSU StateFair
# of traces 83 41 39 35 19

Min. duration [s] 15180 7860 4440 6180 5340
Pause-time [s] 5440 1546 1382 2490 380

# of clean traces 72 26 21 25 19

4.2.1 Data Set

The five real-world mobility traces provide a range of network sizes and connectivity

levels for us to investigate a variety of realistic MANET scenarios. Before exploiting

theses real-world traces for our attack analysis, we need to first clean the recordings of

node positions in the trace files. There are occasional cases that GPS signals cannot

be received when GPS holders move indoors in the original data sets. In addition, the

average speed during a 30-second window for some nodes is calculated as high as 200

m/s based on the original trace. We remove the traces from the data sets if there is

any occurrence of velocity higher than 20 m/s during a 30-second time window. The

number of traces after the removal of corrupted data in each site in shown in Table 4.5.

The NewYork traces were collected from volunteers living in the Manhattan NY area,

and they traveled by cars and buses. The KAIST and NCSU traces were collected in

two campuses, one in Korea Advanced Institute of Science and Technology and the other

in North Carolina State University. The Orlando traces were obtained from volunteers

who spent their holidays in the Disney World. The StateFair traces were obtained from
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participants who went to the North Carolina State Fair. This set of traces were collected

outdoors, and the size of the StateFair site is the smallest of all. As each trace in the same

site lasts for different durations of time, we truncate all traces based on the minimum

trace time for each site. The trace duration used for each site is listed in the third row

of Table 4.5. The second row provides the number of traces collected for each site.

In real-world MANET scenarios including the five sites used here, the actual network den-

sity depends on the number of nodes and transmission range of each node. In this work,

the number of nodes in MANETs is based on the number of traces provided in the data

sets even though the node number in a real case could be significantly higher since only a

small portion of people are selected as candidates for trace collection. Theoretically, the

transmission range can be adjusted by increasing the radio power of handhold devices.

Noting that handheld devices are mostly battery-powered, the transmission range cannot

be increased infinitely. We choose 250 m to 1000 m as an acceptable range.

In Table 4.5, we also present the average pause-time of all nodes for each site. Pause-time

is the duration a person halts before moving to another location. The StateFair site has

the smallest average pause-time, which accounts for about 7% (380/5340) of the entire

trace duration. In contrast, the pause-time of KAIST and NCSU account for a very high

percentage of entire trace duration, which indicates the dynamic topologies remain stable

most of the time.

We analyze the distribution of node velocities for all 30-second windows. The CCDF

(Complementary Cumulative distribution function) of node velocities are presented in

Figure 4.11. Both x and y axes use log-scale. It is apparent that node velocities follow a

non-linear distribution. For the NCSU and StateFair sites, almost 90 percent of velocities

are distributed below 1 m/s while the maximum velocity for NCSU is around 20 m/s. The

velocity of the New York site is generally higher than the other 4 sites, and probability of
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Figure 4.11: CCDF of average node velocities

velocity higher than 5 m/s is approximately 0.1. About 80% of velocities in the KAIST

site is less than 1 m/s while the maximum velocity could be as high as 50 m/s. The

non-uniform distribution of node velocities cannot be captured by synthetic mobility

models such as Gauss-Markov. This also poses a big challenge for MANET robustness

as whenever nodes start moving with a high speed, the network performance cannot be

guaranteed.

We also present average flow robustness, node degree, average giant component size of

each site using 3 different transmission ranges in Table 4.6. With the same transmis-

sion range, the StateFair site has the highest average flow robustness of all. When the

transmission range is 1000 m, the network becomes a full-mesh as the average giant

component size is equal to the total number of nodes. The NewYork site has the lowest

average flow robustness. Even when the transmission range is set to 1000 m, the average

node degree is 2.8 noting that there are 39 nodes in total. The average flow robustness

of the Orlando site is slightly higher than NewYork but still presents a very low network
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connectivity. The average giant component size of the KAIST site with 500 and 1000

m transmission range are 73.1 and 75.2, while the average degree almost doubles from

27.8 to 53.9. This means that there are several nodes moving far apart from the largest

node clusters, and the increase of transmission range only leads to a higher connectivity

within a local cluster with other nodes still isolated from the giant component.

Table 4.6: The Statistics of all sites

Site Avg. flow robustness Avg. node degree Avg. giant comp. size
name tr(250) tr(500) tr(1000) tr(250) tr(500) tr(1000) tr(250) tr(500) tr(1000)

KAIST 0.509 0.777 0.822 15.6 27.8 53.9 56.6 73.1 75.2
Orlando 0.167 0.208 0.233 3.8 7.1 8.5 12.1 13.0 14.0
NewYork 0.022 0.041 0.190 0.8 1.2 2.8 4.2 5.6 14.6
NCSU 0.112 0.238 0.488 3.5 4.8 9.5 9.5 13.7 23.9
StateFair 0.825 0.993 1.000 6.8 13.9 17.9 16.6 18.9 19.0
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Figure 4.12: Snapshots of Statefair trace with tr = 250
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Figure 4.13: Snapshots of NCSU trace with tr = 1000
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Figure 4.14: Snapshots of KAIST trace with tr = 500
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The normal functioning of MANETs requires network connectivity to remain above a

certain level since all routes are established in real time. For the flow robustness analysis,

we will focus on StateFair, NCSU, and KAIST. In the original data set, both the x and y

coordinates are recorded as the distance from a reference point in meters. We present the

snapshots of the selected three sites. Each color represents the snapshot of start (blue),

middle (red), and end point (yellow) of the traces respectively. In Figure 4.12, it can be

observed that the StateFair traces are confined within a relatively small area (1200×1000

m2). Both NCSU and KAIST site span a large area with most nodes clustering around

a particular part of the map, as shown in Figures 4.13 and 4.14.

4.2.2 Topological Analysis

Network robustness changes over time as nodes disconnect and reconnect to others con-

stantly. We compute the flow robustness for each 30 s topology snapshot, and then

calculate the autocorrelation between time-varying flow robustness. In order to compare

fairly among three different sites, we only analyze first 4500 s trace data. Figure 4.15,

4.16, and 4.17 present time-varying flow robustness and the corresponding autocorrela-

tion coefficient RStateFair, RNCSU, and RKAIST for the StateFair, NCSU, and KAIST sites

using different transmission ranges. For the StateFair site, flow robustness is always 1

for 1000 m transmission range; hence, we do not provide the autocorrelation for this

scenario as the variance is 0. For 500 m transmission range, StateFair flow robustness

falls below 100% for a short period of time after 3600 s and remains at 100% for the

rest of time. This indicates a very high network connectivity as we can also see that

average giant component size is 18.9 from Table 4.6. For StateFair traces with 250 m

transmission range, flow robustness fluctuates between 50% and 100%. RStateFair displays

a linear decrease to 0 within 300 s, and certain levels of periodicity are observed since

participants of North Carolina State Fair are moving in a relatively confined area. Flow
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robustness of the NCSU site increases during specific short time windows as shown in

Figure 4.16a. RNCSU with a 250 m transmission range is weaker than 500 and 1000 m

transmission ranges. As shown in Figure 4.13, the majority of nodes move slowly within

a small area in the map, and a smaller transmission range causes the nodes to disconnect

from others more frequently.

Flow robustness of the KAIST site shows the strongest autocorrelation of all three sites.

Similar to RNCSU, RKASIT is higher with a longer transmission range. RKASIT with 500

and 1000 m transmission ranges presents a more linear decrease, and time-varying flow

robustness is strongly correlated within 1800 s. RKAIST with 250 m transmission range

decreases to 0 significantly faster than with 500 and 1000 m transmission ranges. As

shown in Figure 4.17a, flow robustness oscillates far more frequently between 0.35 and

0.7 with 250 m transmission range. The giant component gets partitioned into half of

the original size. Whenever flow robustness goes up or down to a new state, the network

connectivity remains for a certain period of time. Remediation measures can be taken to

improve network connectivity, such as adjusting transmission power of certain nodes or

adding extra static or mobile nodes to bridge the network if there is a repeated pattern

of network disconnection.

Next ,we evaluate how the high centrality nodes change over time. We compute the top

20% highest centrality nodes for each 30 s snapshot and round it up to an integer value.

Node centrality metrics are calculated adaptively after the removal of each node [115].

We compare how many high-centrality nodes in common between two different snapshots.

For example, in the StateFair trace, we calculate a set of 4 nodes with the highest degree,

closeness, and betweenness respectively. We compare the node sets with a range of time

differences and then calculate the average number of common nodes for each range. In

Figure 4.18, for two snapshots of 30 s time difference, the average number of common

nodes between them is approximately 3 for all three centrality metrics, which indicates
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Figure 4.18: Change of high centrality nodes over time in StateFair with tr = 250

a relatively high similarity. It is apparent that with the increase of time difference, each

node has a larger deviation from the original position. When window size is increased to

300 s, the average number of common nodes decreases to less than 2. For window sizes

that are larger than 600 s, the average common nodes is approximately 1 with no more

decrease. This can be explained as nodes in StateFair site move within a confined area

and have a high chance to meet each other repeatedly after a certain period of time.

For the NCSU site, the top 7 nodes with the highest centrality are compared across

different time window sizes as shown in Figure 4.19. There are more than 6 nodes shared

between the top centrality nodes with 30 s window size, which indicates extremely slight

change of topology structure. Even with a window size of 900 s, an average 5 out of 7

nodes are the same. This would explain the difference of centrality-based attacks using

different window sizes.

The average number of common high centrality nodes within a 30 s window size for
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Figure 4.19: Change of high centrality nodes over time in NCSU with tr = 1000
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Figure 4.20: Change of high centrality nodes over time in KAIST with tr = 500
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the KAIST site is about 15 out of 17 for all centrality metrics, which also shows a

high correlation within a 30 s window as shown in Figure 4.20. When the window size

increases, the common nodes with high betweenness decreases faster. This is because

shortest paths between all node pairs are more sensitive to the change of node positions

in a comparatively larger network and node betweenness highly relies on the count of

shortest paths. When the window size is increased to 900 s, an average of approximately

10 of 17 nodes are in common for two snapshots of topologies.

We apply centrality-based attacks against the above three scenarios using window sizes

of 30, 300, and 900 s. We compare the average network flow robustness of centrality-

based attacks against random node failures. Five different levels of damage are applied

adaptively with up to 50% of the total number of nodes being removed in each scenario.

For StateFair scenarios, betweenness-based attacks have the heaviest impact on net-

work flow robustness. With a 300 s window size, the gap between random failures and

centrality-based attacks decreases compared to attacks using 30 s window size. With a

900 s window size, the difference between random failures and centrality-based attacks

becomes even smaller. However, for 20% and 30% node removals, betweenness-based

attacks degrade the flow robustness slightly higher than the others. With 10% of nodes

being removed, attacks based on degree and closeness have similar impact on the net-

work as random failures. In Figure 4.22, the baseline flow robustness is only 50% for the

NCSU site with 1000 m transmission range. As shown in Figures 4.13 and 4.14, nodes

in this site span a large campus area, while the majority of them construct a connected

component with the rest being isolated most of the time. The difference between the

impact of each centrality-based attack on the network is modest for 30, 300, and 900

window sizes. This is because network structure remains relatively stable within the

giant components of the NCSU site as shown in Figure 4.19. In addition, with failure

rate higher than 0.3, betweenness-based attacks have less impact on the network than
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Figure 4.21: Centrality-based attacks using different window sizes for StateFair trace
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Figure 4.22: Centrality-based attacks using different window sizes for NCSU trace
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Figure 4.23: Centrality-based attacks using different window sizes for KAIST trace
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Figure 4.24: Giant component size under centrality-based attacks with 30 s window size
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attacks based on degree and closeness. When the network is partitioned into small fully-

connected components, all the remaining nodes have the same betweenness of 0, which

makes them indistinguishable from each other. With a total of 83 nodes in the KAIST

site, a significant difference among betweenness-based attacks and other metrics for 10%

and 20% node removal is observed in Figure 4.23a. Degree and closeness become better

node significance indicators when there are more than 30% of nodes removed from the

network. As the calculation of node degree is based on its neighborhood, it makes sense

that local network structural change becomes dominant in overall connectivity of a more

partitioned network. Both betweenness and closeness metrics are calculated based on the

global shortest paths of the entire network. However, the betweenness metric provides

more accurate indication of node significance in terms of providing connectivity of the

entire network. The global influence of node closeness is less than node betweenness

because the sum of the inverse of farness to every other node also takes into account the

impact of all local nodes within the neighbors.

Figure 4.24 presents the giant component component sizes under centrality-based attacks

with a 30 s window size. The relationship among giant component sizes under different

centrality attacks are similar to the corresponding flow robustness under attacks. When

the percentage of nodes being attacks reaches 0.3, the slope of the curve for betweenness-

based attacks becomes less sharp than the degree- and closeness-based attacks. Even

though average giant component size is more than 20 as shown in Figure 4.24b, nodes in

each fully-connected component have the same betweenness value of 0.

For the above analysis, certain parameters must be fixed so that we can study the im-

pact of a specific parameter on the network performance. It is not feasible to plot the

individual result for each one of all the combinations of parameters such as time window

size and transmission range. Next, we use our two dimensional state space resilience

quantification framework [110] to evaluate how different types of attacks impact network
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flow robustness for a range of network operational states that include all combinations

of various parameters.

First of all, we need to establish objective functions for the operational and service

dimensions of the state space. In the topological level of a given site’s traces, parameters

that affect network flow robustness are the number of node failures/attacks, network node

density, and time window size chosen for malicious attacks. Centrality metrics within a

smaller time window size provide more accurate identification of significant nodes over

time [140]. Transmission range determines the average number of neighbors of each node.

Neighbor count reflects network density independent of number of nodes, transmission

range, and size of area covered by mobility traces. Hence, we represent operational state

NS as an objective function with three parameters: neighbor count, node failure rate,

and time window size, denoted by N1, N2, and N3 respectively. In order to obtain the

x-axis value based on these three metrics, we calculate n∗1, n
∗
2, and n∗3 corresponding to

n1, n2, and n3 on a piecewise linear scale. Let n∗1 be within the range of the n1 regions,

which can be represented as:

n∗1 =


n1−n1

n1−n1
, if n1 positively affects operation

1− n1−n1

n1−n1
, if n1 negatively affects operation

(4.1)

where n1 and n1 represent the lower and upper limit of the n1 operational metric re-

spectively. For example, the possible range of a 10-node network’s neighbor count is

between 0 and 9. With other parameters being fixed, the higher the neighbor count, the

higher the flow robustness. Hence an average neighbor count of 4.5 results in 0.5 for n∗1.

Therefore, the projected state N∗S = f(N1, N2, N3) can be calculated using the following

objective function: n∗ = αn∗1 + βn∗2 + γn∗3 where α, β, and γ are the weights assigned to

each metric. The weights are determined based on the degree to which the network is
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Table 4.7: ∆R between random node failures and malicious attacks

Site Random Degree Close Between Flexible ∆RR↔D ∆RR↔C ∆RR↔B ∆RR↔F

KAIST 0.5623 0.5388 0.5322 0.5284 0.5235 0.0236 0.0302 0.0339 0.0388
Orlando 0.3499 0.3373 0.3371 0.3451 0.3369 0.0126 0.0128 0.0048 0.0130
NCSU 0.4090 0.3786 0.3786 0.3835 0.3780 0.0304 0.0304 0.0255 0.0310
StateFair 0.6527 0.6362 0.6322 0.6247 0.6233 0.0165 0.0205 0.0280 0.0294

affected by each metric. However, it is difficult to set weights as all the metrics affect the

flow robustness of each site differently. We experimentally set α, β, and γ to be 0.45, 0.5,

and 0.05 to obtain an approximately linear mapping. The range of n∗ is between [0, 1],

where 0 indicates the most degreded operational state with n∗1, n
∗
2, and n∗3 all being 0,

and 1 indicates the best operational state with n∗1, n
∗
2, and n∗3 all being 1.

We provide the resilience value R for each site in the face of different attack strategies

along with ∆R to represent the difference between random node failures and centrality-

based attacks in Table 4.7. Each resilience value represents aggregated service states

from 450 different combinations of operational states. With the same attack strategy

across different sites, the StateFair site has the highest resilience for all attack strate-

gies. In addition, we present how network resilience under each centrality-based attack

degrades compared with under random node failures. Networks under flexible attacks

have the lowest resilience among all malicious attacks. Betweenness-based attacks result

in lower resilience than degree- and closeness-based attacks for the KAIST and State-

Fair sites; however, in the Orlando and NCSU sites, betweenness-based attacks produce

higher resilience than degree- and closeness-based attacks. Since the operational states in

the Orlando and NCSU sites are more degraded than in KAIST and StateFair sites, be-

tweenness fails to provide a favorable indication of node significance in relatively poorly-

connected networks such as Orlando and NCSU. Again, the flexible metric provides the

best measurement of node significance across varying network connectivities.
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4.2.3 Simulations in ns-3

In this section, we evaluate network resilience in the application level using different

routing protocols given a topological connectivity measured by flow robustness, as it is

necessary to improve network resilience at multiple layers in the protocol stack. The

two metrics used to measure service states are PDR (packet delivery ratio) and average

network delay. The operational state is a single flow robustness value, and the service

state objective function is composed by the logic AND, which means that both PDR and

delay have to meet a certain threshold in order to characterize the state as acceptable,

impaired, or unacceptable. Network delay less than 10 ms is considered as normal, and

network delay is considered unacceptable if it is greater than 250 ms. PDR is already in

the range of [0, 1], and all the network delay values also need to be projected into [0, 1]

range. The calculation of projected service state values is based on the smaller value

of PDR and projected delay as both of them are necessary conditions for acceptable

services.

Table 4.8: Simulation parameters of real-world traces in ns-3

Transmission range 250, 500, 1000 meters
Number of nodes 19 (StateFair), 25 (NCSU)
Simulation time 4500 s
Physical channel 802.11g 54 Mb/s
Data rate 1 packet/s
Routing protocol DSDV, AODV, DSR, OLSR
Window size 30, 300, 600, 900, 1200
Node removal rate 0, 0.1, 0.2, 0.3, 0.4, 0.5
Attack strategy random, degree, closeness, betweenness, flexible

We use the open source network simulator ns-3 [135] as our simulation tool. Constant bit

rate UDP traffic is generated every second. The data rate is set as 1 packet/s to minimize

potential network congestion. We convert the original humans’ walking traces to ns-2 for-

mat, so that traces can be imported using Ns2MobilityHelper model, which is the only
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way to import traces from files in the latest version of ns-3. The four routing protocols

used in the simulations are DSDV (Destination-Sequenced Distance Vector) [141, 142],

DSR (Dynamic Source Routing) [143, 144], AODV (Ad hoc On-Demand Distance Vec-

tor) [145], and OLSR (Optimized Link State Routing) [146]. In order to guarantee a fair

evaluation of nodes’ roles, each node sends traffic to every other node. With 72 nodes

in the KAIST scenario, there are 5112 packets generated in the network simultaneously

every second, which could cause serious network contention in the MAC layer. The flow

robustness of the Orlando site is within the unacceptable range that provides a narrow

range of operational states to evaluate routing protocols. Hence, here we only evaluate

the resilience of StateFair and NCSU sites. The other parameters used in our simulation

are listed in Table 4.8.

Table 4.9: Resilience of MANET routing in Two Sites

StateFair NCSU

PDR Delay R PDR Delay R
DSDV 0.468 64.36 0.472 0.144 85.76 0.358

DSR 0.486 50.15 0.488 0.164 57.76 0.384

AODV 0.488 3.35 0.526 0.169 7.76 0.400

OLSR 0.494 1.62 0.527 0.177 1.25 0.421

Figure 4.25 presents resilience state space for the StateFair and NCSU sites using four

different routing protocols. Each resilience value R in Table 4.9 is calculated based on

450 flow robustness values that are generated using different combinations of parameters.

The operational states of the StateFair site have a relatively even distribution between

normal operation and severely degraded operation, while the operational states of NCSU

are mostly distributed around the degraded and severely degraded regions. By evaluating

services under a list of operational states, OLSR has the highest resilience among the

four routing protocols, since OLSR has the lowest connection setup time with up-to-date

routes. Both DSDV and OLSR are table-driven proactive routing protocols. The interval
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Figure 4.25: Resilience space using different routing protocols
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of Hello message in OLSR is set as 1 s in our simulation. Due to the high overhead of

routing update in DSDV, the periodic update interval in DSDV is set as 5 s. Another

reason why DSDV has the lowest resilience is that the routes in DSDV might not always

be accurate as it only depends on periodic triggering messages to update the routes.

The relatively low resilience of DSDV and DSR arises from their high delay as shown

in Table 4.9; the delay value are presented in ms. Network resilience using AODV is

slightly higher than using DSR. Both DSR and AODV are reactive routing protocols.

The stale route cache in DSR could result in route inconsistencies when constructing the

route. In constrast, the periodic beacons in AODV consumes extra bandwidth but can

fix the stale entries faster than DSR, and multiple routes are maintained between source

and destination in the AODV routing table. Extensive dependence on the route cache

information in DSR during the route discovery phase could lead to high setup delay.

When the operational states are severely degraded, there are no apparent difference

among service states by using four different routing protocols.

Service states for different routing protocols become close to each other under severely

degraded operations, since with more nodes being attacked, route convergence of exist-

ing nodes becomes faster with few available paths between node pairs if two nodes are

reachable from each other. For a range of network operational states in both sites, the

OLSR protocol provides the highest PDRs and lowest delays among the four different

routing protocols. However, noting that the interval of Hello message is set as 1 s, OLSR

achieves this performance with a high routing overhead.
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Chapter 5

Evaluation of Enhancement
Strategies

In Chapter 4, we have investigated the potential vulnerability of MANET topologies

in face of malicious attacks. As shown in the our results, the attacks against the high

betweenness nodes could cause severe performance degradation of MANETs. In this

chapter, we first address the issue of network partition caused by node mobility. The

CTR (critical transmission range) could guarantee that the network in a unit disc area

is connected with a probability of 1 asymptotically; however, it is impractical to assign

an exorbitantly long transmission range that could result in high power consumption

and interference among neighboring mobile devices. We propose an approach to use a

smaller-than-CTR transmission range, and maintain a connected network by exploiting

directional antenna to bridge the disconnected components with minimum energy cost

based on MST (Minimum Spanning Tree). A great number of existing studies focus

on the minimization of local and global energy consumption by reassigning the radio

power of each participating device in MANETs. Our work builds upon homogeneous

MANETs with a uniform transmission range and adds additional long-range links to

enhance network connectivity.
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5.1 Synthetic Trace Enhancement

We use the same network parameters as in the evaluation of the impact of centrality-

based attacks in synthetic networks. A set of network robustness measures are evaluated

for each enhancement strategy. In addition, we evaluate the sum of flow robustness under

iterative attacks based on different centrality metrics.

5.1.1 Enhancement Strategies Evaluation

We add up to 50 links for each scenarios in Table 4.1, and investigate several graph

robustness measures of the enhanced networks using different enhancement strategies.

The measures are algebraic connectivity, network criticality, clustering coefficient, the

inverse of path length, and the inverse of diameter. Since it is possible that the MANETs

are disconnected which results in an infinite path length and diameter, we take the inverse

of these two measures so that they can be calculated for all possible cases. As mentioned

in Section 3.2, the four enhancement strategies are: PR (pure random), MR (MST

random), LD (lowest degree), and LP (longest path).

Figure 5.1 provides the average algebraic connectivity in enhanced networks using the

strategies mentioned above. For 20-node networks, the algebraic connectivity of networks

using LD-based improvement heuristic remains the highest among all after there are more

than 20 link additions. Whereas, with less than 20 links being added, LD-based strat-

egy has almost the same performance with LP-based strategy. The MR-based strategy

improves algebraic connectivity slightly higher than PR-based strategies, although both

of them stay the lowest of all. Different from 20-node networks, the LP-based enhance-

ment strategy in 50-node networks provide the highest performance consistently among

all strategies in terms of algebraic connectivity in the improved networks. This indicates

that in a network of a relatively small size, the link additions to those lowest degree nodes
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Figure 5.1: Algebraic connectivity in the enhanced networks
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Figure 5.2: Inverse of network diameter in the enhanced networks
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Figure 5.3: Inverse of path length in the enhanced networks
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increase the network robustness better than in a relatively-large size network. We can

observe in Figure 5.2a that the average network diameter get close to 2 (1/0.5) and barely

changes after adding 25 links using LP-based strategy to a 20-node network. This means

that the link selection based on the longest node-pair distance has trivial advantage over

random selection. The inverse of the diameter gets close to saturation with almost 25

link additions in the 20-node networks. With an increasing number of added links, the

MANET topologies becomes more like small-world networks. The average path length

in 50-node networks remains at 3 (1/0.33), which indicates that all nodes can reach each

other via no more than 3 hops.

Figure 5.3 shows that the average path length keeps increasing in both 20-node and

50-node networks. With more links being added to 20-node networks, the average path

length become close to each other for all enhancement strategies. In 50-node network

scenarios, LP-based strategy results in the largest inverse of network diameter of all

strategies, while there are almost no difference between the LD-based an MR-based

strategy. Since the links in the complementary graph that are incident lowest degree

node could possibly connect to another local node, the improvement heuristic based on

link additions to the lowest degree nodes might not contribute to the reduction of average

path length, particularly in a relatively large network.

Network criticality values in both 20-node and 50-node networks are similar by using

LD-based and LP-based strategies. However, it is interesting to observe that MR-based

strategy has the highest network criticality (worst robustness) with few added links. This

means that by measuring network criticality, PR-based strategy could improve network

robustness better than MR-based strategy, which seems counter-intuitive since network

are not necessarily connected by adding a few random links. This exposes an disadvantage

of using network criticality to measure robustness and connectivity. By investigating the

original definition of network criticality, this metric captures the effect of topology and
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Figure 5.4: Network criticality in the enhanced networks
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community of interest via Markov chain random-walk betweenness. This metric notes

that the higher the betweenness of a node, the higher the risk of using the node. After

adding the bridging links using the MST algorithm, more articulation points are exposed

due to the bridging links. Hence, the addition of bridging links increases the random-

walk betweenness of these nodes. By adding more links, this effect will be compensated

by shorter and more alternative paths between node pairs.

Figure 5.5 provides how network average clustering coefficient changes with an increas-

ing number of added links. The characteristic path length and high average clustering

coefficient are two major properties of small-world networks as mentioned in [22]. A

small-world network can be constructed by rewiring links in a regular graph. Each link

is rewired with a probability p. Small-world characteristics appear when 0.01 ≤ p ≤ 0.1.

Here, we are investigating the relationship between adding long links to MANETs and

the small-world networks. As shown in Figure 5.2 and 5.3, the average path length keeps

decreasing with bounded distance between any pair of nodes indicated by the inverse of

the diameter, the variation of clustering coefficient with an increasing number of added

links presents a non-linear trend as shown in Figure 5.5. The short average path length

is a phenomenon that can be observed in random networks. The high clustering in small-

world network comes from the characteristic of regular networks. In a 20-node network

scenario, the change of clustering coefficient with increasing number of link is a convex

function, in particular for LP-based strategy. The clustering coefficient of the LP-based

strategy hits the minimum when there are about 20 links being added. After that, the

clustering coefficient increases to the highest of all when there are 50 links being added.

In contrast, the change of clustering coefficient in the 50-node networks is always non-

increasing with less than 50 links being added. This can be explained as, in the initial

stage of link additions, the long links are added between node pairs of long hop counts;

therefore, the added links contribute to no triangles among neighboring nodes but only
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Figure 5.5: Clustering coefficient in the enhanced networks
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triplets for the calculation of clustering coefficient. After more than 20 links being added,

the network becomes more connected and the addition of links results in a high number

of triangles. This saturation point for LP-based strategy is also observed in the diameter

change of the network in Figure 5.2. For 50-node networks, since it takes more link

additions to reach the saturation point, the clustering coefficient has not hit the nadir

with 50 link additions.

5.1.2 Sum of Flow Robustness Evaluation

Table 5.1:
∑

F of the enhanced synthetic traces under attacks

Unimproved Pure random MST random Lowest degree Longest path∑
Fd20 4.546 6.080 6.099 6.399 6.264∑
F c20 4.001 5.928 5.943 6.303 6.212∑
F b20 3.563 5.517 5.534 6.044 5.943∑
Ff20 3.463 5.509 5.528 6.043 5.948∑
Fd50 10.785 13.179 13.296 14.163 14.302∑
F c50 7.808 11.329 11.409 12.223 12.653∑
F b50 6.026 9.433 9.504 10.292 10.918∑
Ff50 5.992 9.400 9.471 10.263 10.887∑
Fd100 18.961 23.075 23.558 24.936 26.047∑
F c100 11.429 16.955 17.211 18.119 20.236∑
F b100 7.802 12.390 12.526 13.211 14.820∑
Ff100 7.788 12.347 12.484 13.169 14.780

We evaluate how the enhanced networks survive malicious attacks measured by sum of

flow robustness
∑
F using different centrality metrics. We fix the number of added links

to be 20. We use the four centrality metrics, degree, closeness, betweenness, and flexible,

that could cause the most damage to the network robustness. For 20 nodes scenarios,

using the same centrality-based attacks, the LD-based enhancement strategy provides the

highest
∑
F , and the

∑
F using the LP-based enhancement strategy is slightly lower

than enhancement strategy. However, in 50 and 100 nodes scenarios, our proposed LP-

based enhancement strategy provides the highest
∑
F of all. This set of results match
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the algebraic connectivity results shown in Figure 5.1, that is, the LD-based strategy

provide a better improvement than LP-based strategy in 20 nodes networks and vice

verse in networks with 50 and 100 nodes. Under the most damaging flexible attacks,

the difference between the LD- and LP-based strategy is negligible in 20-node network

scenarios; the LP-based strategy provides a far better enhancement of network robustness

than LD-based strategy in 50- and 100-node networks. Moreover, considering that the

computational complexity of the LP-based strategy for adding each link is far less than

the LD-based heuristic, our LP-based link addition strategy is more efficient and effective

in enhancing network robustness.

5.2 Real-World Trace Enhancement

In this section, we apply the enhancement strategies to the real-world data set mentioned

in Section 4.2.1. For the synthetic trace analysis in the previous section, we evaluate

network scenarios with decent connectivity. In the analysis of real-network, we investigate

MANETs with varying network connectivity levels, which present diverse perspectives to

evaluate our enhancement strategies. We evaluate the cleaned mobility traces shown in

Table 4.5 and investigate the robustness of five sites by applying different enhancement

strategies.

5.2.1 Enhancement Strategies Evaluation

Figure 5.6 provides a snapshot of mobility traces in the StateFair site with 20 links

added using LP-based strategy. We select 250 m as the transmission range resulting in

an average node degree of 6.8 and an average flow robustness of 0.825. Nodes in this site

are moving in a relatively confined area. In Figure 5.7, the algebraic connectivity almost

increases linearly with the growing number of added links. The MANETs enhanced by
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Figure 5.6: A snapshot of Statefair trace with 20 added links based on long-path strategy

the LP-based strategy have the highest algebraic connectivity with less than 20 links

being added. The LD-based strategy intersects the LP-based strategy at the point of

20 added links. From Figure 5.8, we can observe that the average network diameter

hits 2 (1/0.5) after adding 20 links based on LP strategy, which means that any node

pairs can be reach within 2 hops. After that, the LP-based strategy becomes more like a

random addition of links between any node pairs. The LD-based heuristic outperforms

other strategies after more than 20 links being added. After adding 50 links, the average

diameters of all enhancement strategies are approximately 2. Both the average diameters

and path lengths of different enhancement strategies increase quickly with up to 20 links

being added. The LP-based strategy converges to an average diameter of 2 much faster
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Figure 5.7: Algebraic connectivity of Statefair with an increased number of added links
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Figure 5.8: Inverse of diameter of Statefair with an increasing number of added links
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Figure 5.9: Inverse of path length of Statefair with an increasing number of added links
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Figure 5.10: Clustering coefficient of Statefair with an increasing number of added links
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Figure 5.11: Network criticality of Statefair with an increasing number of added links

than other strategies, while the average path lengths of all strategies are getting close

to each other after adding 20 links including two random strategies, which indicates

that the MANETs become more like small-world networks that have short path lengths.

Increasing random additions of links to random geometric graphs will gradually reduce

the path lengths, while our LP-based link addition strategy expedites the decrease of

path length at the initial stage.

The average network criticality of different enhancement strategies are closer to each other

with an increasing number of link additions as shown in Figure 5.11. The addition of

links between long distance node pairs first causes the clustering coefficient of the network

to decrease to a value where the inverse of average network diameter just becomes 0.5.

Then, the clustering coefficient of LP-based strategy quickly increases to the same value

as the random strategies with 50 links being added.

Figure 5.12 presents a snapshot of NCSU site improved by 20 links using LP-based strat-
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Figure 5.12: A snapshot of NCSU trace with 20 added links based on long-path strategy

egy. In this site, the network consists of a few disconnected components during most

of the trace time and a small portion of nodes span a wide range of area . The LD-

based strategy results in the highest algebraic connectivity of all strategies as shown in

Figure 5.13. Similar to the StateFair site, LP- and LD-based strategies produce simi-

lar algebraic connectivity, after 17 links being add, the LP-based strategy behaves like

random strategies, since the network diameter almost hits the saturated value as shown

in Figure 5.14. With the addition of long links using LP-based strategy, whenever the

diameter reduces by one hop, it remains at the same value for a while and quickly moves

down to one hop less. The addition of initial 10 links significantly reduces the path length

as shown in Figure 5.15.
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Figure 5.13: Algebraic connectivity of NCSU with an increased number of added links
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Figure 5.14: Inverse of diameter of NCSU with an increased number of added links
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Figure 5.15: Inverse of path length of NCSU with an increased number of added links
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Figure 5.16: Network criticality of NCSU with an increased number of added links
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The network criticality curves in the NCSU site reach the peaks when the network just

becomes 1-connected by adding the bridging links. This has been explained in the pre-

vious section that the articulation points arising from adding bridge links are regarded

as the weakness by the network critical metric because of the nodes’ high betweenness.

Once passing the 1-connectedness boundary, the network criticality of both LP- and

LD-based strategies decreases faster than the random addition strategies. The average

clustering coefficient in the NCSU site under different enhancement strategies follows a

similar pattern as in the StateFair site.

Figure 5.17: A snapshot of Orlando trace with 20 added links based on long-path strategy

Figure 5.17 presents a snapshot of the Orlando site enhanced with 20 links using LP-based

strategy. Compared to the StateFair and NSCU sites, the connectivity in the Orlando
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Figure 5.18: Algebraic connectivity of Orlando with an increased number of added links

site is much poorer. The Orlando site consists of several disconnected graph components,

and the distances between component-pairs are considerably longer than the transmission

range. This means that a modest increase of uniform transmission ranges for all node

can hardly improve the global connectivity; as shown in Table 4.6, the giant component

size and average flow robustness climbs slightly with the increase of transmission range

from 250 m to 1000 m.

With the addition of 50 long links, the LP-based enhancement strategy performs the

best of all strategies in terms of algebraic connectivity as shown in Figure 5.18. The

LD-based strategy improves algebraic connectivity only moderately better than the two

random strategies. The increasing rate of all curves becomes nearly identical after adding

29 links. For the LP-based strategy, there exists a change in the growing rate of the

algebraic connectivity curve when the inverse of network diameter reach 0.4, which means

the network diameter is within the range of 2 and 3. In Figure 5.19, the inverse of network

104



1/
di

am
et

er

number of added links

long path

lowest degree

MST random

pure random
0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45 50

Figure 5.19: Inverse of diameter of Orlando with an increased number of added links
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Figure 5.20: Inverse of path length of Orlando with an increased number of added links
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Figure 5.21: Network criticality of Orlando with an increased number of added links
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Figure 5.22: Clustering coefficient of Orlando with an increased number of added links
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diameter of LP-based strategy quickly jumps to 1/3 after adding 15 links, and continues

moving up to 1/2 after adding another 12 links. The change of diameter in LD-based

strategy is slightly faster than in the random strategy, and after adding 50 links, all of

them has an average of diameter of 3 (1/0.33). The LP-based strategy also results in a

shorter average path length than other strategies as shown in Figure 5.20. The average

path lengths in LD- and MR-based strategy are close to each other. The small value

of the inverse of path length in PR-based strategy is due to the network partition even

after adding some links randomly. We can infer from the diameter plots that the network

becomes saturated much slower in Orlando site than in the Statefair and NCSU sites. In

a less-connected network, the improvement based on the longest paths is more effective

than other strategies as shown in the algebraic connectivity plot.

Except for the peak of network criticality after adding 4 links as also observed in the

Statefair and NCSU sites, there is almost no difference between the network criticality

between LP- and LD-based strategies after adding more than 20 links. However, there

still exists a large variance between algebraic connectivity of two strategy. From this way,

we can see that the algebraic connectivity and network criticality captures the network

robustness from different perspectives. The algebraic connectivity can capture the minor

difference of network robustness in a small-world network better than network criticality.

The clustering coefficient of LP-based strategy is the lowest of all, and there is almost no

change from adding 35 to 50 links. The clustering coefficient change of LD-based strategy

fluctuates since the link addition between two lowest degree nodes might contribute to

the formation of a local clique if they are in the same neighborhood. It might also bring

a new node to the neighborhood with no links connected to other neighborhood nodes.

Figure 5.24 provides a snapshot of the NewYork site improved by 20 links using LP-based

strategy, from which we can observe that the NewYork site has the worst connectivity of

all five sites. The LP- and LD-based enhancement strategies have similar effects on the
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Figure 5.23: A snapshot of NewYork trace with 20 added links based on long-path
strategy

improvement of algebraic connectivity and network criticality as shown in 5.24 and 5.25.

The number of added links that corresponds to the peak in network criticality curves is

approximately 9 to 10, which means that the NewYork site consists of an average of 9

to 10 disconnected components. The inverse of network diameters for all strategies are

around 0.33 after adding 50 links. Network diameter decreases quickly after adding a

small number of links even to an extremely poorly-connected network. Both LP- and

LD-based strategies reduce the network diameter faster than the random strategies as

shown in Figure 5.26. Due to the initial poor connectivity, the clustering coefficient starts

as 0.25. Hence, after adding 10 links, the clustering coefficients of random enhancement

strategies reach the lowest values and begin to increase. The lowest point of pure random

108



al
ge

br
ai

c 
co

nn
ec

tiv
ity

number of added links

long path

lowest degree

MST random

pure random

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30 35 40 45 50

Figure 5.24: Algebraic connectivity of NewYork with an increased number of added links
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Figure 5.25: Network criticality of NewYork with an increased number of added links
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Figure 5.26: Inverse of diameter of NewYork with an increased number of added links
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Figure 5.27: Inverse of path length of NewYork with an increased number of added links

strategy is slightly higher than the other three enhancement approaches that use MST to

bridge the disconnected components. This is because bridging two disconnected reduces
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Figure 5.28: Clustering coefficient of NewYork with an increased number of added links

the average clustering coefficient in that the two end-points of the bridging link do not

contribute to any triangles. The bridging links improve the global connectivity however

contribute less to the local connectivity. The clustering coefficient of LP-based strategy

keeps decreasing down to 0.05 with up to 50 links additions. At the same time, the

average diameter, that is the longest path length, is less than 3 after adding 50 links

using the LP-based strategy. A path length of 1 would directly contribute to a high

value of clustering coefficient, which means that the majority of path length in the LP-

enhanced NewYork site are higher than 1 but less than or equal to 3.

Figure 5.29 presents a snapshot of KAIST site improved by 20 links using LP-based

strategy. The majority of nodes in the KAIST site form a dense cluster with a small

number of other nodes spread out in the site. The algebraic connectivity of LP-, LD-,

and MR-based strategies are close to each other with up to 30 link additions. However,

after adding more than 30 links, LP-based strategy improves the algebraic connectivity
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Figure 5.29: A snapshot of KAIST trace with 20 added links based on long-path strategy

far greater than other strategies. The point where LP-based strategy diverges from LD-

and MR-based strategies is almost the same place where the inverse of network diameter

reaches 0.33. The LD-based enhancement strategy improves algebraic connectivity better

than the LD-based heuristic, which only has a slightly better performance than MR-

based strategy. Even though the LD-based approach guarantee the highest algebraic

connectivity improvement for a single addition, the heuristic is far from optimal overall

after iteratively adding a number of enhancing links. We do not provide the results for

network criticality for the KAIST site due to the convergence failure when computing

the Moore-Penrose inverse of the graph Laplacian matrix.

Due to the large number of nodes in the KAIST site, the addition of initial 10 links using
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Figure 5.30: Algebraic connectivity of KAIST with an increased number of added links

1/
di

am
et

er

number of added links

long path

lowest degree

MST random

pure random

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45 50

Figure 5.31: Inverse of diameter of KAIST with an increased number of added links
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Figure 5.32: Inverse of path length of KAIST with an increased number of added links
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Figure 5.33: Clustering coefficient of KAIST with an increased number of added links
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PR-based strategy produces a high variation of clustering coefficient. The LP-based

strategy has the lowest clustering coefficient after adding 35 links. However, the average

clustering coefficients arising from the large cluster are far higher than the other four

sites for all strategies .

Of all the five sites, the LD-based heuristics strategy results in the highest algebraic

connectivity in the StateFair and NCSU sites after the inverse of network diameter reaches

0.5, while the LP-based enhancement results in the highest algebraic connectivity in the

Orlando and KAIST sites. The network criticality for LD- and LP-based strategy are

very close to each other in all five sites. Noting that the LD-based heuristic is optimized

in each step for a high algebraic connectivity, our proposed LP-based strategy with a

much less computational complexity provides a comparative performance in terms of

both algebraic connectivity and network criticality. The clustering coefficients of LP-

based strategy in all fives begin with a decrease to a lowest value, and depending on

the network connectivity, the cluster coefficients start increasing quickly after reaching

the lowest value. The low clustering coefficient and small network diameter have been

observed at the same time for a certain range of link additions in the NewYork site using

the LP-based strategy.

5.2.2 Sum of Flow Robustness Evaluation

We have evaluated the five different sites using the algebraic connectivity, network crit-

icality, network diameter, path lengths, and cluster coefficient. Next, we evaluate the

sum of flow robustness
∑
F of the real-world traces by adaptively applying malicious

attacks until all the links are removed in each network. We select the degree, closeness,

betweenness, and flexible centrality as the attack strategies to study network robustness.

The
∑
F for unimproved sites is provided as the comparison for

∑
F of the different

enhancement strategies. The
∑
F of all the sites under attacks present a straightforward
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Table 5.2:
∑
F of the enhanced real-world traces under attacks

Unimproved Pure random MST random Lowest degree Longest path∑
FdStateFair 3.867 5.924 6.025 6.339 6.116∑
F cStateFair 3.434 5.798 5.865 6.239 6.055∑
F bStateFair 3.328 5.508 5.594 6.006 5.828∑
FfStateFair 3.202 5.503 5.593 6.001 5.819∑
FdNCSU 3.441 7.501 7.523 7.942 7.864∑
F cNCSU 3.474 7.278 7.317 7.367 7.685∑
F bNCSU 3.339 6.531 6.579 7.161 7.383∑
FfNCSU 3.187 6.496 6.536 7.125 7.369∑
FdOrlando 1.727 6.459 6.680 7.893 7.333∑
F cOrlando 1.723 6.114 6.290 6.293 6.794∑
F bOrlando 2.096 5.653 5.805 6.250 6.526∑
FfOrlando 1.709 5.549 5.708 6.129 6.445∑
FdNewYork 0.371 3.479 4.150 4.552 4.886∑
F cNewYork 0.353 3.435 3.979 4.493 4.797∑
F bNewYork 0.451 3.148 3.652 4.220 4.509∑
FfNewYork 0.344 3.111 3.620 4.190 4.482∑
FdKAIST 10.020 17.221 19.455 19.978 20.621∑
F cKAIST 7.318 13.346 14.215 14.526 15.077∑
F bKAIST 7.342 11.856 12.195 12.267 12.874∑
FfKAIST 6.425 11.360 11.660 11.663 12.247

perspective to understand how the networks survive malicious attacks by measuring the

number of node pairs can communicate with each other under node attacks. For the same

types of attacks, values in each row compare how each enhancement strategy performs

for this particular type of attacks.

In the StateFair site, the LD-based strategy generates the highest
∑
F for all attack

strategies with the LP-based strategy comes as the second. For the other four sites,

it follows that LP > LD > MR > PR for all types of attacks except for the degree-

based attacks in NCSU and Orlando. Even for the cases that LP-based strategy presents

worse performance than LD-based strategy, the difference between them is smaller than

other cases. By considering the overall scenarios, our LP-based strategy predominantly
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provides the best enhancement performance for MANETs in face of malicious centrality-

based attacks.

Small-world networks have been known for the characteristic short average path length

as in random graphs and the high clustering coefficient as in regular graphs. Our results

show that the degree of separation will decease drastically by adding a small number of

nodes. The LP-based link addition strategy in all sites has a smaller clustering coefficient

than random link addition when the network has a relatively low connectivity (the initial

additions in the Statefair site, the entire range of 50 link additions in Orlando, NCSU,

and NewYork sites); however, the average path length of LP-based strategy is also the

lowest of all. All the sites except for the NewYork site enhanced by different strategies

still have a relatively high clustering coefficient but also have reduced path lengths, which

fall into the category of small-world networks. The NewYork site improved by LP-based

strategy has an extremely low clustering coefficient with a small path length at the same

time. These properties are more similar to that of random networks.
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Chapter 6

Conclusions and Future Work

This dissertation presents a comprehensive model to investigate the topological robust-

ness of MANETs and enhancement strategies to improve network resilience under ma-

licious attacks. We model the dynamic topologies of MANETs as the aggregation of

snapshots into a weighted graph and evaluate network robustness under centrality-based

attacks from various perspectives. We compare the effectiveness of centrality metrics for

different network scenarios and proposed a flexible centrality metric. We propose a MST

and longest-path-based network enhancement scheme to improve the resilience of inter-

mittent MANETs. The relationship among small-world networks and random geometric

graphs is investigated by examining the changes of network structural properties after

link additions. We evaluate our attack model and enhancement scheme by using traces

generated by a synthetic mobility model and real-world mobility traces. Simulations are

run in ns-3 by applying different MANET routing protocols to verify the PDR and net-

work delay performance. Furthermore, we employ the resilience quantification approach

to evaluate network resilience with a range of network operational states.

We define mobility coefficient to determine the window size by incorporating the impact

of the transmission range and average moving velocity on the global topological struc-

ture change. We compare the effectiveness of centrality-based attacks using aggregated
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topologies and current time instant topology. Our results reveal that the high degree

nodes have less impact on the global topological structure than high closeness and be-

tweenness nodes in dynamic networks. Our proposed flexible centrality metric overcomes

the deficiency of betweenness metric in networks consisting of multiple well-connected

components. Our results pinpoint the vulnerability of dynamic topologies in MANETs

by attacking high betweenness nodes, particularly in a large network. The
∑
F of

networks enhanced by longest-path-based strategy demonstrates that our small-world-

network-motivated remedy could alleviate the vulnerability caused by high betweenness

nodes.

6.1 Conclusions

In Chapter 3, we introduce a model to represent dynamic topologies as a weighted static

graph, in which the weight represents the link availability between node pairs. We define

a metric mobility coefficient to represent the ratio of the average node distance trav-

eled within a given window size to the transmission range. This metric is calculated

independent of the number of nodes. We select a transmission range that can ensure a

decent connectivity for synthetic trace analysis. By modifying the value of mobility coef-

ficient, we have a corresponding window size for the computation of aggregated graphs.

Weighted centrality metrics can be applied to the aggregated graph within a certain win-

dow as node significance indicators. We iteratively remove all the links that are incident

to the highest centrality node and compute the flow robustness after each node attack.

The high centrality nodes based on the real-time topology are also employed as the node

significance indicators. We propose a flexible metric that combine the advantages of both

betweenness and degree centrality.

Due to the dynamic and intermittent connectivity of MANETs, it is challenging to always
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maintain a connected network with a high level of network performance. We propose a

two-step network enhancement strategy that first addresses of issue of network partition

and then further improves network resilience by adding long-range links. The first step

is a MST-based algorithm by considering each disconnected graph component as a node

and the square of distance between any two disconnected components as the link weights.

We represent the distance between two components by using the distance between the

closest node pair in two components. Motivated by the characteristic path in small-world

network, we add long-range links to MANETs to mitigate the reliance on the bridging

nodes that have a high betweenness. We employ four enhancement strategies that add

long-range links to achieve different goals of network properties. Random addition strat-

egy simply chooses links that do not exist in the original graphs in random. The other

strategies begin with adding bridging links. The lowest-degree-based heuristic adds each

link to optimize algebraic connectivity. Our proposed enhancement strategy add links

between node pairs with largest number of hops.

In Chapter 4, we apply the attack model to synthetic and real-world mobility traces.

We generate synthetic mobility traces with three different number of nodes (20, 50, and

100) to evaluate how network orders can affect the accuracy of using centrality metrics

as node significance indicators. We first analyze the network connectivity with a range of

wireless radio transmission ranges. We investigate the giant component size, flow robust-

ness, and the probability of being 1-connected. Each of them provides different levels of

granularities for network connectivity. We also confirm that networks of larger number

of nodes have a short transition from 0 to 1 for connectivity. We select a transmission

range that is way less than the critical transmission range however can provide higher

than 90% flow robustness.

For the synthetic trace analysis, the betweenness-based attacks cause the highest degra-

dation of flow robustness among all attack strategies. The degree and eigenvector-based
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attacks cause no more damage than the random node failures with less than 20% nodes

being attacked. The effectiveness of betweenness and the ineffectiveness of degree and

eigenvector centrality become more apparent in a well-connected network with a larger

number of nodes. However, the accuracy of betweenness-based attacks is more sensitive

to the increase of window sizes. In contrast, the degree-based attacks are less affected by

the aggregation window sizes. The difference between attacks based on topology of cur-

rent time instant and based on aggregation is provided. The betweenness-based attacks

using real-time topology information with a small time window has comparable perfor-

mance with the betweenness-based attack calculated using aggregated graphs. The larger

the window size is, the less accurate the betweenness calculated according to current time

instant. With the change of global topological structure, the high degree and eigenvector

centrality nodes stay relatively stable than the high closeness and betweenness nodes.

Our results show that betweenness-based attack can cause the most damage to the net-

work robustness, and the phenomena becomes more apparent in a network with a larger

number of nodes.

For the real-world trace analysis, we select three different transmission ranges for each

site. Each of the five sites including two campus sites, one theme park, one local fair,

and one metro area presents a different distribution of the mobile nodes. We evaluate

the auto-correlation of the time-varying flow robustness of mobility traces in selective

sites with different transmission ranges. We use the resilience quantification approach to

evaluate how network resilience under different centrality-based attacks in comparison to

random failures. Our results show that flexible attacks can cause the greatest decrease

of resilience in all sites. The second level of resilience analysis is conducted by using

topological flow robustness as the operational states and the PDR and delay by running

different MANET routing protocols as the service states. Our resilience analysis shows

that OLSR provides the best application layer services.
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In Chapter 5, we apply four enhancement strategies to the same data set as in Chap-

ter 4. The four strategies are PR (pure random), MR (MST random), LD (lowest degree

heuristic), and LP (longest path). We evaluate five graph robustness metrics for each

scenario: algebraic connectivity, network criticality, inverse of diameter, inverse of av-

erage path length, and clustering coefficient. We add up to 50 links to each network

scenarios. The algebraic connectivity of LP-based strategy has comparable performance

as LD-based strategy when the inverse of diameter is less than 0.5. After the inverse of

diameter reaches 0.5 meaning that all nodes can reach each other with less than or equal

to 2 hops, the LP-based strategy becomes less effective and behaves more like random

link additions. In the 50 nodes networks that span a larger diameter than 20 nodes

networks, the algebraic connectivity enhanced using LP is always the highest of all with

up to 50 link additions. The inverse of diameter in LP-based strategy increases faster

than others. The inverse of path length using LD-based strategy is closer to MR-based

strategy in 50 nodes networks; however, it is closer to LP-based strategy in 20 nodes

networks. The link additions to the lowest degree nodes affect the average path length

almost in the same way as random additions. The relative value of network criticality

for different enhancement strategies is almost the same as that of algebraic connectivity.

The higher network criticality indicates a lower robustness. The clustering coefficient of

LP-based strategy is the lowest with initial link additions. In 20 nodes networks, the

clustering coefficient hits the lowest point and then reverts to the highest with 50 link

additions. For the sum of flow robustness, we apply degree, closeness, betweenness, and

flexible centrality-based attacks to 20, 50, and 100 nodes networks enhanced by 20 link

addition using all strategies. In 20 nodes networks, the LD-based enhancement strategy

produces the highest
∑
F with LP-based strategy next to it; whereas, in the 50 and 100

nodes networks, the LD-based enhancement strategy provides the highest
∑
F of all.

For the real-world trace enhancement, the LD-based heuristic strategy results in the high-
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est algebraic connectivity in the StateFair and NCSU sites when the inverse of network

diameter reaches 0.5, and the LP-based enhancement results in the highest algebraic con-

nectivity in the Orlando and KAIST sites. The network criticality for LD- and LP-based

strategy are very close to each other in all five sites. Due to original poor connectiv-

ity of the real-world sites, the network criticality peaks when the network just becomes

connected with all the articulation points exposed as the weak points of the network.

The clustering coefficient of LP-based strategy stays the lowest of all when the average

network diameter is less than 2. Considering the high computational cost incurred by

LD-based heuristic, our proposed LP-based enhancement strategy can improve network

resilience with less computational cost.

6.2 Future Work

This dissertation presents a preliminary study of link additions to random geometric

graphs and examines how it relates to the small-world networks. The relationship among

various types of small-world networks, random graphs, and random geometric graphs can

be further studied. With the increasing advancement of commercial UAV technologies,

a number of UAVs could establish a three dimensional ad hoc network for various pur-

poses. It would be interesting to investigate the modeling and enhancement of network

resilience and survivability in three dimensional ad hoc networks. The attack strategies

used in this work assume the knowledge of global node positions, and a distributed at-

tack and enhancement mechanism might be able to applied to a wider range of real-world

MANET scenarios. Node positions generated by the Gauss-Markov mobility model fol-

lows a Poisson distribution. Different mobility patterns such as parent-child, Lévy-walk,

and Manhattan mobility model can be used to model specific real-world scenarios. Cen-

trality metrics are recalculated after the attack of each node in this work, while a fast
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algorithm might exist that can compute current high centrality nodes based on the pre-

vious calculation. This work determines the existence of a link purely based on the

Euclidean distance between the node pair. More realistic radio model such as log-normal

shadowing [65, 73] can be applied. It has been shown in this work that attacks against

the highest degree nodes are no more effective than random node failure in particular in

a large network and the high betweenness nodes are usually those bridging node with a

lower degree. It would be interesting to explore the impact of attacks against the lower

degree nodes.

In terms of network enhancement schemes, we did not consider the cost of extra ra-

dios for each device in this dissertation. Further work on this part could include a

cost-constrained enhancement approach with limited number of directional radios and

compare the energy cost for each enhancement scheme. MANET resilience enhancement

approach other than using directional antennas could be done by using extra mobile

nodes such as programmed UAVs, which could reduce the energy cost while maintaining

a high connectivity. One of the issues with the directional antennas that needs to ad-

dressed is how to consistently adjust beamforming directions in an accurate manner. We

use a static method to calculate the MST for each snapshot of the dynamic topologies.

The computation of MST for dynamic networks is worth exploring.

Topological analysis in this work assumes the use of MANET routing protocols. The

application of DTN (delay-tolerant network) routing protocols to dynamic wireless net-

work presents a new problem to be solved. Some work has been done to model and

evaluate the robustness of dynamic temporal graphs in both social network and wireless

networks [27, 88, 147]. The mappings of mobility contacts to an aggregated social graph

can be utilized to optimize forwarding decisions of DTN [148]. It would be worthy to

examine how to exploit the critical roles in a temporal network to improve the resilience

and survivability of DTNs.
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broadcasting in wireless mobile ad hoc networks. In Resource Management in

Wireless Networking, pages 543–582. Springer, 2005.

[129] Laura Marie Feeney. An energy consumption model for performance analysis of

routing protocols for mobile ad hoc networks. Mobile Networks and Applications,

6(3):239–249, 2001.

143



[130] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,

1956.

[131] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[132] Robert Clay Prim. Shortest connection networks and some generalizations. Bell

system technical journal, 36(6):1389–1401, 1957.
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Figure A.1: 100 nodes MANETs under real-time simultaneous node attacks
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Figure A.2: 100 nodes MANETs under real-time simultaneous node attacks
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Figure A.3: 50 nodes MANETs under simultaneous node attacks
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Figure A.4: Sum of flow robustness in 50 nodes MANETs
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Figure A.5: Centrality-based attacks in StateFair with window size of 900 s
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Figure A.6: Centrality-based attacks in NCSU with window size of 900 s
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Figure A.7: Centrality-based attacks in KAIST with window size of 900 s
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Figure A.8: Giant component size under centrality-based attacks in NCSU
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Figure A.9: Clustering coefficient of NCSU with an increased number of added links
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