97,957 research outputs found

    Automatic annotation of tennis games: An integration of audio, vision, and learning

    Get PDF
    Fully automatic annotation of tennis game using broadcast video is a task with a great potential but with enormous challenges. In this paper we describe our approach to this task, which integrates computer vision, machine listening, and machine learning. At the low level processing, we improve upon our previously proposed state-of-the-art tennis ball tracking algorithm and employ audio signal processing techniques to detect key events and construct features for classifying the events. At high level analysis, we model event classification as a sequence labelling problem, and investigate four machine learning techniques using simulated event sequences. Finally, we evaluate our proposed approach on three real world tennis games, and discuss the interplay between audio, vision and learning. To the best of our knowledge, our system is the only one that can annotate tennis game at such a detailed level

    Enrichment of raw sensor data to enable high-level queries

    Get PDF
    Sensor networks are increasingly used across various application domains. Their usage has the advantage of automated, often continuous, monitoring of activities and events. Ubiquitous sensor networks detect location of people and objects and their movement. In our research, we employ a ubiquitous sensor network to track the movement of players in a tennis match. By doing so, our goal is to create a detailed analysis of how the match progressed, recording points scored, games and sets, and in doing so, greatly reduce the eort of coaches and players who are required to study matches afterwards. The sensor network is highly efficient as it eliminates the need for manual recording of the match. However, it generates raw data that is unusable by domain experts as it contains no frame of reference or context and cannot be analyzed or queried. In this work, we present the UbiQuSE system of data transformers which bridges the gap between raw sensor data and the high-level requirements of domain specialists such as the tennis coach

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Spartan Daily, November 13, 2014

    Get PDF
    Volume 143, Issue 32https://scholarworks.sjsu.edu/spartandaily/1531/thumbnail.jp

    Spartan Daily, February 6, 1990

    Get PDF
    Volume 94, Issue 7https://scholarworks.sjsu.edu/spartandaily/7937/thumbnail.jp

    Spartan Daily, November 14, 1990

    Get PDF
    Volume 95, Issue 52https://scholarworks.sjsu.edu/spartandaily/8051/thumbnail.jp

    Spartan Daily, February 18, 1991

    Get PDF
    Volume 96, Issue 14https://scholarworks.sjsu.edu/spartandaily/8082/thumbnail.jp

    Infinitely Complex Machines

    Get PDF
    Infinite machines (IMs) can do supertasks. A supertask is an infinite series of operations done in some finite time. Whether or not our universe contains any IMs, they are worthy of study as upper bounds on finite machines. We introduce IMs and describe some of their physical and psychological aspects. An accelerating Turing machine (an ATM) is a Turing machine that performs every next operation twice as fast. It can carry out infinitely many operations in finite time. Many ATMs can be connected together to form networks of infinitely powerful agents. A network of ATMs can also be thought of as the control system for an infinitely complex robot. We describe a robot with a dense network of ATMs for its retinas, its brain, and its motor controllers. Such a robot can perform psychological supertasks - it can perceive infinitely detailed objects in all their detail; it can formulate infinite plans; it can make infinitely precise movements. An endless hierarchy of IMs might realize a deep notion of intelligent computing everywhere
    corecore