195 research outputs found

    CONSTRUCTION OF EFFICIENT AUTHENTICATION SCHEMES USING TRAPDOOR HASH FUNCTIONS

    Get PDF
    In large-scale distributed systems, where adversarial attacks can have widespread impact, authentication provides protection from threats involving impersonation of entities and tampering of data. Practical solutions to authentication problems in distributed systems must meet specific constraints of the target system, and provide a reasonable balance between security and cost. The goal of this dissertation is to address the problem of building practical and efficient authentication mechanisms to secure distributed applications. This dissertation presents techniques to construct efficient digital signature schemes using trapdoor hash functions for various distributed applications. Trapdoor hash functions are collision-resistant hash functions associated with a secret trapdoor key that allows the key-holder to find collisions between hashes of different messages. The main contributions of this dissertation are as follows: 1. A common problem with conventional trapdoor hash functions is that revealing a collision producing message pair allows an entity to compute additional collisions without knowledge of the trapdoor key. To overcome this problem, we design an efficient trapdoor hash function that prevents all entities except the trapdoor key-holder from computing collisions regardless of whether collision producing message pairs are revealed by the key-holder. 2. We design a technique to construct efficient proxy signatures using trapdoor hash functions to authenticate and authorize agents acting on behalf of users in agent-based computing systems. Our technique provides agent authentication, assurance of agreement between delegator and agent, security without relying on secure communication channels and control over an agent’s capabilities. 3. We develop a trapdoor hash-based signature amortization technique for authenticating real-time, delay-sensitive streams. Our technique provides independent verifiability of blocks comprising a stream, minimizes sender-side and receiver-side delays, minimizes communication overhead, and avoids transmission of redundant information. 4. We demonstrate the practical efficacy of our trapdoor hash-based techniques for signature amortization and proxy signature construction by presenting discrete log-based instantiations of the generic techniques that are efficient to compute, and produce short signatures. Our detailed performance analyses demonstrate that the proposed schemes outperform existing schemes in computation cost and signature size. We also present proofs for security of the proposed discrete-log based instantiations against forgery attacks under the discrete-log assumption

    Overlay Security: Quantum-Safe Communication over the Internet Infrastructure

    Get PDF
    The need for a quantum-safe Internet is emerging, and this is a great opportunity to re-examine the legacy of public key infrastructure. There is a need for perspective on the evolution of cryptography over the years, including the perfect information-theoretical secure schemes and the computationally secure schemes, in particular. There is also a need to examine the evolving Internet infrastructure to identify efficient design and secure cryptographic schemes over the existing Internet infrastructure. A combination of overlay security, blockchain, and Merkle trees with Lamport’s signatures offers just such an easily implementable quantum-safe Internet

    Blindfold: Keeping Private Keys in PKIs and CDNs out of Sight

    Full text link
    Public key infrastructure (PKI) is a certificate-based technology that helps in authenticating systems identities. HTTPS/TLS relies mainly on PKI to minimize fraud over the Internet. Nowadays, websites utilize CDNs to improve user experience, performance, and resilience against cyber attacks. However, combining HTTPS/TLS with CDNs has raised new security challenges. In any PKI system, keeping private keys private is of utmost importance. However, it has become the norm for CDN-powered websites to violate that fundamental assumption. Several solutions have been proposed to make HTTPS CDN-friendly. However, protection of private keys from the very instance of generation; and how they can be made secure against exposure by malicious (CDN) administrators and malware remain unexplored. We utilize trusted execution environments to protect private keys by never exposing them to human operators or untrusted software. We design Blindfold to protect private keys in HTTPS/TLS infrastructures, including CAs, website on-premise servers, and CDNs. We implemented a prototype to assess Blindfold's performance and performed several experiments on both the micro and macro levels. We found that Blindfold slightly outperforms SoftHSM in key generation by 1% while lagging by 0.01% for certificate issuance operations
    • …
    corecore