47,454 research outputs found

    A novel plasticity rule can explain the development of sensorimotor intelligence

    Full text link
    Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, the self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system specific modifications of the DEP rule but arise rather from the underlying mechanism of spontaneous symmetry breaking due to the tight brain-body-environment coupling. The new synaptic rule is biologically plausible and it would be an interesting target for a neurobiolocal investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.Comment: 18 pages, 5 figures, 7 video

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    Data mining based cyber-attack detection

    Get PDF

    Methods for Joint Normalization and Comparison of Hi-C data

    Get PDF
    The development of chromatin conformation capture technology has opened new avenues of study into the 3D structure and function of the genome. Chromatin structure is known to influence gene regulation, and differences in structure are now emerging as a mechanism of regulation between, e.g., cell differentiation and disease vs. normal states. Hi-C sequencing technology now provides a way to study the 3D interactions of the chromatin over the whole genome. However, like all sequencing technologies, Hi-C suffers from several forms of bias stemming from both the technology and the DNA sequence itself. Several normalization methods have been developed for normalizing individual Hi-C datasets, but little work has been done on developing joint normalization methods for comparing two or more Hi-C datasets. To make full use of Hi-C data, joint normalization and statistical comparison techniques are needed to carry out experiments to identify regions where chromatin structure differs between conditions. We develop methods for the joint normalization and comparison of two Hi-C datasets, which we then extended to more complex experimental designs. Our normalization method is novel in that it makes use of the distance-dependent nature of chromatin interactions. Our modification of the Minus vs. Average (MA) plot to the Minus vs. Distance (MD) plot allows for a nonparametric data-driven normalization technique using loess smoothing. Additionally, we present a simple statistical method using Z-scores for detecting differentially interacting regions between two datasets. Our initial method was published as the Bioconductor R package HiCcompare [http://bioconductor.org/packages/HiCcompare/](http://bioconductor.org/packages/HiCcompare/). We then further extended our normalization and comparison method for use in complex Hi-C experiments with more than two datasets and optional covariates. We extended the normalization method to jointly normalize any number of Hi-C datasets by using a cyclic loess procedure on the MD plot. The cyclic loess normalization technique can remove between dataset biases efficiently and effectively even when several datasets are analyzed at one time. Our comparison method implements a generalized linear model-based approach for comparing complex Hi-C experiments, which may have more than two groups and additional covariates. The extended methods are also available as a Bioconductor R package [http://bioconductor.org/packages/multiHiCcompare/](http://bioconductor.org/packages/multiHiCcompare/). Finally, we demonstrate the use of HiCcompare and multiHiCcompare in several test cases on real data in addition to comparing them to other similar methods (https://doi.org/10.1002/cpbi.76)

    Graph isomorphism and genotypical houses

    Get PDF
    This paper will introduce a new method, known as small graph matching, anddemonstrate how it may be used to determine the genotype signature of a sample ofbuildings. First, the origins of the method and its relationship to other ?similarity? testingtechniques will be discussed. Then the range of possible actions and transformations willbe established through the creation of a set of rules. Next, in order to fully explain thismethod, a technique of normalizing the similarity measure is presented in order to permitthe comparison of graphs of differing magnitude. The last stage of this method ispresented, this being the comparison of all possible graph-pairs within a given sampleand the mean-distance calculated for all individual graphs. This results in theidentification of a genotype signature. Finally, this paper presents an empiricalapplication of this method and shows how effective it is, not only for the identification ofa building genotype, but also for assessing the homogeneity of a sample or sub-samples

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain

    Speaker Normalization Using Cortical Strip Maps: A Neural Model for Steady State vowel Categorization

    Full text link
    Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. The transformation from speaker-dependent to speaker-independent language representations enables speech to be learned and understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitch-independent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    corecore