48,394 research outputs found

    Data visualization within urban models

    Get PDF
    Models of urban environments have many uses for town planning, pre-visualization of new building work and utility service planning. Many of these models are three-dimensional, and increasingly there is a move towards real-time presentation of such large models. In this paper we present an algorithm for generating consistent 3D models from a combination of data sources, including Ordnance Survey ground plans, aerial photography and laser height data. Although there have been several demonstrations of automatic generation of building models from 2D vector map data, in this paper we present a very robust solution that generates models that are suitable for real-time presentation. We then demonstrate a novel pollution visualization that uses these models

    Modelling and visualizing sustainability assessment in urban environments

    Get PDF
    Major urban development projects extend over prolonged timescales (up to 25 years in the case of major regeneration projects), involve a large number of stakeholders, and necessitate complex decision making. Comprehensive assessment of critical information will involve a number of domains, such as social, economic and environmental, and input from a wide a range of stakeholders. This makes rigorous and holistic decision making, with respect to sustainability, exceptionally difficult without access to appropriate decision support tools. Assessing and communicating the key aspects of sustainability and often conflicting information remains a major hurdle to be overcome if sustainable development is to be achieved. We investigate the use of an integrated simulation and visualization engine and will test if it is effective in: 1) presenting a physical representation of the urban environment, 2) modelling sustainability of the urban development using a subset of indicators, here the modelling and the visualization need to be integrated seamlessly in order to achieve real time updates of the sustainability models in the 3D urban representation, 3) conveying the sustainability information to a range of stakeholders making the assessment of sustainability more accessible. In this paper we explore the first two objectives. The prototype interactive simulation and visualization platform (S-City VT) integrates and communicates complex multivariate information to diverse stakeholder groups. This platform uses the latest 3D graphical rendering techniques to generate a realistic urban development and novel visualization techniques to present sustainability data that emerge from the underlying computational model. The underlying computational model consists of two parts: traditional multicriteria evaluation methods and indicator models that represent the temporal changes of indicators. These models are informed from collected data and/or existing literature. The platform is interactive and allows real time movements of buildings and/or material properties and the sustainability assessment is updated immediately. This allows relative comparisons of contrasting planning and urban layouts. Preliminary usability results show that the tool provides a realistic representation of a real development and is effective at conveying the sustainability assessment information to a range of stakeholders. S-City VT is a novel tool for calculating and communicating sustainability assessment. It therefore begins to open up the decision making process to more stakeholders, reducing the reliance on expert decision makers

    Seeing the invisible: from imagined to virtual urban landscapes

    Get PDF
    Urban ecosystems consist of infrastructure features working together to provide services for inhabitants. Infrastructure functions akin to an ecosystem, having dynamic relationships and interdependencies. However, with age, urban infrastructure can deteriorate and stop functioning. Additional pressures on infrastructure include urbanizing populations and a changing climate that exposes vulnerabilities. To manage the urban infrastructure ecosystem in a modernizing world, urban planners need to integrate a coordinated management plan for these co-located and dependent infrastructure features. To implement such a management practice, an improved method for communicating how these infrastructure features interact is needed. This study aims to define urban infrastructure as a system, identify the systematic barriers preventing implementation of a more coordinated management model, and develop a virtual reality tool to provide visualization of the spatial system dynamics of urban infrastructure. Data was collected from a stakeholder workshop that highlighted a lack of appreciation for the system dynamics of urban infrastructure. An urban ecology VR model was created to highlight the interconnectedness of infrastructure features. VR proved to be useful for communicating spatial information to urban stakeholders about the complexities of infrastructure ecology and the interactions between infrastructure features.https://doi.org/10.1016/j.cities.2019.102559Published versio

    Immersive and non immersive 3D virtual city: decision support tool for urban sustainability

    Get PDF
    Sustainable urban planning decisions must not only consider the physical structure of the urban development but the economic, social and environmental factors. Due to the prolonged times scales of major urban development projects the current and future impacts of any decision made must be fully understood. Many key project decisions are made early in the decision making process with decision makers later seeking agreement for proposals once the key decisions have already been made, leaving many stakeholders, especially the general public, feeling marginalised by the process. Many decision support tools have been developed to aid in the decision making process, however many of these are expert orientated, fail to fully address spatial and temporal issues and do not reflect the interconnectivity of the separate domains and their indicators. This paper outlines a platform that combines computer game techniques, modelling of economic, social and environmental indicators to provide an interface that presents a 3D interactive virtual city with sustainability information overlain. Creating a virtual 3D urban area using the latest video game techniques ensures: real-time rendering of the 3D graphics; exploitation of novel techniques of how complex multivariate data is presented to the user; immersion in the 3D urban development, via first person navigation, exploration and manipulation of the environment with consequences updated in real-time. The use of visualisation techniques begins to remove sustainability assessment’s reliance on the existing expert systems which are largely inaccessible to many of the stakeholder groups, especially the general public

    Integration of virtual reality within the built environment curriculum

    Get PDF
    Virtual Reality (VR) technology is still perceived by many as being inaccessible and cost prohibitive with VR applications considered expensive to develop as well as challenging to operate. This paper reflects on current developments in VR technologies and describes an approach adopted for its phased integration into the academic curriculum of built environment students. The process and end results of implementing the integration are discussed and the paper illustrates the challenges of introducing VR, including the acceptance of the technology by academic staff and students, interest from industry, and issues pertaining to model development. It sets out to show that fairly sophisticated VR models can now be created by non-VR specialists using commercially available software and advocates that the implementation of VR will increase alongside industryis adoption of these tools and the emergence of a new generation of students with VR skills. The study shows that current VR technologies, if integrated appropriately within built environment academic programmes, demonstrate clear promise to provide a foundation for more widespread collaborative working environments

    Map-Based Navigation in a Graphical MOO

    Get PDF
    Traditional MUDs and MOOs lack support for global wareness and simple navigation. These problems can be addressed by the introduction of a map-based navigation tool. In this paper we report on the design and evaluation of such a tool for MOOsburg, a graphical 2D MOO based on the town of Blacksburg, Virginia. The tool supports exploration and place-based tasks in the MOO. It also allows navigation of a large-scale map and encourages users to develop survey knowledge of the town. An evaluation revealed some initial usability problems with our prototype and suggested new design ideas that may better support users. Using these results, the lessons learned about map-based navigation are presented

    Dynamic urban projection mapping

    Get PDF
    “Dynamic projection mapping” is a variation of the best-known “projection mapping”. It considers the perceptual analysis of the urban landscape in which the video projection and the observer’s displacement speed are hypothesized. This latter, in particular, is variable and may depend on factors not directly controllable by the driver (slowdowns due to accidents, rallies, etc.). This speed can be supported and controlled by a number of traffic flow measurement systems. These data are available on the internet, like Google Maps APIs and/or speed sensors located close to the point of interest. The content of projection becomes dynamic and varies according to how the observer perceives the vehicle: slow, medium, fast

    CRC for Construction Innovation : annual report 2008-2009

    Get PDF
    • …
    corecore