27 research outputs found

    Traffic-Redundancy Aware Network Design

    Full text link
    We consider network design problems for information networks where routers can replicate data but cannot alter it. This functionality allows the network to eliminate data-redundancy in traffic, thereby saving on routing costs. We consider two problems within this framework and design approximation algorithms. The first problem we study is the traffic-redundancy aware network design (RAND) problem. We are given a weighted graph over a single server and many clients. The server owns a number of different data packets and each client desires a subset of the packets; the client demand sets form a laminar set system. Our goal is to connect every client to the source via a single path, such that the collective cost of the resulting network is minimized. Here the transportation cost over an edge is its weight times times the number of distinct packets that it carries. The second problem is a facility location problem that we call RAFL. Here the goal is to find an assignment from clients to facilities such that the total cost of routing packets from the facilities to clients (along unshared paths), plus the total cost of "producing" one copy of each desired packet at each facility is minimized. We present a constant factor approximation for the RAFL and an O(log P) approximation for RAND, where P is the total number of distinct packets. We remark that P is always at most the number of different demand sets desired or the number of clients, and is generally much smaller.Comment: 17 pages. To be published in the proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithm

    The VPN problems with concave costs

    Get PDF
    Only recently Goyal, Olver and Shepherd (Proc. STOC, 2008) proved that the symmetric Virtual Private Network Design (sVPN) problem has the tree routing property, namely, that there always exists an optimal solution to the problem whose support is a tree. Combining this with previous results by Fingerhut, Suri and Turner (J. Alg., 1997) and Gupta, Kleinberg, Kumar, Rastogi and Yener (Proc. STOC, 2001), sVPN can be solved in polynomial time. In this paper we investigate an APX-hard generalization of sVPN, where the contribution of each edge to the total cost is proportional to some non-negative, concave and non-decreasing function of the capacity reservation. We show that the tree routing property extends to the new problem, and give a constant-factor approximation algorithm for it. We also show that the undirected uncapacitated single-source minimum concave-cost flow problem has the tree routing property when the cost function has some property of symmetry

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ω(logk)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu
    corecore