977,682 research outputs found

    Infinity-Norm Permutation Covering Codes from Cyclic Groups

    Full text link
    We study covering codes of permutations with the \ell_\infty-metric. We provide a general code construction, which uses smaller building-block codes. We study cyclic transitive groups as building blocks, determining their exact covering radius, and showing linear-time algorithms for finding a covering codeword. We also bound the covering radius of relabeled cyclic transitive groups under conjugation

    Construction of isodual codes from polycirculant matrices

    Full text link
    Double polycirculant codes are introduced here as a generalization of double circulant codes. When the matrix of the polyshift is a companion matrix of a trinomial, we show that such a code is isodual, hence formally self-dual. Numerical examples show that the codes constructed have optimal or quasi-optimal parameters amongst formally self-dual codes. Self-duality, the trivial case of isoduality, can only occur over \F_2 in the double circulant case. Building on an explicit infinite sequence of irreducible trinomials over \F_2, we show that binary double polycirculant codes are asymptotically good

    2-D Compass Codes

    Full text link
    The compass model on a square lattice provides a natural template for building subsystem stabilizer codes. The surface code and the Bacon-Shor code represent two extremes of possible codes depending on how many gauge qubits are fixed. We explore threshold behavior in this broad class of local codes by trading locality for asymmetry and gauge degrees of freedom for stabilizer syndrome information. We analyze these codes with asymmetric and spatially inhomogeneous Pauli noise in the code capacity and phenomenological models. In these idealized settings, we observe considerably higher thresholds against asymmetric noise. At the circuit level, these codes inherit the bare-ancilla fault-tolerance of the Bacon-Shor code.Comment: 10 pages, 7 figures, added discussion on fault-toleranc

    A new class of codes for Boolean masking of cryptographic computations

    Full text link
    We introduce a new class of rate one-half binary codes: {\bf complementary information set codes.} A binary linear code of length 2n2n and dimension nn is called a complementary information set code (CIS code for short) if it has two disjoint information sets. This class of codes contains self-dual codes as a subclass. It is connected to graph correlation immune Boolean functions of use in the security of hardware implementations of cryptographic primitives. Such codes permit to improve the cost of masking cryptographic algorithms against side channel attacks. In this paper we investigate this new class of codes: we give optimal or best known CIS codes of length <132.<132. We derive general constructions based on cyclic codes and on double circulant codes. We derive a Varshamov-Gilbert bound for long CIS codes, and show that they can all be classified in small lengths 12\le 12 by the building up construction. Some nonlinear permutations are constructed by using Z4\Z_4-codes, based on the notion of dual distance of an unrestricted code.Comment: 19 pages. IEEE Trans. on Information Theory, to appea

    Decoding Schemes for Foliated Sparse Quantum Error Correcting Codes

    Get PDF
    Foliated quantum codes are a resource for fault-tolerant measurement-based quantum error correction for quantum repeaters and for quantum computation. They represent a general approach to integrating a range of possible quantum error correcting codes into larger fault-tolerant networks. Here we present an efficient heuristic decoding scheme for foliated quantum codes, based on message passing between primal and dual code 'sheets'. We test this decoder on two different families of sparse quantum error correcting code: turbo codes and bicycle codes, and show reasonably high numerical performance thresholds. We also present a construction schedule for building such code states.Comment: 23 pages, 15 figures, accepted for publication in Phys. Rev.

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor

    Liberty Street School: Reuse and Rehabilitation Feasibility Report

    Get PDF
    It is recommended that the iron fire escapes on the east and west elevations be removed because they do not meet current fire codes as a proper means of egress from the building. The metal railings should also be removed and replaced with railings that meet current building code with a proper height

    Temporal imperfections building up correcting codes

    Get PDF
    We address the timing problem in realizing correcting codes for quantum information processing. To deal with temporal uncertainties we employ a consistent quantum mechanical approach. The conditions for optimizing the effect of error correction in such a case are determined.Comment: 5 pages, 2 eps figures, to appear in J. Mod. Op
    corecore