977,682 research outputs found
Infinity-Norm Permutation Covering Codes from Cyclic Groups
We study covering codes of permutations with the -metric. We
provide a general code construction, which uses smaller building-block codes.
We study cyclic transitive groups as building blocks, determining their exact
covering radius, and showing linear-time algorithms for finding a covering
codeword. We also bound the covering radius of relabeled cyclic transitive
groups under conjugation
Construction of isodual codes from polycirculant matrices
Double polycirculant codes are introduced here as a generalization of double
circulant codes. When the matrix of the polyshift is a companion matrix of a
trinomial, we show that such a code is isodual, hence formally self-dual.
Numerical examples show that the codes constructed have optimal or
quasi-optimal parameters amongst formally self-dual codes. Self-duality, the
trivial case of isoduality, can only occur over \F_2 in the double circulant
case. Building on an explicit infinite sequence of irreducible trinomials over
\F_2, we show that binary double polycirculant codes are asymptotically good
2-D Compass Codes
The compass model on a square lattice provides a natural template for
building subsystem stabilizer codes. The surface code and the Bacon-Shor code
represent two extremes of possible codes depending on how many gauge qubits are
fixed. We explore threshold behavior in this broad class of local codes by
trading locality for asymmetry and gauge degrees of freedom for stabilizer
syndrome information. We analyze these codes with asymmetric and spatially
inhomogeneous Pauli noise in the code capacity and phenomenological models. In
these idealized settings, we observe considerably higher thresholds against
asymmetric noise. At the circuit level, these codes inherit the bare-ancilla
fault-tolerance of the Bacon-Shor code.Comment: 10 pages, 7 figures, added discussion on fault-toleranc
A new class of codes for Boolean masking of cryptographic computations
We introduce a new class of rate one-half binary codes: {\bf complementary
information set codes.} A binary linear code of length and dimension
is called a complementary information set code (CIS code for short) if it has
two disjoint information sets. This class of codes contains self-dual codes as
a subclass. It is connected to graph correlation immune Boolean functions of
use in the security of hardware implementations of cryptographic primitives.
Such codes permit to improve the cost of masking cryptographic algorithms
against side channel attacks. In this paper we investigate this new class of
codes: we give optimal or best known CIS codes of length We derive
general constructions based on cyclic codes and on double circulant codes. We
derive a Varshamov-Gilbert bound for long CIS codes, and show that they can all
be classified in small lengths by the building up construction. Some
nonlinear permutations are constructed by using -codes, based on the
notion of dual distance of an unrestricted code.Comment: 19 pages. IEEE Trans. on Information Theory, to appea
Decoding Schemes for Foliated Sparse Quantum Error Correcting Codes
Foliated quantum codes are a resource for fault-tolerant measurement-based
quantum error correction for quantum repeaters and for quantum computation.
They represent a general approach to integrating a range of possible quantum
error correcting codes into larger fault-tolerant networks. Here we present an
efficient heuristic decoding scheme for foliated quantum codes, based on
message passing between primal and dual code 'sheets'. We test this decoder on
two different families of sparse quantum error correcting code: turbo codes and
bicycle codes, and show reasonably high numerical performance thresholds. We
also present a construction schedule for building such code states.Comment: 23 pages, 15 figures, accepted for publication in Phys. Rev.
Space Frequency Codes from Spherical Codes
A new design method for high rate, fully diverse ('spherical') space
frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary
numbers of antennas and subcarriers. The construction exploits a differential
geometric connection between spherical codes and space time codes. The former
are well studied e.g. in the context of optimal sequence design in CDMA
systems, while the latter serve as basic building blocks for space frequency
codes. In addition a decoding algorithm with moderate complexity is presented.
This is achieved by a lattice based construction of spherical codes, which
permits lattice decoding algorithms and thus offers a substantial reduction of
complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on
Information Theor
Liberty Street School: Reuse and Rehabilitation Feasibility Report
It is recommended that the iron fire escapes on the east and west elevations be removed because they do not meet current fire codes as a proper means of egress from the building. The metal railings should also be removed and replaced with railings that meet current building code with a proper height
Temporal imperfections building up correcting codes
We address the timing problem in realizing correcting codes for quantum
information processing. To deal with temporal uncertainties we employ a
consistent quantum mechanical approach. The conditions for optimizing the
effect of error correction in such a case are determined.Comment: 5 pages, 2 eps figures, to appear in J. Mod. Op
- …
