510 research outputs found

    A Constant Approximation for Colorful k-Center

    Get PDF
    In this paper, we consider the colorful k-center problem, which is a generalization of the well-known k-center problem. Here, we are given red and blue points in a metric space, and a coverage requirement for each color. The goal is to find the smallest radius rho, such that with k balls of radius rho, the desired number of points of each color can be covered. We obtain a constant approximation for this problem in the Euclidean plane. We obtain this result by combining a "pseudo-approximation" algorithm that works in any metric space, and an approximation algorithm that works for a special class of instances in the plane. The latter algorithm uses a novel connection to a certain matching problem in graphs

    Matroid and Knapsack Center Problems

    Full text link
    In the classic kk-center problem, we are given a metric graph, and the objective is to open kk nodes as centers such that the maximum distance from any vertex to its closest center is minimized. In this paper, we consider two important generalizations of kk-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows: 1. We consider the matroid center problem in which the centers are required to form an independent set of a given matroid. We show this problem is NP-hard even on a line. We present a 3-approximation algorithm for the problem on general metrics. We also consider the outlier version of the problem where a given number of vertices can be excluded as the outliers from the solution. We present a 7-approximation for the outlier version. 2. We consider the (multi-)knapsack center problem in which the centers are required to satisfy one (or more) knapsack constraint(s). It is known that the knapsack center problem with a single knapsack constraint admits a 3-approximation. However, when there are at least two knapsack constraints, we show this problem is not approximable at all. To complement the hardness result, we present a polynomial time algorithm that gives a 3-approximate solution such that one knapsack constraint is satisfied and the others may be violated by at most a factor of 1+ϵ1+\epsilon. We also obtain a 3-approximation for the outlier version that may violate the knapsack constraint by 1+ϵ1+\epsilon.Comment: A preliminary version of this paper is accepted to IPCO 201

    Lagrangian Relaxation and Partial Cover

    Full text link
    Lagrangian relaxation has been used extensively in the design of approximation algorithms. This paper studies its strengths and limitations when applied to Partial Cover.Comment: 20 pages, extended abstract appeared in STACS 200

    Capacitated Sum-Of-Radii Clustering: An FPT Approximation

    Get PDF

    Diversity-aware kk-median : Clustering with fair center representation

    Full text link
    We introduce a novel problem for diversity-aware clustering. We assume that the potential cluster centers belong to a set of groups defined by protected attributes, such as ethnicity, gender, etc. We then ask to find a minimum-cost clustering of the data into kk clusters so that a specified minimum number of cluster centers are chosen from each group. We thus require that all groups are represented in the clustering solution as cluster centers, according to specified requirements. More precisely, we are given a set of clients CC, a set of facilities \pazocal{F}, a collection F={F1,,Ft}\mathcal{F}=\{F_1,\dots,F_t\} of facility groups F_i \subseteq \pazocal{F}, budget kk, and a set of lower-bound thresholds R={r1,,rt}R=\{r_1,\dots,r_t\}, one for each group in F\mathcal{F}. The \emph{diversity-aware kk-median problem} asks to find a set SS of kk facilities in \pazocal{F} such that SFiri|S \cap F_i| \geq r_i, that is, at least rir_i centers in SS are from group FiF_i, and the kk-median cost cCminsSd(c,s)\sum_{c \in C} \min_{s \in S} d(c,s) is minimized. We show that in the general case where the facility groups may overlap, the diversity-aware kk-median problem is \np-hard, fixed-parameter intractable, and inapproximable to any multiplicative factor. On the other hand, when the facility groups are disjoint, approximation algorithms can be obtained by reduction to the \emph{matroid median} and \emph{red-blue median} problems. Experimentally, we evaluate our approximation methods for the tractable cases, and present a relaxation-based heuristic for the theoretically intractable case, which can provide high-quality and efficient solutions for real-world datasets.Comment: To appear in ECML-PKDD 202

    Robust Algorithms for the Secretary Problem

    Get PDF
    In classical secretary problems, a sequence of n elements arrive in a uniformly random order, and we want to choose a single item, or a set of size K. The random order model allows us to escape from the strong lower bounds for the adversarial order setting, and excellent algorithms are known in this setting. However, one worrying aspect of these results is that the algorithms overfit to the model: they are not very robust. Indeed, if a few "outlier" arrivals are adversarially placed in the arrival sequence, the algorithms perform poorly. E.g., Dynkin’s popular 1/e-secretary algorithm is sensitive to even a single adversarial arrival: if the adversary gives one large bid at the beginning of the stream, the algorithm does not select any element at all. We investigate a robust version of the secretary problem. In the Byzantine Secretary model, we have two kinds of elements: green (good) and red (rogue). The values of all elements are chosen by the adversary. The green elements arrive at times uniformly randomly drawn from [0,1]. The red elements, however, arrive at adversarially chosen times. Naturally, the algorithm does not see these colors: how well can it solve secretary problems? We show that selecting the highest value red set, or the single largest green element is not possible with even a small fraction of red items. However, on the positive side, we show that these are the only bad cases, by giving algorithms which get value comparable to the value of the optimal green set minus the largest green item. (This benchmark reminds us of regret minimization and digital auctions, where we subtract an additive term depending on the "scale" of the problem.) Specifically, we give an algorithm to pick K elements, which gets within (1-ε) factor of the above benchmark, as long as K ≥ poly(ε^{-1} log n). We extend this to the knapsack secretary problem, for large knapsack size K. For the single-item case, an analogous benchmark is the value of the second-largest green item. For value-maximization, we give a poly log^* n-competitive algorithm, using a multi-layered bucketing scheme that adaptively refines our estimates of second-max over time. For probability-maximization, we show the existence of a good randomized algorithm, using the minimax principle. We hope that this work will spur further research on robust algorithms for the secretary problem, and for other problems in sequential decision-making, where the existing algorithms are not robust and often tend to overfit to the model.ISSN:1868-896

    Coresets for Clustering in Geometric Intersection Graphs

    Get PDF
    corecore