32 research outputs found

    On the compatibility of exact schedulability tests for global fixed priority pre-emptive scheduling with Audsley’s optimal priority assignment algorithm

    Get PDF
    Audsley's optimal priority assignment (OPA) algorithm can be applied to multiprocessor scheduling provided that three conditions hold with respect to the schedulability tests used. In this short paper, we prove that no exact test for global fixed priority pre-emptive scheduling of sporadic tasks can be compatible with Audsley's algorithm, and hence the OPA algorithm cannot be used to obtain an optimal priority assignment for such systems

    Push Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline Sporadic Task Systems

    Get PDF
    The sporadic task model is often used to analyze recurrent execution of tasks in real-time systems. A sporadic task defines an infinite sequence of task instances, also called jobs, that arrive under the minimum inter-arrival time constraint. To ensure the system safety, timeliness has to be guaranteed in addition to functional correctness, i.e., all jobs of all tasks have to be finished before the job deadlines. We focus on analyzing arbitrary-deadline task sets on a homogeneous (identical) multiprocessor system under any given global fixed-priority scheduling approach and provide a series of schedulability tests with different tradeoffs between their time complexity and their accuracy. Under the arbitrary-deadline setting, the relative deadline of a task can be longer than the minimum inter-arrival time of the jobs of the task. We show that global deadline-monotonic (DM) scheduling has a speedup bound of 3-1/M against any optimal scheduling algorithms, where M is the number of identical processors, and prove that this bound is asymptotically tight

    08071 Abstracts Collection -- Scheduling

    Get PDF
    From 10.02. to 15.02., the Dagstuhl Seminar 08071 ``Scheduling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Two protocols without periodicity for the global and preemptive scheduling problem of multi-mode real-time systems upon multiprocessor Platforms

    Get PDF
    We consider the problem of scheduling a multi-mode real-time system upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem

    A Backward Algorithm for the Multiprocessor Online Feasibility of Sporadic Tasks

    Full text link
    The online feasibility problem (for a set of sporadic tasks) asks whether there is a scheduler that always prevents deadline misses (if any), whatever the sequence of job releases, which is a priori} unknown to the scheduler. In the multiprocessor setting, this problem is notoriously difficult. The only exact test for this problem has been proposed by Bonifaci and Marchetti-Spaccamela: it consists in modelling all the possible behaviours of the scheduler and of the tasks as a graph; and to interpret this graph as a game between the tasks and the scheduler, which are seen as antagonistic players. Then, computing a correct scheduler is equivalent to finding a winning strategy for the `scheduler player', whose objective in the game is to avoid deadline misses. In practice, however this approach is limited by the intractable size of the graph. In this work, we consider the classical attractor algorithm to solve such games, and introduce antichain techniques to optimise its performance in practice and overcome the huge size of the game graph. These techniques are inspired from results from the formal methods community, and exploit the specific structure of the feasibility problem. We demonstrate empirically that our approach allows to dramatically improve the performance of the game solving algorithm.Comment: Long version of a conference paper accepted to ACSD 201

    Accelerated Simply Periodic Task Sets for RM Scheduling

    Get PDF
    International audienceThe article examines rate-monotonic scheduling (RMS). The focus is on efficient schedulability tests of high sensitivity.Accelerated simply periodic task sets (ASPTSs) are constructed by shortening task periods in order to obtain a transformed – simply periodic – task set where each period is an integer divisor of all longer periods. The article presents a new heuristic for partitioned multiprocessor (MP) scheduling based on Specialization with respect to r (Sr) and Distance-Constrained Tasks (DCT) which use ASPTSs first described by Han and Tyan [9, 10]. They have al- ready shown the advantage of Sr and DCT over the Liu/Layland (LL) and the Burchard (Bu) bound in terms of sensitivity. First, the article compares Sr and DCT as well with other uniprocessor scheduling criteria, both theoretically and empirically. Next, these tests are applied to MP scheduling. Theory is followed by a case study and an empirical investigation with randomised task sets. Related approaches are thoroughly examined and summarised in a scheme where the central role of ASPTSs becomes obvious.The article shows that Sr and DCT provide a very good trade-off between maximizing the scheduling test sensitivity (no unnecessary hardware) and minimizing the test’s computational complexity (towards real-time decisions on schedulability)

    A Response-Time Analysis for Non-Preemptive Job Sets under Global Scheduling

    Get PDF
    An effective way to increase the timing predictability of multicore platforms is to use non-preemptive scheduling. It reduces preemption and job migration overheads, avoids intra-core cache interference, and improves the accuracy of worst-case execution time (WCET) estimates. However, existing schedulability tests for global non-preemptive multiprocessor scheduling are pessimistic, especially when applied to periodic workloads. This paper reduces this pessimism by introducing a new type of sufficient schedulability analysis that is based on an exploration of the space of possible schedules using concise abstractions and state-pruning techniques. Specifically, we analyze the schedulability of non-preemptive job sets (with bounded release jitter and execution time variation) scheduled by a global job-level fixed-priority (JLFP) scheduling algorithm upon an identical multicore platform. The analysis yields a lower bound on the best-case response-time (BCRT) and an upper bound on the worst-case response time (WCRT) of the jobs. In an empirical evaluation with randomly generated workloads, we show that the method scales to 30 tasks, a hundred thousand jobs (per hyperperiod), and up to 9 cores.info:eu-repo/semantics/publishedVersio

    A Response-Time Analysis for Non-Preemptive Job Sets under Global Scheduling

    Get PDF
    An effective way to increase the timing predictability of multicore platforms is to use non-preemptive scheduling. It reduces preemption and job migration overheads, avoids intra-core cache interference, and improves the accuracy of worst-case execution time (WCET) estimates. However, existing schedulability tests for global non-preemptive multiprocessor scheduling are pessimistic, especially when applied to periodic workloads. This paper reduces this pessimism by introducing a new type of sufficient schedulability analysis that is based on an exploration of the space of possible schedules using concise abstractions and state-pruning techniques. Specifically, we analyze the schedulability of non-preemptive job sets (with bounded release jitter and execution time variation) scheduled by a global job-level fixed-priority (JLFP) scheduling algorithm upon an identical multicore platform. The analysis yields a lower bound on the best-case response-time (BCRT) and an upper bound on the worst-case response time (WCRT) of the jobs. In an empirical evaluation with randomly generated workloads, we show that the method scales to 30 tasks, a hundred thousand jobs (per hyperperiod), and up to 9 cores

    Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

    Get PDF
    Most recurrent real-time applications can be modeled as a set of sequential code segments (or blocks) that must be (repeatedly) executed in a specific order. This paper provides a schedulability analysis for such systems modeled as a set of parallel DAG tasks executed under any limited-preemptive global job-level fixed priority scheduling policy. More precisely, we derive response-time bounds for a set of jobs subject to precedence constraints, release jitter, and execution-time uncertainty, which enables support for a wide variety of parallel, limited-preemptive execution models (e.g., periodic DAG tasks, transactional tasks, generalized multi-frame tasks, etc.). Our analysis explores the space of all possible schedules using a powerful new state abstraction and state-pruning technique. An empirical evaluation shows the analysis to identify between 10 to 90 percentage points more schedulable task sets than the state-of-the-art schedulability test for limited-preemptive sporadic DAG tasks. It scales to systems of up to 64 cores with 20 DAG tasks. Moreover, while our analysis is almost as accurate as the state-of-the-art exact schedulability test based on model checking (for sequential non-preemptive tasks), it is three orders of magnitude faster and hence capable of analyzing task sets with more than 60 tasks on 8 cores in a few seconds
    corecore