290 research outputs found

    Validity of heavy traffic steady-state approximations in generalized Jackson Networks

    Full text link
    We consider a single class open queueing network, also known as a generalized Jackson network (GJN). A classical result in heavy-traffic theory asserts that the sequence of normalized queue length processes of the GJN converge weakly to a reflected Brownian motion (RBM) in the orthant, as the traffic intensity approaches unity. However, barring simple instances, it is still not known whether the stationary distribution of RBM provides a valid approximation for the steady-state of the original network. In this paper we resolve this open problem by proving that the re-scaled stationary distribution of the GJN converges to the stationary distribution of the RBM, thus validating a so-called ``interchange-of-limits'' for this class of networks. Our method of proof involves a combination of Lyapunov function techniques, strong approximations and tail probability bounds that yield tightness of the sequence of stationary distributions of the GJN.Comment: Published at http://dx.doi.org/10.1214/105051605000000638 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Correction. Brownian models of open processing networks: canonical representation of workload

    Full text link
    Due to a printing error the above mentioned article [Annals of Applied Probability 10 (2000) 75--103, doi:10.1214/aoap/1019737665] had numerous equations appearing incorrectly in the print version of this paper. The entire article follows as it should have appeared. IMS apologizes to the author and the readers for this error. A recent paper by Harrison and Van Mieghem explained in general mathematical terms how one forms an ``equivalent workload formulation'' of a Brownian network model. Denoting by Z(t)Z(t) the state vector of the original Brownian network, one has a lower dimensional state descriptor W(t)=MZ(t)W(t)=MZ(t) in the equivalent workload formulation, where MM can be chosen as any basis matrix for a particular linear space. This paper considers Brownian models for a very general class of open processing networks, and in that context develops a more extensive interpretation of the equivalent workload formulation, thus extending earlier work by Laws on alternate routing problems. A linear program called the static planning problem is introduced to articulate the notion of ``heavy traffic'' for a general open network, and the dual of that linear program is used to define a canonical choice of the basis matrix MM. To be specific, rows of the canonical MM are alternative basic optimal solutions of the dual linear program. If the network data satisfy a natural monotonicity condition, the canonical matrix MM is shown to be nonnegative, and another natural condition is identified which ensures that MM admits a factorization related to the notion of resource pooling.Comment: Published at http://dx.doi.org/10.1214/105051606000000583 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fluid and Diffusion Limits for Bike Sharing Systems

    Full text link
    Bike sharing systems have rapidly developed around the world, and they are served as a promising strategy to improve urban traffic congestion and to decrease polluting gas emissions. So far performance analysis of bike sharing systems always exists many difficulties and challenges under some more general factors. In this paper, a more general large-scale bike sharing system is discussed by means of heavy traffic approximation of multiclass closed queueing networks with non-exponential factors. Based on this, the fluid scaled equations and the diffusion scaled equations are established by means of the numbers of bikes both at the stations and on the roads, respectively. Furthermore, the scaling processes for the numbers of bikes both at the stations and on the roads are proved to converge in distribution to a semimartingale reflecting Brownian motion (SRBM) in a N2N^{2}-dimensional box, and also the fluid and diffusion limit theorems are obtained. Furthermore, performance analysis of the bike sharing system is provided. Thus the results and methodology of this paper provide new highlight in the study of more general large-scale bike sharing systems.Comment: 34 pages, 1 figure

    On the Convergence of Multiclass Queueing Networks in Heavy Traffic

    Get PDF
    The subject of this paper is the heavy traffic behavior of a general class of queueing networks with first-in-first-out (FIFO) service discipline. For special cases which require various assumptions on the network structure, several authors have proved heavy traffic limit theorems to justify the approximation of queueing networks by reflected Brownian motions (RBM's). Based on these theorems, some have conjectured that the Brownian approximation may in fact be valid for a more general class of queueing networks. In this paper, we prove that the Brownian approximation does not hold for such a general class of networks. Our findings suggest that studying Brownian models of non-FIFO queueing networks may perhaps be more fruitful

    Product-form solutions for integrated services packet networks and cloud computing systems

    Full text link
    We iteratively derive the product-form solutions of stationary distributions of priority multiclass queueing networks with multi-sever stations. The networks are Markovian with exponential interarrival and service time distributions. These solutions can be used to conduct performance analysis or as comparison criteria for approximation and simulation studies of large scale networks with multi-processor shared-memory switches and cloud computing systems with parallel-server stations. Numerical comparisons with existing Brownian approximating model are provided to indicate the effectiveness of our algorithm.Comment: 26 pages, 3 figures, short conference version is reported at MICAI 200

    Sample path large deviations for multiclass feedforward queueing networks in critical loading

    Full text link
    We consider multiclass feedforward queueing networks with first in first out and priority service disciplines at the nodes, and class dependent deterministic routing between nodes. The random behavior of the network is constructed from cumulative arrival and service time processes which are assumed to satisfy an appropriate sample path large deviation principle. We establish logarithmic asymptotics of large deviations for waiting time, idle time, queue length, departure and sojourn-time processes in critical loading. This transfers similar results from Puhalskii about single class queueing networks with feedback to multiclass feedforward queueing networks, and complements diffusion approximation results from Peterson. An example with renewal inter arrival and service time processes yields the rate function of a reflected Brownian motion. The model directly captures stationary situations.Comment: Published at http://dx.doi.org/10.1214/105051606000000439 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Modeling a healthcare system as a queueing network:The case of a Belgian hospital.

    Get PDF
    The performance of health care systems in terms of patient flow times and utilization of critical resources can be assessed through queueing and simulation models. We model the orthopaedic department of the Middelheim hospital (Antwerpen, Belgium) focusing on the impact of outages (preemptive and nonpreemptive outages) on the effective utilization of resources and on the flowtime of patients. Several queueing network solution procedures are developed such as the decomposition and Brownian motion approaches. Simulation is used as a validation tool. We present new approaches to model outages. The model offers a valuable tool to study the trade-off between the capacity structure, sources of variability and patient flow times.Belgium; Brownian motion; Capacity management; Decomposition; Health care; Healthcare; Impact; Model; Models; Performance; Performance measurement; Queueing; Queueing theory; Simulation; Stochastic processes; Structure; Studies; Systems; Time; Tool; Validation; Variability;
    • …
    corecore