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Abstract

The subject of this paper is the heavy traffic behavior of a general class of queueing networks

with first-in-first-out (FIFO) service discipline. For special cases which require various as-

sumptions on the network structure, several authors have proved heavy traffic limit theorems

to justify the approximation of queueing networks by reflected Brownian motions (RBM's).

Based on these theorems, some have conjectured that the Brownian approximation may in fact

be valid for a more general class of queueing networks.

In this paper, we prove that the Brownian approximation does not hold for such a general

class of networks. Our findings suggest that studying Brownian models of non-FIFO queueing

networks may perhaps be more fruitful.
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1 Introduction

The past few years have witnessed a surge in research activities dealing with Brownian ap-

proximations of queueing networks [3, 5, 7, 10, 15, 16]. This line of research suggests that

certain processes associated with a queueing network can be approximated by reflected Brow-

nian motions (RBM's), and these approximations are justified by so called "heavy traffic limit

theorems." Although such limit theorems have been proved only for special cases which require

various assumptions on the network structure, some authors have proposed that the Brownian

approximations in fact may be used for a more general class of networks that operate under

the first-in-first-out service discipline [15, 16].

In this paper, we prove that the Brownian approximation is not valid for such a general

class of networks. We do so by proving a "pseudo" heavy traffic limit theorem, which states

that if the process associated with the queueing network converges to a continuous limit, then

that limit must be the RBM specified by the Brownian approximation. We then present a

queueing network example developed by Dai and Wang [11] for which the specified Brownian

approximation is not well defined. Our findings suggest that it may be fruitful to consider

a more general class of approximating processes. Furthermore, our findings signal that other

service disciplines may yield more tractable structures.

We consider a network composed of d single server stations, which we index by j = 1,..., d.

The network is populated by c classes of customers, and each class k has its own exogenous

renewal arrival process Ek = {Ek(t),t > 0} (possibly null), where Ek(t) is the number of class

k customers who arrive at the network by time t. For each customer class k = 1, ... ,c, it

is assumed that Ek(0) = 0 and customer inter-arrival times have mean l/ack with squared

coefficient of variation (SCV) c2 (The SCV of a random variable is defined as its variance

divided by the square of its mean.) We denote by E the c-dimensional process with components

El,..., Ec. (All vectors are envisioned as column vectors.) We assume that arrival processes

E1, ... , Ec are independent and ak > 0 for at least one k. For each k, ak is interpreted as the

long-run average arrival rate for class k customers. These customers require service at station

s(k), and their service times are independent and identically distributed (i.i.d.) with mean mk

and SCV c2 k. The service time sequences for the various customer classes are independent of

one another and are also independent of the arrival processes. Upon completion of service at

station s(k), a class k customer becomes a customer of class I with probability Pki and exits

the network with probability 1 - El Pki, independent of all previous history. The transition

matrix P = (Pkl) is taken to be transient, which simply means that all customers eventually

leave the network. Hence the networks we are considering are open queueing networks. We

assume that the waiting buffer at each station has infinite capacity, and that customers are

served at each station on a first-in-first-out (FIFO) basis. Hereafter, we will refer to such a

network as a multiclass open queueing network.

Such a description of a multiclass network is now quite standard, as in Harrison and

Nguyen [15, 16]. (The class of queueing networks described here is in fact an important special

case of the setup in [15, 16].) Figure 1 shows an example of such a network, which Dai and

Wang [11] have studied. Customers arrive at station 1 according to a Poisson process with rate

al = 1. Each customer follows a deterministic route whose sequence of station visitations is

1, 1, 2, 2, 1, after which the customer departs from the network. Hence, each customer makes
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5 stops before exiting the network, and we designate those customers in their kth stop as class
k customers.

In his pioneering paper on queueing networks, Jackson [22] assumed that customers visiting
or occupying any given station are essentially indistinguishable from one another, and that a
customer completing service at station i will move next to station j with some fixed probability
Pij, independent of all previous history. Thus in Jackson's networks, each station serves a single
customer class, hence these networks have been called single-class networks. Jackson's model
was extended by Baskett et al. [1] and Kelly [24] to networks populated by multiple types of
customers, each type following a deterministic route. The routing mechanism described in this
paper subsumes those considered in [1, 24]. Readers are referred to Harrison [14] and Harrison
and Nguyen [15, 16] for further discussion.

For each j = 1,... ,d and each t > 0, let Wj(t) denote the sum of the impending service
times for all customers who are queued at station j at time t, plus the remaining service time
for any customer who may be in service there at time t. If a new customer arrives to station
j at time t, that customer must wait Wj(t) time units before gaining access to the server, so
one can also describe Wj(t) as the virtual waiting time process for station j. Set W(t) to be
the d-vector with components W1 (t), ... , Wd(t). Define the process Wj {Wj(t),t > 0} and
let W be the corresponding d-dimensional workload process defined in the natural way.

Intuitively, when the system is heavily loaded, the workload W(t) at time will be large for
large t. Let pj be the traffic intensity at station j (this term will be be defined in Section 2).
The quantity pj can also be interpreted as the long-run fraction of time that server j is busy.
As an example, because the arrival rate is set to be 1, the traffic intensities for the network
pictured in Figure 1 are given by P1 = ml + m2 + m5 and p2 = m3 + m 4. To facilitate our
explanation of the underlying concepts, let us for the moment assume that

(1.1) pj=1, j=1,...,d.

Condition (1.1) is a special form of the heavy traffic condition as described in Section 2. For

fixed t > 0, we are interested in how fast W(nt) goes to infinity as n - c. It has been widely
believed that

(1.2) wV(t) W(nt) -=- W*(t) as n -- oo,

where W* = {W*(t),t > 0} is a d-dimensional semimartingale reflecting Brownian motion
(SRBM) and the symbol "" denotes weak convergence (the notion of weak convergence
will be clarified in Section 2). Our main contribution in this paper is the proof that conjecture
(1.2) does not hold in general.

Figure 1: A two-station network with self-feedback
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QNET Method for Performance Analysis

Exact analysis of a multiclass network models is limited essentially to networks whose inter-
arrival times have exponential distributions and whose service times for all customers at each
station have the same exponential distributions (cf. Baskett et al. [1]). Such networks are
commonly referred to as BCMP or Kelly networks. For networks with other distributional
forms, no exact formulae are available to facilitate the analysis.

In recent years, a promising new approximation scheme, known as the QNET method, has
been proposed. The first step in a QNET analysis is to replace one's "exact" queueing model by
an approximating Brownian model, see Harrison and Nguyen [15, 16]. The second step involves

steady-state analysis of the approximating Brownian model; see Harrison and Williams [18],
Dai and Harrison [7] and Dai and Kurtz [8]. For a queueing network with d stations, this
analysis requires that one determines the stationary distribution of a d-dimensional reflecting
Brownian motion. Finally, summary statistics derived from that stationary distribution are
used to obtain approximate steady-state performance measures for the original systems. Unlike
previous approximations, the Brownian approximations culminate in estimates of complete
distributions; readers can find examples of Brownian estimates for complete sojourn time
distributions in Harrison and Nguyen [16]. Readers are referred to Harrison and Nguyen [15,
16], Dai and Harrison [6, 7] and Dai, Nguyen and Reiman [10] for more discussion on the
QNET method, as well as its accuracy and efficiency. Those interested in the QNET software

package can send an email message to dai@isye.gatech.edu.

Heavy Traffic Limit Theorems

In cases where (1.2) hold, the corresponding theorem is called a "heavy traffic limit theorem."
There now exists a variety of heavy traffic limit theorems for networks with certain special
structures. The first heavy traffic limit theorem for networks of queues is due to Iglehart and
Whitt [20, 21], who worked with single-class queues in series. For single-class networks whose
routing structure is similar to that of Jackson's networks, but whose inter-arrival times and
service times may have general distributions, Reiman [26] proved that under the heavy traf-
fic condition, the normalized queue length process converges weakly to a reflecting Brownian

motion (RBM). The definition of an RBM was first presented in Harrison and Reiman [17].
Reiman's proof was later simplified by Johnson [23]. Reiman's result has been extended by
Chen and Shanthikumar [5] to networks in which stations may have multiple servers. Peter-
son [25] proved an analogous heavy traffic limit theorem for multiclass feedforward networks.
The term "feedforward" denotes a routing structure in which stations can be numbered so that
customers always travel from lower numbered stations to higher numbered ones. Reiman [27]
proved a heavy traffic limit theorem for a multiclass one station feedback queue. Dai and
Kurtz [9] have greatly simplified Reiman's proof. A heavy traffic limit theorem for single-class
closed networks was proved by Chen and Mandelbaum [3]. Strong approximations for single
class networks were discussed in Glynn and Whitt [13] and Chen and Mandelbaum [4].

Until recently, it was believed that a heavy limit theorem should hold for multiclass open
queueing networks of the type described in this section. Based on existing heavy traffic limit
theorems, Harrison and Nguyen [15, 16] proposed Brownian models to approximate these
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networks. Unfortunately, Dai and Wang [11] have found two-station and three-station networks
for which Harrison and Nguyen's Brownian models fail to exist. (A more explicit interesting
example showing no convergence was given by Whitt [30], in which he discovered chaotic
behavior for certain multiclass open queueing networks.) Building on Dai and Wang's example,
we prove in this paper the following general result: There exist multiclass open queueing

networks for which the scaled workload process W2V(t) does not converge to any continuous
limits. A by-product of our result is that if the normalized workload process converges to a
continuous limiting process, that process must be the reflected Brownian motion identified by
Harrison and Nguyen.

Organization of the Paper

We introduce some additional notation and definitions in Section 2. In Section 3, we state the
heavy traffic conjecture and the main theorem of this paper. We prove our theorem by way of
a "pseudo heavy traffic limit theorem," which we state and justify in Section 4. The proof of
our main theorem is in Section 5. Finally, we discuss some open problems in Section 6.

2 Preliminaries

We now define several processes that will be used later in later sections. Let {9 k(1), 0k( 2 ), ... }
be a sequence of i.i.d. routing vectors for class k customers. The 1th component of the vector
qk(i) equals 1 if the ith class k customer next goes to class , and all other components are
zero. Also, define the c-dimensional cumulative sum processes

(2.1) <k(r) = k() + .. + ok(r).

Finally, set C(j) to be the set of all customer classes k that receive service at station j, that

is, C(j) = k: s(k) = j}. This set is called the constituency of server j in Harrison [14]. We

require that C(j) be nonempty for each j = 1,... ., d.

Next, set C to be the d x c incidence matrix with components

(2.2) Cjk I if C C(j),
0 otherwise.

Recall that Ek(t) is the external arrival process for class k. Denote by Ak(t) the total number

of customer visits to class k by time t and by Dk(t) the total number of customer departures

from class k by time t. Letting Fk(t) denote the number of visits to class k by time t that

result from internal transitions, one has as a matter of definition

(2.3) Ak(t) - Ek (t) + Fk (t) = Ek () + ik (Di (t)).

Let {vk(l), vk( 2 ), .. .} be a sequence of i.i.d. service times associated with class k customers,

and let Vk(r) be the cumulative sum process defined by

Vk(r) = k(l) +.. + k(r).
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We denote by V(A(t)) the c-dimensional process whose kth component is given by Vk(Ak(t)),

and we set
(2.4) L(t)= CV(A(t)).

Note that L = {L(t),t > 0} is a d-dimensional process; one interprets Lj(t) as the amount of
work for server j brought by all those customers who have arrived at station j by time t. The
process Lj was referred to as the immediate workload input process for station j by Harrison

and Nguyen [16].
Let YJ(t) be the amount of cumulative idleness experienced by server j up to time t and

let Y(t) = (Yl(t),. .. ,Yd(t))' be the corresponding vector process. (Prime denotes transpose.)
We can express the d-dimensional workload process W {W(t),t > 0} as follows:

(2.5) W(t) = L(t) - te + Y(t),

where e is the d-dimensional vector of ones. Clearly, the idleness process Yj(.) may increase
only at times t such that Wj(t) = 0, hence

(2.6) Y(t) =- inf {Lj(s)-s}, j = 1, ... , d.
0<s<t

To finish our description of the network model, let us define the fundamental matrix

(2.7) Q = (I - P')-l =(I + P + p2 + ... ).

The (k, i)th element of Q represents the expected number of visits to class k made by a customer
who starts in class 1. Thus, defining = (l,.. ., A)' via

(2.8)

one recognizes that Ak is the long-run average number of customer visits to class k per unit
time (resulting from external arrivals as well as internal transitions). The total traffic intensity
at station j is then defined by

(2.9) Pj : Akkm.

kEC(j)

Let p be the vector of traffic intensities at stations 1,...,d. One can express the vector of

traffic intensities in matrix form via

(2.10) p = CMA,

where M is the c x c diagonal matrix with diagonal elements ml,..., m,.

To rigorously state our convergence result, we need to introduce the path space D[O0, 0c),

which is the space all functions f : [0, oo) IRc which are right continuous on [0, oo) and

have finite left limits on (0, oc). The path space Dc[0, oo) is endowed with the Skorohod

topology, see Billingsley [2]. For a sequence {X n } of DC[O, cc)-valued stochastic processes and

X DC[O, oo), we write Xn(.) - X(.) if Xn converges to X in distribution.

For a function f : [0, oc) -- R and t > 0, put

li} Ift sup If(s)l,
O<s<t

5
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and for a vector of functions f = (fi, ... , fk) : [0, x) -- Rk and t > 0, put

Ilfllt = (Ilfillt, , Jllklt)'-

A sequence {fn} of functions fn [0, cO) _- R k is said to converge uniformly on compact

(u.o.c.) sets to f : [0, oo) -+ R k if for each t > 0, Ilf - flit -- 0 as n - 00. For a sequence

{X n } of DC[0, oo)-valued stochastic processes and X C DC[0, oo) defined on a probability space,

we write Xn(.) - X(.) u.o.c. if almost surely, X n converges to X uniformly on compact sets.

3 Conjecture and the Main Theorem

In order to rigorously state a heavy traffic limit theorem, we need to consider a "sequence

of networks" indexed by n. Our setup here follows closely that of Harrison and Nguyen [16].

Let a n and mn be vectors of inter-arrival rates and service times, respectively, associated with

the nth network in the sequence. We may assume without loss of generality, however, that the

routing matrix and the squared coefficients of variation for inter-arrival times and service times

remain fixed across the sequence of networks. Define pn to be the vector of traffic intensities

for the nth matrix similarly to (2.9). We are interested in the sequence of networks such that

(3.1) Cn - a, mn > 0,

and

(3.2) JV(pn - e) -- 3, as n - oo,

where e, as before, is the vector of ones. Condition (3.2) requires that pjn I at an appropriate

rate, and is known as the heavy traffic condition. As n - o, we are interested in the limit of

the normalized workload process n defined by

(3.3) Wn(t)- W(nt), t > 0.

Before we state the conjecture, we define more scaled processes. For each t > 0 and n > 1,

set

1
En (t) (En(nt) - a"nt),

1
Xv7(t) - (Vn([nt])- mnnt),

1 ( ([t, 

[ (nt]) -Piknt i c, k i,... c,

where [x] is the integer part of x. (Again, note that the processes / do not change with n.)
It follows from the classical Donsker theorem that as n -- oc

(3.4) En a,

(3.5) fn =, S

(3.6) 4l n => i = 1...C.
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where ,a, ~S and Ji (i = 1 ,..., c) are (c + 2) independent c-dimensional zero-drift Brownian

motions with covariance matrices Pa, PS and i (i 1, .. ., c), respectively. It is easily verified

that Pa = diag(oalc 2 1,..a, 2, s = diag(m2c2 , , ... m2kc) and Pi is a matrix defined by

Pik( - Pik) if k l
k { -PikPil if k f 1.

Because Brownian motions are continuous and En, Vn, i,n (i = 1,..., c) are independent, we

can and will assume by the Skorohod representation theorem that the convergence in (3.4)-

(3.6) holds u.o.c.

Conjecture 1 Under the heavy traffic conditions (3.1)-(3.2), the sequence of normalized work-

load processes IVWn defined in (3.3) converges to a continuous process W* = {W*(t),t > 01

uniformly on compact sets as n -4 oo. That is

1
(3.7) -- Wn(nt) - W*(t), u.o.c., as n -o.

Theorem 3.1 There exist multiclass open queueing networks for which the scaled workload

process Wn does not converge to any continuous limit. In particular, Conjecture I is false.

The key to the proof of Theorem 3.1 is the "pseudo" heavy traffic result stated in Theorem 4.1

and proved in the next section together with the Dai-Wang example in [11]. We leave the proof

of Theorem 3.1 to Section 5.

Corollary 3.1 If the conclusion in conjecture 1 is changed to {Wn,n > 1} being D-tight, the

conjecture is still false.

The definition of tightness is given in, for example, Section 3.2 of Ethier and Kurtz [12]. The

proof of the corollary is given at the end of Section 5.

4 A Pseudo Heavy Traffic Limit Theorem

Set

G = CMQP'AC',

where M = diag(m, ... , m) and A = diag(A), and diag(A) is the diagonal matrix with

diagonal elements A1, ... , A,. Recall that Yjn(t) is the cumulative idleness of server j by time

t for the nth system, and Yn(t) is the d-dimensional vector with components Yln, ... , Y. Set

yn(t) = n-1/2yn(nt), .

Theorem 4.1 Assume Conjecture i is true, namely, that the convergence in (3. 7) holds. Then

the sequence of normalized idleness process Yn converges to Y* u.o.c. and the limiting processes
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(W*,Y*) must satisfy

(4.1) (I+ G)W() = Cas(At) + CMQ ( (t) + k(Akt)) + 3t + Y*(t),

(4.2) *(t) > 0,

(4.3) Y*(0) = 0, Y* is continuous and nondecreasing,

(4.4) Y*(.) increases only at times t such that W(t) = 0, j = 1, . . .,d.

Remark. Theorem 4.1 states that if (3.7) is true, then the Brownian model proposed by
Harrison and Nguyen [15, 16] is the correct model. Harrison and Nguyen summarily referred
to this result (namely, the pseudo proof) in Section 5 of [16]. We offer a complete proof in this
paper and consequently use this theorem to prove Theorem 3.1 in Section 5.

The remainder of this section is devoted to proving Theorem 4.1. We begin by introducing
some important notation. For j = 1,..., d and t > 0, define rj(t) to be the arrival time to
station j of the customer currently being serviced there if Wj7(t) > 0, and to be t if Wjn(t) = 0.
Let rn(t) be the d-dimensional vector defined in the obvious manner. This definition of rn(t),
which is slightly different from what was given in Peterson [25, page 103], enables us to give
a concise proof of Lemma 4.2 below. With jn(t), one can verify that the number of class k
customers to have departed from station j = s(k) by time t is given by

(4.5) Dj(t) - A (r(t)) - 1, if server j is currently serving a class k customer,
{ Ak(r()), otherwise.

We will use An(rn(t)) to denote the c-dimensional process whose kth component is A((
For each t > 0 and n > 1, define

1rn(t) 7n(nt), Tn(t) (nt - 7n(nt)),n Vr

and
1 (t) nt)An(t) = 1An(nt), An(t)= (An(nt) -nt) .
n

The first two lemmas below hold in general without the assumption of convergence in (3.7).

Lemma 4.1 For each sample path and each t > O, there ezists independent of n such that

IAkn()llt < , k = 1,. .c, n > 1.

Proof. Let S = {S'(t),t > 0} be the renewal process associated with class k service times.
Let Tkn(t) be the cumulative time that server s(k) has devoted to class k customers in t units
of time. Then, the number of class k customers to have departed from station s(k) by time t
is D k(t) = Skn(Tkn(t)) < Skn(t). Therefore, from (2.3), we have

An(t) = En(t) + (Ik(S(Tnt))) (t) + E ik(Sn((t))
k=l k=l

The lemma then follows from the functional strong law of large numbers for random walks and
renewal processes. El

8

-1------ - ------------ --



From the definition of 7j-(t), it follows that

(4.6) t = r7(t) + W (r7j(t)) - C (t)

where ejn(t) is 0 if Wjn(t) 0, and otherwise is equal to the remaining service time of the

customer currently occupying server j. Define (t) = t- r7(t), and note that

Wj (r (t))- e (t) = 7j(t) < W7 ( (t)).

The next three results show that under the heavy traffic scaling, the processes rn(t) and Wn(t)

are close for large n. We begin with the following lemma, which proves that e(t) is negligible

under the heavy traffic scaling.

Lemma 4.2 For j= 1,...,d,

1
lim 1ey(nt) -- 0, u.o.c. as n oc.

n -+ oo 

Proof. It follows from the definition of eyj(t) that

0 < e(t) < max max (i)
- - kec(j) l<i<An(t)

where {vn(1), v (2),.. .} is the sequence of i.i.d. service times for class k customers. An appli-

cation of Lemma 3.3 from Iglehart and Whitt [20] yields

1 E 

o.

Lemma 4.3 Suppose the convergence in (3.7) holds. Then

fn(t) , et u.o.c.,

where e is the d-dimensional vector of ones.

Proof. Let Wn(t)= Wn(nt). Then,

W (rj (t)) - -en (nt) -jn(nt) < Wjn(r(t))
n n

Because n(s) < s for s > 0,

11 1 1
-7n(n>) < Wj( + · n)

With the assumption of (3.7) and Lemma 4.2, the lemma is proved. El

Lemma 4.4 Suppose the convergence in (3.7) holds. Then,

rn(t) - W*(t) u.o.c. as n - oo.
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Proof. Because

W(r7(t))_ ejn(t) t-r(t) < Wn(r7 ()),

we have

Wn(C(t))- =jE(nt) = rj(t) < W(n (t)).

The lemma follows immediately from assumption (3.7) and Lemmas 4.2 and 4.3.

Lemma 4.5 Suppose the convergence in (3.7) holds. Then

An(t) -- At u.o.c.

Proof. It follows from (2.3) that

C

An(t) En (t) + E )k,n (fDn(t)) 

k=1

where E (t) = E (nt), D(t) = Dn(nt) and kn(t) = ([n]) for k = 1,.

(4.7) An(t)- At

., c. Therefore,

-= E -(t) ) (ikn ((t) PDt)
k=l

+ P'(Dn(t) - AC'7(t))- P'AC'(te - 7-(t)),

where we have used the fact that

A a + P'A,

and Pk denotes the kth row of P. Using equation (4.5), we can replace Dn(t)
expression on the right hand side of (4.7) by A n (

Tn(t)) when n is large. Hence, by
and 4.3 and functional strong law of large numbers, we have

in the third
Lemmas 4.1

lim sup IA1. n()- A x It < lim sup P'llzn(fn(.)) _- A7(.)Ilt < P'lim sup IIAn( ) - A . lit.
n-oo n--+o n-o0,

Because (I - P')- > 0,
lim sup IAn(.)-A . IIt < 0,

n--+oo

and hence

lim IAn )- A I1 = O.

O

Lemma 4.6 Define for each t > 0,

5(t) - Q ( (t)
C

+ E k (kt) - P'AC'W'(t)
k=l

Suppose the convergence in (3.7) holds. Then

An(t), (t) u.o.c. as n - o.

10
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Proof. First, note that

A-(t) = En(t) + Z kin (A(n(k) (0)) + p'A(In(t)) _ p'AC (t)
k=1

and

,(t) = a(t) + k(Akt + P'7(t) - PAC'W*(t).
k=1

Thus,

A (t) - (t) = E(t)- .c(t) + 2, (,
k=l

- k(Akt))

+ p (An(rn(t)) _ I( +n(t))) + Pt (,,(-n(t))-_ (t))

- P' (AnC'rn(t) - AC'W*(t)).

Hence

(4.8) IIAn(.) - q(.)It < IIE( )-_ a()llt + S Il4,k,n
k=l

(An (Tnk) ()))

+ P'IIAn(n(.))- _ (n(.))llt + P'll,7(rn())- (.)11t
+ P'llAnC'I(.) - AC'w *(.)llt.

Because fjn(s) < s for all s > 0 and j = 1,..., d, we have

Theren((fore,)) it foll(n())ows <from (4.8) that(.)

Therefore, it follows from (4.8) that

(4.9) (I- P')llAn(.)- )lit < lIEn() - a()llt + E I[¥ k ' n (A(Tsn(k)())) - k(Akt)llt
k=l

+ P'llv(n(.)) - (.)lit + P'IAnC'n(.) - AC'W*(.)lIt
- (n(t).

Again, note that Q > 0. Premultiplying both sides of (4.9) by Q, we have

IIAn(')- (l()lIt < QC((t).

Because (n(t) -- O, we have proved Lemma 4.6.

Proof of Theorem 4.1. To prove Theorem 4.1, observe that from (2.4) and (2.5),

Wn(t) - CVn (An(t)) + CMnAn(t) + v(pn - e)t + yn(t).

By Lemmas 4.5 and 4.6 and assumptions (3.5) and (3.2), we have

CVn (rA(t)) + CMnAh (t) + V\/(p _ e)t

--+ CS(MAt) + CMQ (a(t) Il+ 1( kt - PACIW*(t) + t,
k=l

11
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u.o.c. as n oo. Because the mapping defined in (2.6) is continuous, Theorem 4.1 follows

immediately from the continuous mapping theorem. [

Remark. Because a Brownian motion is almost surely not a process with bounded variation,

the matrix I + G must be nonsingular in order for a solution of the system (4.1)-(4.4) to exist.

Multiplying both sides of (4.1) by R (I + G)-l, one has

W*(t)= RCS(At) + RCMQ (a(t) + E 4 k(Akt)) ++ RY*(t).
k=l

For each t > 0, set

X*(t) = RCS(At) + RCMQ (a () + k (Akt) + Rt.
k=l

Then X* is a Brownian motion with drift vector 0 = R/3 and covariance matrix

r = RC [rsA+MQ (a + E kr Q M' C R'.

Without worrying about the adaptness of these processes, one recognizes that W* is a semi-

martingale reflecting Brownian motion (SRBM) starting from zero defined by

(4.10) W*(t) = X*(t) + RY*(t), t > 0,

and (4.2)-(4.4) with covariance matrix r*, drift vector 0 and reflection matrix R; see Reiman

and Williams [28] for the definition of an SRBM. Reiman and Williams [28] proved that if an

SRBM exists, the matrix R must be completely-S. In particular, the diagonal elements of R

are positive. Conversely, Taylor and Williams [29] proved that if R is a completely-S matrix,

then the corresponding SRBM exists and is unique in law.

5 Proof of Theorem 3.1

Now we present the example in Dai and Wang [11] to show the limiting process W* in Theo-

rem 4.1 does not exist for certain networks.

Consider the two-station network pictured in Figure 1. Customers arrive at station 1

according to a Poisson process with rate ac. (The index n indicates the nth system.) Each

customer makes 5 stops before departing from the network, and the stations visited are in

the following order: 1, 1, 2, 2, 1. As explained in Section 1, we designate those customers in

their kth stop as class k customers. The service times for class k customers are assumed to be

exponentially distributed with mean mk (k = 1,.. ., 5), independent of n.

Choose m = (1/10, 1/10, 22/27,5/27, 8/10)' and

' =( 1 - 1

Then ct - 1, pn < e for each n and

lim (p n - e (-1,-1)'.
n- oo

12



For the specific data above, one can check that det(I+G) = 0, thus I+G is singular. Therefore,

there exists a vector u 0 such that u'(I + G) = 0.
Now, assume that Conjecture (3.7) is true. By Theorem 4.1, the normalized workload

process and idleness process (Wn,Y n ) converges to the limiting processes (W*,Y*) u.o.c.,
where
(5.1) (I + G)W*(t) = ~(t) + /t + Y*(t),

and

= C4 (At) + CMQ (t) +E k( kt)
k=1 J

is a Brownian motion with zero drift and covariance matrix

r = CrFAC' + CMQ(ra + E Akrk)Q MC' .

k=l

Multiplying both sides of (5.1) by u', we get

(5.2) u'(t) = -u'3t - u'Y(t), for all t > 0.

It is easy to check that F is a positive definite matrix and hence u'( is a zero drift Brownian
motion with variance u'ru > 0. Note that the left hand side of (5.2) is a process of bounded

variation, while a Brownian motion is almost surely not a process of bounded variation. There-

fore the conjecture cannot possibly hold, and Theorem 3.1 is proved. E
Remark. If one takes

m = (1/10,1/10,23/27,4/27,8/10)',

the reflection matrix R = (I + G)-1 becomes

R -310/27 16)
20 -27

Because the diagonal elements of R are negative, R is not a completely-S matrix. Hence by

Reiman and Williams [28] there is no SRBM W* associated with the corresponding reflection
matrix R. Therefore, Wn can not converge to an SRBM in this case. C

Proof of Corollary 3.1 For x C DRd[0, oo), define

J(x) = j e - u [J(x, u) 1] du,

where
d

J(x, u) = sup E Ixi(t) - xi(t-)
O<t<u i=

It follows from Lemma 4.2 that
J(Wn) - 0,

almost surely as n -- oo. Therefore, by Theorem 3.10.2 of Ethier and Kurtz [12], any limit

W* = {W*(t),t > 0} of a convergent subsequence of {Wn(.),n > 1} (under the Skorohod
topology) is continuous. From the proof of Theorem 3.1, we know that such a process W* does

not exist. Therefore, {Wn(.), n > 1} cannot be D-tight. O
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6 Concluding Remarks and Open Problems

In this paper, we have proved that conventional heavy traffic limit theorems do not hold for

general multiclass open queueing networks. To identify a maximal subset of multiclass networks

such that the corresponding heavy traffic limit theorems prevail seems to be a formidable task

for the moment. We conjecture that when there is a single service time distribution associated

with each server, the convergence in (3.7) holds.

In his example, Whitt [30] demonstrated that the non-convergence of the normalized work-

load process may be caused by large fluctuations of the workload. In [30], these large fluctua-

tions occur because batches of customers with short service times build up in the queues. One

way to avoid such fluctuation is to employ some kind of processor sharing discipline (like head-

of-the-line processor-sharing) among the customer classes at each station. It is worthwhile to

investigate the heavy traffic behavior for multiclass queueing networks under non-FIFO queue-

ing disciplines. Research in this direction is just beginning, see the appendix to Harrison and

Williams [19].

Acknowledgment. We are indebted to Ruth Williams for commenting on an earlier version

of this paper.
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