research

Correction. Brownian models of open processing networks: canonical representation of workload

Abstract

Due to a printing error the above mentioned article [Annals of Applied Probability 10 (2000) 75--103, doi:10.1214/aoap/1019737665] had numerous equations appearing incorrectly in the print version of this paper. The entire article follows as it should have appeared. IMS apologizes to the author and the readers for this error. A recent paper by Harrison and Van Mieghem explained in general mathematical terms how one forms an ``equivalent workload formulation'' of a Brownian network model. Denoting by Z(t)Z(t) the state vector of the original Brownian network, one has a lower dimensional state descriptor W(t)=MZ(t)W(t)=MZ(t) in the equivalent workload formulation, where MM can be chosen as any basis matrix for a particular linear space. This paper considers Brownian models for a very general class of open processing networks, and in that context develops a more extensive interpretation of the equivalent workload formulation, thus extending earlier work by Laws on alternate routing problems. A linear program called the static planning problem is introduced to articulate the notion of ``heavy traffic'' for a general open network, and the dual of that linear program is used to define a canonical choice of the basis matrix MM. To be specific, rows of the canonical MM are alternative basic optimal solutions of the dual linear program. If the network data satisfy a natural monotonicity condition, the canonical matrix MM is shown to be nonnegative, and another natural condition is identified which ensures that MM admits a factorization related to the notion of resource pooling.Comment: Published at http://dx.doi.org/10.1214/105051606000000583 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020