33 research outputs found

    Broadband adaptive beamforming with low complexity and frequency invariant response

    No full text
    This thesis proposes different methods to reduce the computational complexity as well as increasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to perform unconstrained adaptive optimisation.A direct DFT implementation, by which broadband signals are decomposed into frequency bins and processed by independent narrowband beamforming algorithms, is thought to be computationally optimum. However, this setup fail to converge to the time domain minimum mean square error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor, overlap-save based GSC beamforming structures have been explored. This system address the minimisation of the time domain MMSE, with a significant reduction in computational complexity when compared to time-domain implementations, and show a better convergence behaviour than the IFB beamformer. By studying the effects that the blocking matrix has on the adaptive process for the overlap-save beamformer, several modifications are carried out to enhance both the simplicity of the algorithm as well as its convergence speed. These modifications result in the GSC beamformer utilising a significantly lower computational complexity compare to the time domain approach while offering similar convergence characteristics.In certain applications, especially in the areas of acoustics, there is a need to maintain constant resolution across a wide operating spectrum that may extend across several octaves. To attain constant beamwidth is difficult, particularly if uniformly spaced linear sensor array are employed for beamforming, since spatial resolution is reciprocally proportional to both the array aperture and the frequency. A scaled aperture arrangement is introduced for the subband based GSC beamformer to achieve near uniform resolution across a wide spectrum, whereby an octave-invariant design is achieved. This structure can also be operated in conjunction with adaptive beamforming algorithms. Frequency dependent tapering of the sensor signals is proposed in combination with the overlap-save GSC structure in order to achieve an overall frequency-invariant characteristic. An adaptive version is proposed for frequency-invariant overlap-save GSC beamformer. Broadband adaptive beamforming algorithms based on the family of least mean squares (LMS) algorithms are known to exhibit slow convergence if the input signal is correlated. To improve the convergence of the GSC when based on LMS-type algorithms, we propose the use of a broadband eigenvalue decomposition (BEVD) to decorrelate the input of the adaptive algorithm in the spatial dimension, for which an increase in convergence speed can be demonstrated over other decorrelating measures, such as the Karhunen-Loeve transform. In order to address the remaining temporal correlation after BEVD processing, this approach is combined with subband decomposition through the use of oversampled filter banks. The resulting spatially and temporally decorrelated GSC beamformer provides further enhanced convergence speed over spatial or temporal decorrelation methods on their own

    MVDR broadband beamforming using polynomial matrix techniques

    Get PDF
    This paper presents initial progress on formulating minimum variance distortionless response (MVDR) broadband beamforming using a generalised sidelobe canceller (GSC) in the context of polynomial matrix techniques. The quiescent vector is defined as a broadband steering vector, and we propose a blocking matrix design obtained by paraunitary matrix completion. The polynomial approach decouples the spatial and temporal orders of the filters in the blocking matrix, and decouples the adaptive filter order from the construction of the blocking matrix. For off-broadside constraints the polynomial approach is simple, and more accurate and considerably less costly than a standard time domain broadband GSC

    Interference Suppression for Spread Spectrum Signals Using Adaptive Beamforming and Adaptive Temporal Filter

    Get PDF
    Interference and jamming signals are a serious concern in an operational military communication environment. This thesis examines the utility and performance of combining adaptive temporal filtering with adaptive spatial filtering (i.e. adaptive beamforming) to improve the signal-to-jammer ratio (SJR) in the presence of narrowband and wideband interference. Adaptive temporal filters are used for narrowband interference suppression while adaptive beamforming is used to suppress wideband interference signals. A procedure is presented for the design and implementation of a linear constraints minimum variance generalized sidelobe canceler (LCMV-GSC) beamformer. The adaptive beamformer processes the desired signal with unity gain while simultaneously and adaptively minimizing the output due to any undesired signal. Using the LCMV-GSC beamformer with a least mean squares (LMS) adaptive algorithm, it was shown that the tapped delay line (TDL) adaptive antenna array is more effective for the suppression of wideband jammer suppression than the linear array sensors (LAS) adaptive antenna array. Also a new technique for adaptive beamforming is presented which improves wideband interference suppression in a frequency-hopped environment. The output SJR improvement for the new technique compared to the conventional technique is as much as 15dB. Sometimes, multipath signals and jammers generated by a smart enemy are correlated with the desired signal which destroys the traditional beamformer\u27s performance. After performing a spatial smoothing technique, adaptive beamforming can also be effective in suppressing the jamming signals that are highly correlated with the desired signal

    Adaptive broadband beamforming with arbitrary array geometry

    Get PDF
    This paper expands on a recent polynomial matrix formulation for a minimum variance distortionless response (MVDR) broadband beamformer. Within the polynomial matrix framework, this beamformer is a straightforward extension from the narrowband case, and offers advantages in terms of complexity and robustness particularly for off-broadside constraints. Here, we focus on arbitrary 3-dimensional array configurations of no particular structure, where the straightforward formulation and incorporation of constraints is demonstrated in simulations, and the beamformer accurately maintains its look direction while nulling out interferers

    Relevance of polynomial matrix decompositions to broadband blind signal separation

    Get PDF
    The polynomial matrix EVD (PEVD) is an extension of the conventional eigenvalue decomposition (EVD) to polynomial matrices. The purpose of this article is to provide a review of the theoretical foundations of the PEVD and to highlight practical applications in the area of broadband blind source separation (BSS). Based on basic definitions of polynomial matrix terminology such as parahermitian and paraunitary matrices, strong decorrelation and spectral majorization, the PEVD and its theoretical foundations will be briefly outlined. The paper then focuses on the applicability of the PEVD and broadband subspace techniques — enabled by the diagonalization and spectral majorization capabilities of PEVD algorithms—to define broadband BSS solutions that generalise well-known narrowband techniques based on the EVD. This is achieved through the analysis of new results from three exemplar broadband BSS applications — underwater acoustics, radar clutter suppression, and domain-weighted broadband beamforming — and their comparison with classical broadband methods

    MVDR broadband beamforming using polynomial matrix techniques

    Get PDF
    This thesis addresses the formulation of and solution to broadband minimum variance distortionless response (MVDR) beamforming. Two approaches to this problem are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers. These are examined based on a novel technique which relies on polynomial matrix formulations. The new scheme is based on the second order statistics of the array sensor measurements in order to estimate a space-time covariance matrix. The beamforming problem can be formulated based on this space-time covariance matrix. Akin to the narrowband problem, where an optimum solution can be derived from the eigenvalue decomposition (EVD) of a constant covariance matrix, this utility is here extended to the broadband case. The decoupling of the space-time covariance matrix in this case is provided by means of a polynomial matrix EVD. The proposed approach is initially exploited to design a GSC beamformer for a uniform linear array, and then extended to the constrained MVDR, or Capon, beamformer and also the GSC with an arbitrary array structure. The uniqueness of the designed GSC comes from utilising the polynomial matrix technique, and its ability to steer the array beam towards an off-broadside direction without the pre-steering stage that is associated with conventional approaches to broadband beamformers. To solve the broadband beamforming problem, this thesis addresses a number of additional tools. A first one is the accurate construction of both the steering vectors based on fractional delay filters, which are required for the broadband constraint formulation of a beamformer, as for the construction of the quiescent beamformer. In the GSC case, we also discuss how a block matrix can be obtained, and introduce a novel paraunitary matrix completion algorithm. For the Capon beamformer, the polynomial extension requires the inversion of a polynomial matrix, for which a residue-based method is proposed that offers better accuracy compared to previously utilised approaches. These proposed polynomial matrix techniques are evaluated in a number of simulations. The results show that the polynomial broadband beamformer (PBBF) steersthe main beam towards the direction of the signal of interest (SoI) and protects the signal over the specified bandwidth, and at the same time suppresses unwanted signals by placing nulls in their directions. In addition to that, the PBBF is compared to the standard time domain broadband beamformer in terms of their mean square error performance, beam-pattern, and computation complexity. This comparison shows that the PBBF can offer a significant reduction in computation complexity compared to its standard counterpart. Overall, the main benefits of this approach include beam steering towards an arbitrary look direction with no need for pre-steering step, and a potentially significant reduction in computational complexity due to the decoupling of dependencies of the quiescent beamformer, blocking matrix, and the adaptive filter compared to a standard broadband beamformer implementation.This thesis addresses the formulation of and solution to broadband minimum variance distortionless response (MVDR) beamforming. Two approaches to this problem are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers. These are examined based on a novel technique which relies on polynomial matrix formulations. The new scheme is based on the second order statistics of the array sensor measurements in order to estimate a space-time covariance matrix. The beamforming problem can be formulated based on this space-time covariance matrix. Akin to the narrowband problem, where an optimum solution can be derived from the eigenvalue decomposition (EVD) of a constant covariance matrix, this utility is here extended to the broadband case. The decoupling of the space-time covariance matrix in this case is provided by means of a polynomial matrix EVD. The proposed approach is initially exploited to design a GSC beamformer for a uniform linear array, and then extended to the constrained MVDR, or Capon, beamformer and also the GSC with an arbitrary array structure. The uniqueness of the designed GSC comes from utilising the polynomial matrix technique, and its ability to steer the array beam towards an off-broadside direction without the pre-steering stage that is associated with conventional approaches to broadband beamformers. To solve the broadband beamforming problem, this thesis addresses a number of additional tools. A first one is the accurate construction of both the steering vectors based on fractional delay filters, which are required for the broadband constraint formulation of a beamformer, as for the construction of the quiescent beamformer. In the GSC case, we also discuss how a block matrix can be obtained, and introduce a novel paraunitary matrix completion algorithm. For the Capon beamformer, the polynomial extension requires the inversion of a polynomial matrix, for which a residue-based method is proposed that offers better accuracy compared to previously utilised approaches. These proposed polynomial matrix techniques are evaluated in a number of simulations. The results show that the polynomial broadband beamformer (PBBF) steersthe main beam towards the direction of the signal of interest (SoI) and protects the signal over the specified bandwidth, and at the same time suppresses unwanted signals by placing nulls in their directions. In addition to that, the PBBF is compared to the standard time domain broadband beamformer in terms of their mean square error performance, beam-pattern, and computation complexity. This comparison shows that the PBBF can offer a significant reduction in computation complexity compared to its standard counterpart. Overall, the main benefits of this approach include beam steering towards an arbitrary look direction with no need for pre-steering step, and a potentially significant reduction in computational complexity due to the decoupling of dependencies of the quiescent beamformer, blocking matrix, and the adaptive filter compared to a standard broadband beamformer implementation

    Polynomial eigenvalue decomposition for multichannel broadband signal processing

    Get PDF
    This article is devoted to the polynomial eigenvalue decomposition (PEVD) and its applications in broadband multichannel signal processing, motivated by the optimum solutions provided by the eigenvalue decomposition (EVD) for the narrow-band case [1], [2]. In general, the successful techniques from narrowband problems can also be applied to broadband ones, leading to improved solutions. Multichannel broadband signals arise at the core of many essential commercial applications such as telecommunications, speech processing, healthcare monitoring, astronomy and seismic surveillance, and military technologies like radar, sonar and communications [3]. The success of these applications often depends on the performance of signal processing tasks, including data compression [4], source localization [5], channel coding [6], signal enhancement [7], beamforming [8], and source separation [9]. In most cases and for narrowband signals, performing an EVD is the key to the signal processing algorithm. Therefore, this paper aims to introduce PEVD as a novel mathematical technique suitable for many broadband signal processing applications

    Frequency smoothed robust Capon beamformer applied to medical ultrasound imaging

    No full text
    Recently, adaptive array beamforming has been applied to medical ultrasound imaging and achieved promising performance improvement. However, the current robust Capon beamformer with spatial smoothing (RCB-SS) is implemented in the time domain, which does not fully utilise the large bandwidth of ultrasound signals and spatial smoothing reduces the effective aperture. In this dissertation, we propose a robust Capon beamformer with frequency smoothing (RCB-FS) and compare its performance with RCB-SS. To further reduce the speckle noise and utilise the large bandwidth of the signal, we combine RCB-FS and frequency com- pounding (FC) and propose a robust Capon beamformer with frequency smoothing combined with frequency compounding (RCB-FS-FC). The proposed RCB-FS method shows a narrower mainlobe width, lower sidelobes, better reconstruction at higher depths and less speckle than RCB-SS. FC is an e ective method to improve the contrast resolution and suppress speckle noise by combining sub-band images, at the expense of resolution. Compared to standard FC, the proposed RCB-FS-FC method has a better contrast resolution and speckle reduction and a significant improvement in resolution. RCB-FS offers a promising approach to find the optimal weights for the transducers in forming the sub-band images needed for frequency compounding

    Implementation and evaluation of a low complexity microphone array for speaker recognition

    Get PDF
    Includes bibliographical references (leaves 83-86).This thesis discusses the application of a microphone array employing a noise canceling beamforming technique for improving the robustness of speaker recognition systems in a diffuse noise field

    Performance trade-offs in sequential matrix diagonalisation search strategies

    Get PDF
    Recently a selection of sequential matrix diagonalisation (SMD) algorithms have been introduced which approximate polynomial eigenvalue decomposition of parahermitian matrices. These variants differ only in the search methods that are used to bring energy onto the zero-lag. Here we analyse the search methods in terms of their computational complexities for different sizes of parahermitian matrices which are verified through simulated execution times. Another important factor for these search methods is their ability to transfer energy. Simulations show that the more computationally complex search methods transfer a greater proportion of the off-diagonal energy onto the zero-lag over a selected range of parahermitian matrix sizes. Despite their higher cost per iteration experiments indicate that the more complex search algorithms still converge faster in real time
    corecore