3,435 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    An antenna switching based NOMA scheme for IEEE 802.15.4 concurrent transmission

    No full text
    This paper introduces a Non-Orthogonal Multiple Access (NOMA) scheme to support concurrent transmission of multiple IEEE 802.15.4 packets. Unlike collision avoidance Multiple Access Control (MAC), concurrent transmission supports Concurrent-MAC (C-MAC) where packet collision is allowed. The communication latency can be reduced by C-MAC because a user can transmit immediately without waiting for the completion of other users’ transmission. The big challenge of concurrent transmission is that error free demodulation of multiple collided packets hardly can be achieved due to severe Multiple Access Interference (MAI). To improve the demodulation performance with MAI presented, we introduce an architecture with multiple switching antennas sharing a single analog transceiver to capture spatial character of different users. Successive Interference Cancellation (SIC) algorithm is designed to separate collided packets by utilizing the spatial character. Simulation shows that at least five users can transmit concurrently to the SIC receiver equipped with eight antennas without sacrificing Packet Error Rate

    Energy efficiency of mmWave massive MIMO precoding with low-resolution DACs

    Full text link
    With the congestion of the sub-6 GHz spectrum, the interest in massive multiple-input multiple-output (MIMO) systems operating on millimeter wave spectrum grows. In order to reduce the power consumption of such massive MIMO systems, hybrid analog/digital transceivers and application of low-resolution digital-to-analog/analog-to-digital converters have been recently proposed. In this work, we investigate the energy efficiency of quantized hybrid transmitters equipped with a fully/partially-connected phase-shifting network composed of active/passive phase-shifters and compare it to that of quantized digital precoders. We introduce a quantized single-user MIMO system model based on an additive quantization noise approximation considering realistic power consumption and loss models to evaluate the spectral and energy efficiencies of the transmit precoding methods. Simulation results show that partially-connected hybrid precoders can be more energy-efficient compared to digital precoders, while fully-connected hybrid precoders exhibit poor energy efficiency in general. Also, the topology of phase-shifting components offers an energy-spectral efficiency trade-off: active phase-shifters provide higher data rates, while passive phase-shifters maintain better energy efficiency.Comment: Published in IEEE Journal of Selected Topics in Signal Processin

    Green inter-cluster interference management in uplink of multi-cell processing systems

    Get PDF
    This paper examines the uplink of cellular systems employing base station cooperation for joint signal processing. We consider clustered cooperation and investigate effective techniques for managing inter-cluster interference to improve users' performance in terms of both spectral and energy efficiency. We use information theoretic analysis to establish general closed form expressions for the system achievable sum rate and the users' Bit-per-Joule capacity while adopting a realistic user device power consumption model. Two main inter-cluster interference management approaches are identified and studied, i.e., through: 1) spectrum re-use; and 2) users' power control. For the former case, we show that isolating clusters by orthogonal resource allocation is the best strategy. For the latter case, we introduce a mathematically tractable user power control scheme and observe that a green opportunistic transmission strategy can significantly reduce the adverse effects of inter-cluster interference while exploiting the benefits from cooperation. To compare the different approaches in the context of real-world systems and evaluate the effect of key design parameters on the users' energy-spectral efficiency relationship, we fit the analytical expressions into a practical macrocell scenario. Our results demonstrate that significant improvement in terms of both energy and spectral efficiency can be achieved by energy-aware interference management
    • …
    corecore