31,835 research outputs found

    Universal generalization and universal inter-item confusability

    Get PDF
    We argue that confusability between items should be distinguished from generalization between items. Shepard's data concern confusability, but the theories proposed by Shepard and by Tenenbaum & Griffiths concern generalization, indicating a gap between theory and data. We consider the empirical and theoretical work involved in bridging this gap

    Learning Social Relation Traits from Face Images

    Full text link
    Social relation defines the association, e.g, warm, friendliness, and dominance, between two or more people. Motivated by psychological studies, we investigate if such fine-grained and high-level relation traits can be characterised and quantified from face images in the wild. To address this challenging problem we propose a deep model that learns a rich face representation to capture gender, expression, head pose, and age-related attributes, and then performs pairwise-face reasoning for relation prediction. To learn from heterogeneous attribute sources, we formulate a new network architecture with a bridging layer to leverage the inherent correspondences among these datasets. It can also cope with missing target attribute labels. Extensive experiments show that our approach is effective for fine-grained social relation learning in images and videos.Comment: To appear in International Conference on Computer Vision (ICCV) 201

    MBMF: Model-Based Priors for Model-Free Reinforcement Learning

    Full text link
    Reinforcement Learning is divided in two main paradigms: model-free and model-based. Each of these two paradigms has strengths and limitations, and has been successfully applied to real world domains that are appropriate to its corresponding strengths. In this paper, we present a new approach aimed at bridging the gap between these two paradigms. We aim to take the best of the two paradigms and combine them in an approach that is at the same time data-efficient and cost-savvy. We do so by learning a probabilistic dynamics model and leveraging it as a prior for the intertwined model-free optimization. As a result, our approach can exploit the generality and structure of the dynamics model, but is also capable of ignoring its inevitable inaccuracies, by directly incorporating the evidence provided by the direct observation of the cost. Preliminary results demonstrate that our approach outperforms purely model-based and model-free approaches, as well as the approach of simply switching from a model-based to a model-free setting.Comment: After we submitted the paper for consideration in CoRL 2017 we found a paper published in the recent past with a similar method (see related work for a discussion). Considering the similarities between the two papers, we have decided to retract our paper from CoRL 201
    corecore