Social relation defines the association, e.g, warm, friendliness, and
dominance, between two or more people. Motivated by psychological studies, we
investigate if such fine-grained and high-level relation traits can be
characterised and quantified from face images in the wild. To address this
challenging problem we propose a deep model that learns a rich face
representation to capture gender, expression, head pose, and age-related
attributes, and then performs pairwise-face reasoning for relation prediction.
To learn from heterogeneous attribute sources, we formulate a new network
architecture with a bridging layer to leverage the inherent correspondences
among these datasets. It can also cope with missing target attribute labels.
Extensive experiments show that our approach is effective for fine-grained
social relation learning in images and videos.Comment: To appear in International Conference on Computer Vision (ICCV) 201