18,988 research outputs found

    Visualization of Time-Varying Data from Atomistic Simulations and Computational Fluid Dynamics

    Get PDF
    Time-varying data from simulations of dynamical systems are rich in spatio-temporal information. A key challenge is how to analyze such data for extracting useful information from the data and displaying spatially evolving features in the space-time domain of interest. We develop/implement multiple approaches toward visualization-based analysis of time-varying data obtained from two common types of dynamical simulations: molecular dynamics (MD) and computational fluid dynamics (CFD). We also make application case studies. Parallel first-principles molecular dynamics simulations produce massive amounts of time-varying three-dimensional scattered data representing atomic (molecular) configurations for material system being simulated. Rendering the atomic position-time series along with the extracted additional information helps us understand the microscopic processes in complex material system at atomic length and time scales. Radial distribution functions, coordination environments, and clusters are computed and rendered for visualizing structural behavior of the simulated material systems. Atom (particle) trajectories and displacement data are extracted and rendered for visualizing dynamical behavior of the system. While improving our atomistic visualization system to make it versatile, stable and scalable, we focus mainly on atomic trajectories. Trajectory rendering can represent complete simulation information in a single display; however, trajectories get crowded and the associated clutter/occlusion problem becomes serious for even moderate data size. We present and assess various approaches for clutter reduction including constrained rendering, basic and adaptive position merging, and information encoding. Data model with HDF5 and partial I/O, and GLSL shading are adopted to enhance the rendering speed and quality of the trajectories. For applications, a detailed visualization-based analysis is carried out for simulated silicate melts such as model basalt systems. On the other hand, CFD produces temporally and spatially resolved numerical data for fluid systems consisting of a million to tens of millions of cells (mesh points). We implement time surfaces (in particular, evolving surfaces of spheres) for visualizing the vector (flow) field to study the simulated mixing of fluids in the stirred tank

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Speeding up rendering of hybrid surface and volume models

    Get PDF
    Hybrid rendering of volume and polygonal model is an interesting feature of visualization systems, since it helps users to better understand the relationships between internal structures of the volume and fitted surfaces as well as external surfaces. Most of the existing bibliography focuses at the problem of correctly integrating in depth both types of information. The rendering method proposed in this paper is built on these previous results. It is aimed at solving a different problem: how to efficiently access to selected information of a hybrid model. We propose to construct a decision tree (the Rendering Decision Tree), which together with an auxiliary run-length representation of the model avoids visiting unselected surfaces and internal regions during a traversal of the model.Postprint (published version

    Space-time multiresolution approach to atomistic visualization

    Get PDF
    Time-varying three-dimensional positional atomistic data are rich in spatial and temporal information. The problem is to understand them. This work offers multiple approaches that enable such understanding. An interactive atomistic visualization system is developed integrating complex analyses with visualization to present the data on space-time multiresolution basis facilitating the information extraction and generate understanding. This work also shows the usefulness of such an integrated approach. The information obtained from the analyses represents the system at multiple length and time scales. Radial distribution function (RDF) provides a complete average spatial map of the distribution of the atoms in the system which is probed to explore the system at different length scales. Coordination environments and cluster structures are visualized to look at the short range structures. Rings are visualized to understand the medium range structure. Displacement data and covariance matrices are visualized to understand the dynamical behaviors. Combinations of rendering techniques including animation, color map, sphere, polygonal and ellipsoid representations, pathlines and glyphs are used during the visualization process. The three-dimensional atomic configurations are reproduced accurately during rendering because of their physical significance while attributes such as coordination number, coordination stability and atomic species lack direct physical relevance and provide additional flexibilities in rendering. The performance results show interactive frame rates are achievable for systems consisting upto a thousand atoms. Such systems are typical of the systems simulated using first principles molecular dynamics simulations. The effectiveness and the usefulness of this work are justified for complex material systems using silicate and oxide liquids for visual analyses. The exploratory approach taken here has not been reported anywhere else before. The major contributions of this works are: 1. A new approach to the atomistic visualization advocating a formal integration of data analyses into the visualization system to improve the effectiveness and also present an implementation of the exploratory atomistic visualization system with integrated spatio-temporal analytical techniques. 2. The modeling of coordination environments, stability of the coordination environments, clusters, ring structures and diffusion for individual atoms. 3. The use of the visualization system for visual analysis of various liquid mineral systems of geophysical relevance

    Generating Light Estimation for Mixed-reality Devices through Collaborative Visual Sensing

    Get PDF
    abstract: Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a physical scene in all directions. GLEAM optionally operate across multiple mobile mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved estimation. The system implements policies that prioritize resolution, coverage, or update interval of the illumination estimation depending on the situational needs of the virtual scene and physical environment. To evaluate the runtime performance and perceptual efficacy of the system, GLEAM was implemented on the Unity 3D Game Engine. The implementation was deployed on Android and iOS devices. On these implementations, GLEAM can prioritize dynamic estimation with update intervals as low as 15 ms or prioritize high spatial quality with update intervals of 200 ms. User studies across 99 participants and 26 scene comparisons reported a preference towards GLEAM over other lighting techniques in 66.67% of the presented augmented scenes and indifference in 12.57% of the scenes. A controlled lighting user study on 18 participants revealed a general preference for policies that strike a balance between resolution and update rate.Dissertation/ThesisMasters Thesis Computer Science 201
    • …
    corecore