6 research outputs found

    Extracting Contextualized Quantity Facts from Web Tables

    Get PDF

    Entities with quantities : extraction, search, and ranking

    Get PDF
    Quantities are more than numeric values. They denote measures of the world’s entities such as heights of buildings, running times of athletes, energy efficiency of car models or energy production of power plants, all expressed in numbers with associated units. Entity-centric search and question answering (QA) are well supported by modern search engines. However, they do not work well when the queries involve quantity filters, such as searching for athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. State-of-the-art systems fail to understand the quantities, including the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.). QA systems based on structured knowledge bases (KBs) also fail as quantities are poorly covered by state-of-the-art KBs. In this dissertation, we developed new methods to advance the state-of-the-art on quantity knowledge extraction and search.Zahlen sind mehr als nur numerische Werte. Sie beschreiben Maße von Entitäten wie die Höhe von Gebäuden, die Laufzeit von Sportlern, die Energieeffizienz von Automodellen oder die Energieerzeugung von Kraftwerken - jeweils ausgedrückt durch Zahlen mit zugehörigen Einheiten. Entitätszentriete Anfragen und direktes Question-Answering werden von Suchmaschinen häufig gut unterstützt. Sie funktionieren jedoch nicht gut, wenn die Fragen Zahlenfilter beinhalten, wie z. B. die Suche nach Sportlern, die 200m unter 20 Sekunden gelaufen sind, oder nach Unternehmen mit einem Quartalsumsatz von über 2 Milliarden US-Dollar. Selbst moderne Systeme schaffen es nicht, Quantitäten, einschließlich der genannten Bedingungen (weniger als, über, etc.), der Maßeinheiten (Sekunden, Dollar, etc.) und des Kontexts (200-Meter-Rennen, Quartalsumsatz usw.), zu verstehen. Auch QA-Systeme, die auf strukturierten Wissensbanken (“Knowledge Bases”, KBs) aufgebaut sind, versagen, da quantitative Eigenschaften von modernen KBs kaum erfasst werden. In dieser Dissertation werden neue Methoden entwickelt, um den Stand der Technik zur Wissensextraktion und -suche von Quantitäten voranzutreiben. Unsere Hauptbeiträge sind die folgenden: • Zunächst präsentieren wir Qsearch [Ho et al., 2019, Ho et al., 2020] – ein System, das mit erweiterten Fragen mit Quantitätsfiltern umgehen kann, indem es Hinweise verwendet, die sowohl in der Frage als auch in den Textquellen vorhanden sind. Qsearch umfasst zwei Hauptbeiträge. Der erste Beitrag ist ein tiefes neuronales Netzwerkmodell, das für die Extraktion quantitätszentrierter Tupel aus Textquellen entwickelt wurde. Der zweite Beitrag ist ein neuartiges Query-Matching-Modell zum Finden und zur Reihung passender Tupel. • Zweitens, um beim Vorgang heterogene Tabellen einzubinden, stellen wir QuTE [Ho et al., 2021a, Ho et al., 2021b] vor – ein System zum Extrahieren von Quantitätsinformationen aus Webquellen, insbesondere Ad-hoc Webtabellen in HTML-Seiten. Der Beitrag von QuTE umfasst eine Methode zur Verknüpfung von Quantitäts- und Entitätsspalten, für die externe Textquellen genutzt werden. Zur Beantwortung von Fragen kontextualisieren wir die extrahierten Entitäts-Quantitäts-Paare mit informativen Hinweisen aus der Tabelle und stellen eine neue Methode zur Konsolidierung und verbesserteer Reihung von Antwortkandidaten durch Inter-Fakten-Konsistenz vor. • Drittens stellen wir QL [Ho et al., 2022] vor – eine Recall-orientierte Methode zur Anreicherung von Knowledge Bases (KBs) mit quantitativen Fakten. Moderne KBs wie Wikidata oder YAGO decken viele Entitäten und ihre relevanten Informationen ab, übersehen aber oft wichtige quantitative Eigenschaften. QL ist frage-gesteuert und basiert auf iterativem Lernen mit zwei Hauptbeiträgen, um die KB-Abdeckung zu verbessern. Der erste Beitrag ist eine Methode zur Expansion von Fragen, um einen größeren Pool an Faktenkandidaten zu erfassen. Der zweite Beitrag ist eine Technik zur Selbstkonsistenz durch Berücksichtigung der Werteverteilungen von Quantitäten

    Thinking outside the graph: scholarly knowledge graph construction leveraging natural language processing

    Get PDF
    Despite improved digital access to scholarly knowledge in recent decades, scholarly communication remains exclusively document-based. The document-oriented workflows in science publication have reached the limits of adequacy as highlighted by recent discussions on the increasing proliferation of scientific literature, the deficiency of peer-review and the reproducibility crisis. In this form, scientific knowledge remains locked in representations that are inadequate for machine processing. As long as scholarly communication remains in this form, we cannot take advantage of all the advancements taking place in machine learning and natural language processing techniques. Such techniques would facilitate the transformation from pure text based into (semi-)structured semantic descriptions that are interlinked in a collection of big federated graphs. We are in dire need for a new age of semantically enabled infrastructure adept at storing, manipulating, and querying scholarly knowledge. Equally important is a suite of machine assistance tools designed to populate, curate, and explore the resulting scholarly knowledge graph. In this thesis, we address the issue of constructing a scholarly knowledge graph using natural language processing techniques. First, we tackle the issue of developing a scholarly knowledge graph for structured scholarly communication, that can be populated and constructed automatically. We co-design and co-implement the Open Research Knowledge Graph (ORKG), an infrastructure capable of modeling, storing, and automatically curating scholarly communications. Then, we propose a method to automatically extract information into knowledge graphs. With Plumber, we create a framework to dynamically compose open information extraction pipelines based on the input text. Such pipelines are composed from community-created information extraction components in an effort to consolidate individual research contributions under one umbrella. We further present MORTY as a more targeted approach that leverages automatic text summarization to create from the scholarly article's text structured summaries containing all required information. In contrast to the pipeline approach, MORTY only extracts the information it is instructed to, making it a more valuable tool for various curation and contribution use cases. Moreover, we study the problem of knowledge graph completion. exBERT is able to perform knowledge graph completion tasks such as relation and entity prediction tasks on scholarly knowledge graphs by means of textual triple classification. Lastly, we use the structured descriptions collected from manual and automated sources alike with a question answering approach that builds on the machine-actionable descriptions in the ORKG. We propose JarvisQA, a question answering interface operating on tabular views of scholarly knowledge graphs i.e., ORKG comparisons. JarvisQA is able to answer a variety of natural language questions, and retrieve complex answers on pre-selected sub-graphs. These contributions are key in the broader agenda of studying the feasibility of natural language processing methods on scholarly knowledge graphs, and lays the foundation of which methods can be used on which cases. Our work indicates what are the challenges and issues with automatically constructing scholarly knowledge graphs, and opens up future research directions

    Bridging Quantities in Tables and Text

    No full text
    corecore