2,331 research outputs found

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    Alignment of contrast enhanced medical images

    Get PDF
    The re-alignment of series of medical images in which there are multiple contrast variations is difficult. The reason for this is that the popularmeasures of image similarity used to drive the alignment procedure do not separate the influence of intensity variation due to image feature motion and intensity variation due to feature enhancement. In particular, the appearance of new structure poses problems when it has no representation in the original image. The acquisition of many images over time, such as in dynamic contrast enhanced MRI, requires that many images with different contrast be registered to the same coordinate system, compounding the problem. This thesis addresses these issues, beginning by presenting conditions under which conventional registration fails and proposing a solution in the form of a ’progressive principal component registration’. The algorithm uses a statistical analysis of a series of contrast varying images in order to reduce the influence of contrast-enhancement that would otherwise distort the calculation of the image similarity measures used in image registration. The algorithm is shown to be versatile in that it may be applied to series of images in which contrast variation is due to either temporal contrast enhancement changes, as in dynamic contrast-enhanced MRI or intrinsically in the image selection procedure as in diffusion weighted MRI

    Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI.

    Get PDF
    Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement

    Integration of Spatial Distortion Effects in a 4D Computational Phantom for Simulation Studies in Extra-Cranial MRI-guided Radiation Therapy: Initial Results.

    Get PDF
    PurposeSpatial distortions in magnetic resonance imaging (MRI) are mainly caused by inhomogeneities of the static magnetic field, nonlinearities in the applied gradients, and tissue‐specific magnetic susceptibility variations. These factors may significantly alter the geometrical accuracy of the reconstructed MR image, thus questioning the reliability of MRI for guidance in image‐guided radiation therapy. In this work, we quantified MRI spatial distortions and created a quantitative model where different sources of distortions can be separated. The generated model was then integrated into a four‐dimensional (4D) computational phantom for simulation studies in MRI‐guided radiation therapy at extra‐cranial sites.MethodsA geometrical spatial distortion phantom was designed in four modules embedding laser‐cut PMMA grids, providing 3520 landmarks in a field of view of (345 × 260 × 480) mm3. The construction accuracy of the phantom was verified experimentally. Two fast MRI sequences for extra‐cranial imaging at 1.5 T were investigated, considering axial slices acquired with online distortion correction, in order to mimic practical use in MRI‐guided radiotherapy. Distortions were separated into their sources by acquisition of images with gradient polarity reversal and dedicated susceptibility calculations. Such a separation yielded a quantitative spatial distortion model to be used for MR imaging simulations. Finally, the obtained spatial distortion model was embedded into an anthropomorphic 4D computational phantom, providing registered virtual CT/MR images where spatial distortions in MRI acquisition can be simulated.ResultsThe manufacturing accuracy of the geometrical distortion phantom was quantified to be within 0.2 mm in the grid planes and 0.5 mm in depth, including thickness variations and bending effects of individual grids. Residual spatial distortions after MRI distortion correction were strongly influenced by the applied correction mode, with larger effects in the trans‐axial direction. In the axial plane, gradient nonlinearities caused the main distortions, with values up to 3 mm in a 1.5 T magnet, whereas static field and susceptibility effects were below 1 mm. The integration in the 4D anthropomorphic computational phantom highlighted that deformations can be severe in the region of the thoracic diaphragm, especially when using axial imaging with 2D distortion correction. Adaptation of the phantom based on patient‐specific measurements was also verified, aiming at increased realism in the simulation.ConclusionsThe implemented framework provides an integrated approach for MRI spatial distortion modeling, where different sources of distortion can be quantified in time‐dependent geometries. The computational phantom represents a valuable platform to study motion management strategies in extra‐cranial MRI‐guided radiotherapy, where the effects of spatial distortions can be modeled on synthetic images in a virtual environment

    4D-MRI in Radiotherapy

    Get PDF
    Four-dimensional (4D) imaging provides a useful estimation of tissue motion pattern and range for radiation therapy of moving targets. 4D-CT imaging has been a standard care of practice for stereotactic body radiation therapy of moving targets. Recently, 4D-MRI has become an emerging developmental area in radiotherapy. In comparison with 4D-CT imaging, 4D-MRI provides better spatial rendering of radiotherapy targets in abdominal and pelvis regions with improved visualization of soft tissue motion. Successful implementation of 4D-MRI requires an integration of optimized acquisition protocols, advanced image reconstruction techniques, and sufficient hardware capabilities. The proposed chapter intends to introduce basic theories, current research, development, and applications of 4D-MRI in radiotherapy

    Surrogate-driven respiratory motion models for MRI-guided lung radiotherapy treatments

    Get PDF
    An MR-Linac integrates an MR scanner with a radiotherapy delivery system, providing non-ionizing real-time imaging of the internal anatomy before, during and after radiotherapy treatments. Due to spatio-temporal limitations of MR imaging, only high-resolution 2D cine-MR images can be acquired in real-time during MRI-guided radiotherapy (MRIgRT) to monitor the respiratory-induced motion of lung tumours and organs-at-risk. However, temporally-resolved 3D anatomical information is essential for accurate MR guidance of beam delivery and dose estimation of the actually delivered dose. Surrogate-driven respiratory motion models can estimate the 3D motion of the internal anatomy from surrogate signals, producing the required information. The overall aim of this thesis was to tailor a generalized respiratory motion modelling framework for lung MRIgRT. This framework can fit the model directly to unsorted 2D MR images sampling the 3D motion, and to surrogate signals extracted from the 2D cine-MR images acquired on an MR-Linac. It can model breath-to-breath variability and produce a motion compensated super-resolution reconstruction (MCSR) 3D image that can be deformed using the estimated motion. In this work novel MRI-derived surrogate signals were generated from 2D cine-MR images to model respiratory motion for lung cancer patients, by applying principal component analysis to the control point displacements obtained from the registration of the cine-MR images. An MR multi-slice interleaved acquisition potentially suitable for the MR-Linac was developed to generate MRI-derived surrogate signals and build accurate respiratory motion models with the generalized framework for lung cancer patients. The developed models and the MCSR images were thoroughly evaluated for lung cancer patients scanned on an MR-Linac. The results showed that respiratory motion models built with the generalized framework and minimal training data generally produced median errors within the MCSR voxel size of 2 mm, throughout the whole 3D thoracic field-of-view and over the expected lung MRIgRT treatment times
    corecore