5 research outputs found

    Comparison of GLCM and First Order Feature Extraction Methods for Classification of Mammogram Images

    Get PDF
    Breast cancer is one of the main causes of death in women and ranks first in cancer cases in Indonesia. Therefore, an early detection and prevention of breast cancer is necessary, one of which is through mammography procedures. A machine learning classifier such as Support Vector Machines (SVM) could be used as an aid to the doctors and radiologist in diagnosing breast cancer from the mammogram images. The aim of this paper is to compare two feature extraction methods used in SVM, namely the Gray Level Co-Occurrence Matrix (GLCM) and first order with two kernels for each method, namely Gaussian and Polynomial. Classification using SVM method is carried out by testing several parameters such as the value of C, gamma, degree and varying the pixel spacing values ​​in GLCM, which usually in previous studies only used the default pixel spacing. The dataset consists of 500 mammogram images containing 250 benign and malignant images, respectively. This study is expected to find out the best method with the highest accuracy between these two texture feature extractions and and able to distinguish between benign and malignant classes correctly. The result achieved that Gray Level Co-Occurrence Matrix (GLCM) feature extraction method with both Gaussian and Polynomial kernel yields the best performance with an accuracy of 89%

    ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    Get PDF
    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology

    Mammography image classification using image processing and support vector machine

    Get PDF

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    Optimisation of Positron Emission Tomography based target volume delineation in head and neck radiotherapy

    Get PDF
    Automatic segmentation of tumours using Positron Emission Tomography (PET) was recommended for radiotherapy treatment (RT) planning of head and neck (H&N) cancer patients, and investigated in the scientific literature without reaching a consensus on the optimal process. This project aimed at evaluating the performance of PETCbased automatic segmentation (PETCAS) methods and developing an optimal PETC AS process to be used at Velindre Cancer Centre (VCC). For this purpose, ten algorithms were implemented to represent the most promising PETCAS approaches from a systematic review of the literature. The algorithms’ performance was evaluated on filled phantom inserts with variable size, geometry, tumour intensity and image noise. The impact of thick insert plastic walls on both image quantification and segmentation was thoroughly assessed. The PETCAS methods were further applied to realistic H&N tumours, modelled using a printed subresolution sandwich phantom developed and calibrated in house. Results showed that different PETCAS performed best for different types of target objects. An Advanced decision TreeCbased Learning Algorithm for Automatic Segmentation (ATLAAS) was therefore developed and validated for the selection of the optimal PETCAS approach according to the target object characteristics. Finally, a protocol was designed for the use of PETCAS within RT planning at VCC. The protocol was used retrospectively on a group of 10 oropharyngeal cancer patients, and the results highlighted the additional information brought by PET beyond anatomical imaging. In a prospective study on 10 additional patients, PETCAS replaced manual PET/CT delineation, and accounted for up to 33% of the modifications of manually drawn CT/MRI contours to derive the final planning contour. This study demonstrated the usefulness and reliability of the PETCAS method in RT planning, and led to modifying the clinical workflow for H&N patients at VCC. This work has the potential to be extended to other tumour sites and institutions
    corecore