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Summary

Automatic segmentation of tumours using Positron Emission Tomography
(PET) was recommended for radiotherapy treatment (RT) planning of head and neck
(H&N) cancer patients, and investigated in the scientific literature without reaching a
consensus on the optimal process. This project aimed at evaluating the performance of
PET-based automatic segmentation (PET-AS) methods and developing an optimal PET-
AS process to be used at Velindre Cancer Centre (VCC). For this purpose, ten algorithms
were implemented to represent the most promising PET-AS approaches from a
systematic review of the literature. The algorithms’ performance was evaluated on
filled phantom inserts with variable size, geometry, tumour intensity and image noise.
The impact of thick insert plastic walls on both image quantification and segmentation
was thoroughly assessed. The PET-AS methods were further applied to realistic H&N
tumours, modelled using a printed subresolution sandwich phantom developed and
calibrated in house. Results showed that different PET-AS performed best for different
types of target objects. An Advanced decision Tree-based Learning Algorithm for
Automatic Segmentation (ATLAAS) was therefore developed and validated for the
selection of the optimal PET-AS approach according to the target object characteristics.
Finally, a protocol was designed for the use of PET-AS within RT planning at VCC. The
protocol was used retrospectively on a group of 10 oropharyngeal cancer patients, and
the results highlighted the additional information brought by PET beyond anatomical
imaging. In a prospective study on 10 additional patients, PET-AS replaced manual
PET/CT delineation, and accounted for up to 33% of the modifications of manually
drawn CT/MRI contours to derive the final planning contour. This study demonstrated
the usefulness and reliability of the PET-AS method in RT planning, and led to
modifying the clinical workflow for H&N patients at VCC. This work has the potential to

be extended to other tumour sites and institutions.
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Chapter I. Introduction

I. A. Management of Head and Neck cancer

Head and Neck (H&N) cancer is one of the most common cancers in the
developed countries, representing 5% of cancers worldwide, with more than 6500
diagnoses in England in 2012 [1]. H&N cancer is most commonly linked to excessive
and prolonged consumption of tobacco or alcohol, but can also be caused by viruses
such as the Human Papillomavirus, especially in young people [2]. H&N cancer refers
to tumours originating in the anatomical regions of the oral and nasal cavity, larynx,
pharynx and sinuses. It occurs most often in the oropharynx, although laryngeal and
pharyngeal tumours account for more deaths [2]. The majority of H&N cancers (90%)
are squamous cell carcinomas (SCCs), corresponding to the growth of the mucosal
membrane called epithelium [1]. These cancers often rapidly progress, and are likely
to spread to the lymph nodes of the neck, as well as other regions of the body.
Tumours are classified following the recently updated TNM (Tumour, Nodes,
Metastases) classification system [3], leading to different cancer management
scenarios. Although efficient treatment can be provided if the disease is detected
early, at present, the chances of survival remain low for advanced disease, with 50-
60% survival rate for 5 years [4]. In particular, recurrence rates reach 15-50% for
H&N SCC patients [5]. This is due to a number of limiting factors such as the intrinsic
tumour radioresistance, the lack of accuracy of current anatomical imaging to
determine the extent of disease, and the proximity of surrounding Organs At Risk
(OARs) making the dose delivery challenging.

Most H&N cancer patients receive a combination of treatment, including
chemotherapy, radiotherapy and surgery. In the 1990’s, surgery followed by

radiotherapy was considered as the standard of care for advanced stage tumours [6],



and is still used for curative purposes of early stage malignancies. However, for
advanced disease, the complex anatomy of the H&N makes it difficult to remove all
tumour cells without damaging surrounding organs. H&N surgery is, therefore, often
associated with life changing cosmetic damage for the patient, and an increased risk of
deteriorating vital or essential body functions, such as speech, swallowing and
breathing.

In an effort to reduce the toxicity associated with H&N cancer treatments, a
small number of authors have published comparative studies showing that treatment
with chemo-radiotherapy (cisplatin and fluorouracil) instead of postoperative
radiotherapy, allowed organ preservation whilst maintaining local control of the
disease and similar survival rates [7], [8].

A meta-analysis of randomised trials conducted between 1965 and 2000
showed a 4.5% survival benefit of the delivery of chemotherapy during the
radiotherapy treatment (RT), called concomitant radio-chemotherapy (CRT), as
opposed to radiotherapy alone [9], making it the new standard of care for advanced
H&N SCC (stage IIl and 1V).

A different type of chemotherapy delivery, induction chemotherapy (IC), is used
for reducing the tumour bulk and reducing the microscopic disease extension before
CRT or RT alone, to improve its efficacy. Although the evidence for improved overall
survival when adding IC to CRT is still sparse, some randomised studies have shown
improved survival rates when using additional administration of docetaxel to
cisplatin/5-fluorouracil (5-FU)) CRT [10], [11]. IC is currently used in a number of
centres in addition to CRT with high survival rates obtained [12].

Alternatively, biological therapies can be used to target the tumour cells and
stop the progression of the disease through a number of different possible mechanisms.
Cetuximab is an antibody used for the down-regulation of the epidermal growth factor

receptor (EGFR), which is overexpressed in cancerous cells, leading to accelerated cell



repopulation. There is already some evidence that treatment with Cetuximab for
patients undergoing radical radiotherapy increases progression-free survival [13],
which has made it the new standard of care alternative to platinum-based
chemotherapy.

A small number of studies have focused on the identification of failure patterns
within current standard treatments. Pigott et al. observed 97% failure within the centre
of the tumour in H&N patients treated with radical radiotherapy [14]. The high
probability of recurrence within the high dose treatment volume was confirmed by
other more recent studies [12]. These results suggest that alternative treatment
delivery protocols have the potential to increase locoregional control by targeting
tumour areas with high intrinsic radioresistance. In particular, this makes the case for
the definition of an additional sub-volume within the tumour for which the dose could
be increased or escalated during treatment.

Tumour hypoxia is also a factor that can affect the tumour radiosensitivity. It
was suggested that hypoxic regions require a boost of 120-150% to reach normal
control rates. Adapting the treatment to hypoxic regions was shown to increase the
overall therapeutic benefit [11]. However, there is still a lack of current evidence of

improved outcomes when incorporating hypoxia information into clinical management.

I. B. Challenges in radiotherapy delivery and
planning

The first curative radiation therapy treatment was applied to H&N patients as
early as 1899, after the discovery of X-rays by Wilhelm Réntgen in 1896. It involves
irradiating the tumour with ionizing radiation beams, causing damage to the DNA of
the targeted cells, leading to the death of radiosensitive tumour cells, which cannot
repair themselves.

In the H&N region, the total radiation doses required to eradicate the disease



(up to 70 Gy in 35 fractions over 7 weeks) lead to significant acute and late toxicities,
because of the proximity of OARs around the tumour. These can include mucositis,
xerostomia, dysphagia, radiation dermatitis, pain and fatigue, and at a later stage
osteoradionecrosis, skin fibrosis, all resulting in significant morbidity and reduced
quality of life during RT [16]. This shows the importance of accurate treatment delivery
and planning for H&N patients.

Major advances in the radiotherapy delivery over the last 2 decades have
greatly improved the treatment accuracy. Previous techniques involved irradiating the
neck via two parallel beams, leading to a homogeneous dose delivered to the whole
neck area. The development of Intensity Modulated Radiotherapy Treatment (IMRT)
using a larger number of beams (typically 5-7), coupled with a simultaneous integrated
boost technique, allowed shaping of the dose delivered to the treatment area, allowing
sparing of the surrounding normal tissues. The implementation of IMRT has seen a
reduction in toxicities such as xerostomia, caused by the irradiation of the parotid
glands during treatment, for the same overall survival rates [17].

However, accurate targeting of the tumour requires careful planning of the
beams’ shape and position. The time-consuming RT planning is done by dedicated
software, which calculates the optimal beam arrangement, based on contour
information determined by the planning clinician for the tumour and OARs.

These contours are commonly drawn using information from anatomical
imaging, such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI),
which are sometimes combined to provide the planning contours. The definition of the
target dose volume involves different contours defined in guidelines of the Report 50 of
the International Commission on Radiation Units and Measurements [18]:

* Gross Target Volume (GTV), corresponding to the tumour burden,
* C(linical Treatment Volume (CTV), which is an extension of the GTV

with a margin to account for possible microscopic disease extension,



* Planning Target Volume (PTV), which adds a security margin to the
CTV to account for errors in the patient positioning or dose delivery.

With current technologies allowing high precision dose delivery, GTV
delineation inaccuracy was recently identified as the major source of error in RT
delivery [19]. As a result, there is growing interest in the use of additional information,
complementary to commonly used anatomical imaging, provided by other imaging
techniques. In particular, a number of clinical oncology groups have investigated the
use of Positron Emission Tomography (PET) to improve the accuracy of GTV

delineation for RT planning.

I. C. Role of functional imaging in H&N cancer
care

The current standard of care for imaging H&N cancer patients involves the
acquisition and interpretation of CT and MRI scans. Both modalities provide volumetric
and anatomical information. CT and MRI information is used for diagnosis, staging and
treatment response assessment and widely used for GTV delineation. The main
advantages of CT are its high resolution (1 mm or less for both slice thickness and
transverse voxel width), absence of geometrical distortions, and the fact that it
provides an estimate of the electron density, which is used in the dose calculation
process. However, soft tissue contrast in CT is poor, which leads to large delineation
variability across observers [20], [21]. Furthermore, CT imaging is prone to artefacts
caused by metallic implants, which can significantly alter the quality of scans in regions
such as the oral cavity. MRI data, with different sequences (T1-weighted, T2-weighted,
or diffusion weighted MRI) show higher soft tissue contrast and allow better
identification of the bone extension. This can potentially lead to smaller inter-observer
variability and better accuracy in the GTV delineation when used in combination with

CT information [22], [23]. However, no improvement in GTV delineation accuracy was



shown when using MRI instead of CT in sites such as pharyngolaryngeal tumours [24],
[25]. The heterogeneity often observed within tumours has led a number of authors to
recommend the use of additional information for identifying regions of different
metabolic activity and biology, which might benefit from different types of treatment.
Functional imaging techniques exist, which provide biologic information of the tissues,
and can therefore be used to provide additional information to commonly used
anatomical CT or MRI imaging. Such information can be used to define one or more
biological tumour volumes (BTVs) and potentially increase outcomes.

Positron Emission Tomography (PET) is a functional imaging technique used
for quantifying the accumulation of a given radiotracer within the body. It was
developed in the 1950’s and applied for the first time in 1953 by Sweet and Bronwell
[26]. The technique relies on the simultaneous detection of 511 keV gamma ray pairs
emitted during the annihilation of a positron with an electron encountered in the
surrounding tissue. The positron is itself emitted by the radioactive substance, or
radionuclide, injected into the blood flow of the subject to image. The term tomography
refers to fact that the image is obtained by acquiring consecutive horizontal slices of the
imaged subject, which, for PET imaging systems, progresses horizontally through the
vertical detector ring containing the detectors (the gantry).

PET most commonly uses the radiopharmaceutical 2-deoxy-2-[!8F]fluoro-D-
glucose (FDG), a molecule of glucose on which Fluorine-18 (18F), a radioactive isotope

of F, has been substituted to a ring hydroxyl group, as shown on Figure 1.
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Figure 1. Schematic of a 2-deoxy-2-[18F]fluoro-D-glucose

The half-life of 110 min of 18F allows enough time for the tracer to be taken up
by the metabolism before imaging. It also ensures a minimum risk to the patient, as the
radioactivity of FDG will decrease to a negligible level within a few hours. As an
example, the dose of 400 MBq injected to a patient would have decreased to 9.1 kBq
after 10 hours. It also makes it possible to produce the radiopharmaceutical at facilities
that may be a few hours away from the institution where they will be used. In addition,
FDG proves ideal as a tracer, as the high energy of the photons emitted by the
annihilation with an electron of the positron issued from !8F decay allows a good
penetration in the biological tissues [27].

The main advantage of FDG as a radiopharmaceutical lies with its biological
properties. First, FDG is an analogue of the glucose molecule, which allows it to
penetrate cell membranes with the sodium and glucose transport systems [28]. The
absence of one of its hydroxyl groups, compared to the glucose molecule, ensures it is
not further metabolised. A phosphorylation mechanism occurring when the molecule
enters the cell causes it to remain trapped until it decays. Non-decaying molecules are
then rejected by the body via the urinary system. FDG therefore allows identifying
regions with high glucose uptake such as the brain, heart, and rapidly proliferating cell
clusters. Findings from Otto Warbur et al in 1927 showed that tumour tissue was

supplied with 70 mg of glucose for 100 mL of blood, compared to 2-16 mg on average



for normal tissue [29]. This causes FDG to also highlight metabolically active tumour
cells within healthy tissue, making this tracer highly sensitive to the majority of
cancers.

Other radiopharmaceuticals have been developed in the past decade as markers
of different biological pathways, with a promise for use in RT planning. Proliferating
cells show high phospholipidic activity, which is an essential component of the cell
membranes. Tracers based on choline, a precursor in the biosynthesis of phospholipids,
were developed to image this mechanism, for example 11C-choline or 18F -choline. The
reduced renal excretion of choline makes it a marker of choice for prostate cancer. In
the H&N, however, the advantage of these components on 8F-FDG is still unclear due to
a current lack of data [30]. 18F-Fluorothymidinole (18F-FLT) was validated in a number
of studies as another surrogate for tumour cell proliferation, and therefore a marker of
cancer [31]. Recent research has focused on its use for assessment of response to
therapy and delineation for dose escalation purposes [32]. Finally, tracers based on
amino acids allow imaging the protein metabolism, which is increased in cancer cells.
Radiopharmaceuticals such as [Methyl-11C]-methionine (11C-MET), 3-[!8F]-Fluoro-
alpha-methyltyrosine (18F-FMT) and O-(2-[!8F]-Fluorethyl)-tyrosine (18F-FET) have
recently been developed and evaluated for this purpose, but show no clear superiority
identified on 18F -FDG at present [33].

An important area of investigation is the development and validation of
radiopharmaceuticals correlating to tumour hypoxia. Hypoxia is an important
radioresistance factor, and has been shown to correlate with reduced patient outcome
after RT [34]. In addition, specific treatments targeting hypoxic areas are being
developed, including the application of dose escalation to those regions. Hypoxia
imaging can be done with nitroimidazole components for selective binding to hypoxic
cells, which currently include 18F-Fluoromisonidazole (18F-MISO) [35], 18F-

Fluoroazomycin arabinose (18F-FAZA) [36] and 3-18F-fluoro-2-(4-((2-nitro-1H-



imidazol-1-yl) methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol (18F-HX4) [37] as the most
promising. The lipophilic radioactive metal compound é2Cu-methylthiosemicarbazone
(Cu-ATSM) also showed good retention in hypoxic cells [38], but more work is
currently required to better understand the underlying mechanism.

FDG-PET has recently become one of the tools required in the highest standard
of clinical imaging for oncology. Its use is currently recommended by the British
Association of Othorinolaryngology [39] for the diagnosis, staging, and detection of
recurrence in H&N. Reports of clinical experience showed that FDG-PET was
particularly beneficial for:

* Identifying the unknown primary tumour [40]

* Imaging distant metastases [41], [42]

* Excluding abnormalities (e.g. atelectasis: collapsed lung) from RT plan [43]

* Avoiding geographic miss of the gross tumour [44]

* Determining earlier tumour response to therapy compared to CT [28] [45],

especially with the use of texture features characterising the tumour

heterogeneity [45], [46].

As stated by MacManus et al. in 2009, PET imaging is therefore likely to play an
increasingly valuable role in RT planning for a number of cancers [43]. There is already
some evidence of good outcomes or low loco-regional recurrence of patients treated
with PET-guided IMRT and using PET information in defining the GTVs. [47]-[49].
Recent studies have highlighted a number of potential benefits of using PET in GTV
delineation, compared to the use of CT or MRI data.

Firstly, manually segmented contours were shown to be less dependent on the
operator performing the task when using FDG-PET compared to anatomical imaging
([50], [51], [52]). However, work by Riegel et al. revealed significant inter-observer
variations in delineating 16 H&N patients, in the absence of a well-defined delineation
protocol [49]. Experts from the International Atomic Energy Agency (IAEA)
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recommend the use of “a rigorous visual contouring protocol using predefined window
and colour settings and with input from the nuclear medicine physician”, insisting that
it “can give highly reproducible results” [43]. Automatic or semi-automatic
segmentation has the potential to eliminate operator variability. In addition, such
methods can reduce the time consuming task of delineating GTVs down to a few
seconds without requiring a high level of expertise from the operator, although expert
judgment will always remain critical for the validation of the contours. Alternatively,
the availability of FDG-PET to the clinicians as a starting point for manual delineation
also has the potential of speeding up the planning process, as well as reducing inter-
observer variability, as suggested by Davis et al. [54].

Secondly, there is clear evidence to date that FDG-PET-based delineation
provides different information beyond CT and MRI data. A study by Daisne et al., used
CT and MRI contours for comparison, and showed that volumes delineated on PET
were the closest to the volumes of the surgical specimen for nine pharyngolaryngeal
SCC patients, but were not systematically encompassed in the anatomical contours
[24]. Most comparative studies have shown a reduction in the GTV when including PET
in the delineation process [42], [55]. This is in line with recommendations of the IEAE
experts, stating that the planning volumes “should be kept as small as possible to
minimise damage to other tissue” [43]. In a study by Nishioka et al. on 21 H&N cancer
patients [47], the use of fusion between FDG-PET and MRI/CT allowed sparing of the
parotids for 71% of the patients. Barker et al. showed a reduction of the irradiated
volume and significant reduction of the dose to parotid glands when using FDG-PET/CT
fusion compared to CT only in H&N patients [56]. Good clinical outcomes were
obtained in studies using fused FDG-PET/CT for image guided IMRT [48], [57].

In addition to the delineation of GTVs, a growing number of research groups are
focusing on using FDG-PET for defining a dose boosting or dose escalation volume

([58],[59])- This is also supported by findings such as the ones by Wang et al. on 89
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H&N patients, which showed that the use of FDG-PET-based contours could help
avoiding recurrences [5]. In a study of 13 H&N patients, Thorwarth et al. suggest that
dose painting, which specifies local dose levels according to the underlying PET
intensity, is more effective than delivering a uniform boost to the FDG positive area
[60]. However, other tracers might be preferable to FDG in this case, to better consider

tumour heterogeneity (the authors based the dose-painting on using 18F-MISO).

I. D. Challenges for PET imaging in H&N cancer
care

The mechanism of uptake of FDG makes it a tracer specific to highly metabolic
areas. Work by Otto Warburg showed that tumour tissue is supplied with 4 to 30 times
more glucose per 100 mL of blood, compared to normal tissue [29]. In a tabulated
review of findings in more than 14000 clinical PET studies, Gambhir et al. found an
average sensitivity of FDG-PET of 84% in clinical evaluation, and a specificity of 88%
[61]. Work by Laubenbacher et al. found significantly higher sensitivity and specificity
for PET compared to MRI on 22 H&N patients in the identification of lymph node
(90%/96% compared to 78%/71%) and in the involved neck side (89%/100%
compared to 72%/56%) [62].

However, FDG-PET imaging is also subject to a number of artefacts and should
be interpreted with caution. First, FDG uptake can occur in healthy tissue in some cases,
potentially causing false positives in the interpretation of the FDG-PET data. The
experts of the IAEA 2006-2007 commission issued a report in 2009 warning that the
uptake of FDG in tumours is affected by a range of factors including tumour blood flow
[63], activity of glucose transporters [64], activity of hexokinase, and glucose
consumption [65]. As a consequence, FDG uptake can occur in thymic hyperplasia, fat
necrosis, and smooth, skeletal or cardiac muscle [43]. In the H&N, the interpretation of

FDG-PET images of is made difficult by the presence of FDG uptake by salivary glands
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and salivary excretion, uptake by some muscles close to the oral cavity and by the vocal
cords, uptake by lymphatic structures containing macrophages, as well as by the
proximity of structures in the upper aero-digestive tract [66]. On the other hand, FDG
uptake is not always visible on PET images for lesions smaller than 5-10 mm with high
background uptake [28]. This is particularly problematic in the H&N, where lymph
nodes are numerous and lesions smaller than 4 mL are often observed [67]. FDG-PET
can also fail to identify superficial mucosal extensions as part of the tumour [24].
Moreover, the technique of PET is limited both by its theoretical modelling and
its technical application. Uncertainties in the localisation of the annihilation event are
in part linked to the positron mean free path in the tissue, which leads the particle to
travel up to 2.4 mm in low density tissues (0.6 mm on average) before encountering an
electron. In addition, the positron’s residual energy causes the angle between the
coinciding gamma rays emitted to be typically about 0.2¢ different from the expected
180 value, with extreme differences reaching up to 6°. For a gantry of 1 m diameter,
this amounts to a typical error of 2 mm in the localisation of the annihilation event. As a
result of these uncertainties, the PET data are resampled into large voxels, which are
assigned a value representing the mean intensity at the corresponding location. This
resampling effect, often called the “tissue fraction effect”, causes the information
coming from different tissues to be translated into a single value in the resulting image.
Further limitations are due to the characteristics of the detector, consisting of
several blocks containing lutetium orthosilicate (LSO) or gadolinium orthosilicate
(GSO) scintillation crystals. These convert detected gamma rays into visible light, which
photomultiplier tubes (PMTs) turn into an electric signal giving the position and energy
of the scintillation event. Detectors have a fixed width, and are connected to a limited
number of PMTs. The accuracy of the localisation of a scintillation event in the crystal,
and therefore the spatial resolution of the system, is limited by the fixed width of the

crystals and the limited number of PMTs. The crystals are not capable of detecting two

12



photons within a certain period of time, t, which also limits the temporal resolution of
the scanner. A recent advance in the technique, called Time-Of-Flight (TOF) correction,
allows localizing the annihilation event on a straight line drawn between two detectors
by measuring the time delay between two coincidence detections. Current state-of-the-
art PET scanner systems using TOF correction have a spatial resolution of 4-7 mm, and
the use of TOF correction in the reconstruction was shown to improve lesion detection
[68]. The finite spatial resolution of PET systems, especially when TOF correction is not
applied, leads to a phenomenon of image blurring in 3D. The combination of both tissue
fraction effect and 3D blur is referred to as the Partial Volume Effect (PVE) [69] in this
thesis. As a consequence of this, objects with dimensions that are small compared to
the Full Width at Half Maximum (FWHM) of the imaging system’s point spread function
will have their activity underestimated on the reconstructed PET image. PVE is one of
the factors greatly hampering the detection and accurate delineation of tumours on
clinical PET images. In particular, the PVE causes the boundaries of an object to appear
blurred on the resulting PET image, making the detection of the object edges difficult,
especially for methods based on the identification of gradient crests. In addition, the
different positron range and photon scatter properties between media of different
density can cause signal from the neighbouring regions to be produced into one
another, generating a “spill-out” phenomenon observed in particular at the boundary

between high radiotracer uptake regions and air.

I. E. PET-based delineation

Manual delineation by radiology experts currently remains the standard for
GTV delineation on FDG-PET in RT planning. However, the limitation in the resolution
of PET images described previously and the complexity of biological tumour uptake
make manual PET delineation a time consuming and highly operator-dependent

process, requiring the availability of specific expert knowledge for FDG-PET. This
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explains the growing interest in automatic or semi-automatic segmentation tools to
assist or perform the GTV delineation, with the additional potential advantages of
making the process more reliable by eliminating errors due to human judgement, and
making it standardised across different centres. Some studies have already shown the
important reduction in inter-observer variability when using automatic PET
delineation compared to manual delineation by experienced observers [70].

However, several authors have commented on the lack of consensus on a
standardised and accurate segmentation method [71]-[73]. A variety of segmentation
techniques have been published or recommended for clinical practice, but there is no
recommendation or consensus for a single protocol to use, in particular for H&N
cancer. It is crucial to select the most accurate method, as studies comparing different
segmentation tools have shown resulting volume differences of up to 200% [74].

Single thresholding methods include in the volume delineated all voxels with
intensity higher than a single threshold value. The threshold value specified can be a
single intensity value (absolute), or a percentage of the maximum voxel intensity in the
image. The latter option allows for a less patient-specific process, especially when the

image intensity is expressed in Standardised Uptake Values (SUVs) defined as:

Measured activity (Bq/mL
SUV = y (Bq/mlL)

Injected Activity (BQ) . Patient weight (g) Eq.1

(It is assumed that 1 mL is equivalent to 1 g, as the human body is made mostly of
water molecules). The injected activity corresponds to the activity injected corrected
for radioactive decay between injection and image acquisition, while the measured
activity is the activity read on the PET image.

Although simple to use and intuitive, thresholding methods have been shown to
lack in accuracy and robustness, in particular for inhomogeneous and irregular lesions
[74], [75]- Work by Geets et al. found that the optimal threshold for matching the
contours of the macroscopic specimen in pharygolaryngeal cancer patients ranged

between 36% and 73% of the maximum intensity, which shows that no single
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thresholding method can accurately delineate the GTV, even within a single site [76]. In
addition, such methods appear very sensitive to the image reconstruction method,
tumour size, Tumour-to-Background Ratio (TBR) and system response [77]. Data from
several groups also highlighted the high dependency of the delineated volume on the
threshold SUV value chosen [74], [77]. Single thresholding is therefore often used with
additional features making it more stable and reliable. These can include:

* Region growing techniques, which avoid obtaining disconnected contours
by growing a region of connected voxels step-by-step. This is done by
including in the growing region the voxels neighbouring the region which
have an intensity value above the threshold.

* Defining the relative threshold according to the “peak” SUV, defined as the
mean value inside a 1 cm3 sphere around the maximum SUV voxel [78],
which can minimise bias due to noise.

* Adaptive thresholds, which are calculated relative to the difference between
the maximum (or peak) intensity value and the background mean value.
However, such methods rely heavily on the definition of the background
area, which varies largely across publications ([67], [79], [80]).

The full dependency on a single parameter, the threshold value, makes simple
thresholding methods practically just as operator-dependent as manual delineation.
Several authors have provided methods for the calculation of the optimal threshold
value on the basis of the tumour size, intensity or background intensity. Some authors
used a linear combination of these parameters ([81]-[83]), while others provided
calibration curves obtained with phantom data [67], [77], [84], [85]. The main
limitation of such approaches is the need for a priori knowledge of the object volume
and activity. The use of calibration curves showed good object volume recovery, but
required accurate equipment-specific calibration, and was only applied and tested on

spherical objects. A multicentre study showed that the optimal threshold to apply for
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the segmentation of spherical phantom inserts varied across centres with different
imaging protocols and reconstruction settings, even as the centres were using the same
scanner and reconstruction technique [86].

Following the reports on the lack of reliability and robustness of single
thresholding techniques, a number of different segmentation approaches have been
investigated in the recent literature. Advanced image segmentation approaches, some
of which have been investigated for use on PET images, can be classified into a number
of categories:

* Automatic threshold-based approaches that iteratively find the optimal
threshold value to recover the object, with no user input or a priori
information required [80], [87].

* Region-growing schemes that operate by implementing a step-by-step
process to grow a region starting with a single voxel (the seed), by
incorporating neighbouring voxels on the basis of their intensity value.
Different seed selections, voxel inclusion criteria and stopping criteria for
the growing region can be used [88], [89].

* C(lustering approaches classify voxels iteratively into a number of groups
(clusters) of homogeneous intensity values. The number of clusters
identified is specified by the user or by the code itself. Cluster membership
can be binary (yes or no, i.e. 0 or 1) or can be expressed as a probability
(“fuzzy” clustering) [72], [90], [91]. Other clustering work was based on
fitting the cluster intensity distributions to Gaussian distributions [92], [93].

* A growing number of studies have investigated the use of parameters such
as Haralick texture features [94], which describe the regional and local
distribution of intensities across a region, as a basis for clustering applied to
PET images [95], [96]. This was investigated using both PET and CT, as an

improvement on the use of PET or CT alone [95], [97].
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* [Edge detection methods that are based on the identification of rapid
changes in intensity, corresponding to the intensity “crests” in the gradient
of the original PET image. Several approaches exist for the detection of
crests, including gradient-based thresholding [98], region-growing based on
gradient threshold [99], and algorithms such as the Watershed Transform
[100], [101].

* Active contours methods that are based on successive deformations of a
contour to reach an equilibrium, which can be defined by a set of criteria
involving the voxel intensities inside and outside the contour, as well as the
shape and length of the contour [102], [103].

* Artificial neural networks (ANN) rely on the iterative classification of voxels
according to a complex set of relationships between them, involving their
location as well as intensity values [104].

* Other machine learning techniques, such as support vector machine have
been investigated for modalities such as MRI or CT [105]. These approaches
could potentially also be applied to PET, for example in combination with
other segmentation approaches [106]. However, published data about this
subject is currently very limited, probably due to the higher level of
complexity required by such techniques.

* Finally, a number of different techniques can be combined within more
complex segmentation frameworks. This has been investigated in a small
number of studies using tools such as the simultaneous truth and
performance level estimation (STAPLE) algorithm [107], majority voting
[108] or probabilistic methods [109].

A small number of methods have been published and validated on test images

and patient data. Geets et al. have developed a gradient-based method, which showed a

good correlation with the ground truth for volumes from seven patients with T3-T4
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laryngeal SCC [98]. Day et al. developed a 3D region-growing method, which performed
better than fixed thresholding schemes on 18 rectal and anal cancer patients [89]. Hatt
et al. developed and validated a Fuzzy Locally Adaptive Bayesian method (FLAB), based
on a fuzzy clustering scheme incorporating an expectation maximisation step [91].
Evaluation of the FLAB method with spherical fillable phantom data and more complex
simulated data showed high accuracy of the method compared to thresholding and
other clustering methods, especially for small objects. The methods published rely on
very different segmentation approaches, and have been validated by their authors on
different types data provided by their own centres, which makes it difficult to compare
the results obtained. In addition to validation on a large and useful range of data, very
few methods have been evaluated in terms of repeatability and robustness.

The past decade has seen a strong effort in the scientific community to
investigate alternative methods and a number of automatic or semi-automatic
segmentation algorithms have been published. However, the IAEA experts panel notes
that the availability of numerous automated segmentation methods and the absence of
any reliable inter-comparisons makes it difficult to recommend a single technique, but
insist that single-parameter methods are too simplistic for the variety of clinical

scenarios encountered and are not recommended [43].

I. F. Thesis aims

The high potential of advanced PET-Automatic segmentation (PET-AS) methods
in RT planning for H&N cancer patients is hampered by the current lack of inter-
comparison and exhaustive validation of such methods. However, there is enough
evidence in the recent literature to suggest that FDG-PET should play a key role in the
planning of curative radiotherapy for H&N cancer patients, and that work is needed to
identify the optimal protocol for the inclusion of FDG-PET delineation into the RTP

process. The project described in this thesis aimed at addressing these issues, in the
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form of a pilot study titled POSITIVE: Optimisation Of Positron Emission Tomography

Based Target Volume Delineation In Head And Neck Radiotherapy. It was funded by

Cancer Research Wales and carried out as a collaboration between two different

institutions:

The Wales research and diagnostic PET imaging centre (PETIC), which
opened in 2010, offers some of the most advanced imaging equipment in
the UK, with a high-resolution scanner providing high quality images for
research and clinical purposes. PETIC is operated by Cardiff University in
partnership with Cardiff and Vale University Health Board, and is located at
the University Hospital of Wales in Cardiff.

Velindre Cancer Centre (VCC), located in Cardiff, is one of the largest
specialist centres for non-surgical cancer treatment in the UK, with over
5000 new patient referrals every year. It boasts high-end equipment, with
linear accelerators enabling IMRT and image guided RT (IGRT) procedures,
and strong links with the Wales Cancer Trials Unit and the Wales Cancer

Bank for conducting world class research through oncology trials.

This thesis therefore aims at addressing the following points:

Provide a solid and exhaustive comparison of advanced PET-AS methods
Investigate the effect of a range of image parameters on such PET-AS
methods

Provide a limited set of segmentation tools or a single PET-AS tool validated
and optimised for use in H&N RT planning

Develop a protocol for the use of PET-AS for potential use in routine clinical

practice for H&N RT planning

For this purpose, it was hypothesised that:

Advanced PET-AS algorithms provide more accurate delineation than

simple thresholding schemes
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* The presence of inactive plastic walls in fillable phantoms has a non-
negligible impact on the image quantification and segmentation.

* Advanced PET-AS can be used within a clinical protocol

* Optimised advanced PET-AS for H&N reduces the time needed to generate
RT plans and reduces observer variability.

The outline of the thesis is described on Figure 2.

I. Introduction and literature review

{F

1. Validation and evaluation of PET-AS methods
- Implementation and optimisation of existing methods

- Evaluation/comparison using simple phantom data
- Investigation of the effect of plastic walls in fillable phantoms

L

lll. Development of a PET-AS framework optimised for H&N
- Evaluation of PET-AS using realistic H&N data

- Development of an Algorithm for decision Tree-based Learning
Advanced Automatic Segmentation: ATLAAS

~

IV. Implementation of PET-AS in the clinical practice:

- Development of a protocol and user interface
- Investigation of the use of PET-AS in RT planning

¥

V. Discussion and Future work

Figure 2. Outline of the thesis and description of chapter contents
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Chapter II. Validation and
evaluation of PET-AS methods

I1. A. Development and validation of
segmentation algorithms

This chapter describes the experiments and analysis carried out in order to
achieve one of the aims of the POSITIVE project: the investigation of the impact of a
number of image parameters on the segmentation accuracy of current published
methods. These include object-related aspects (object geometry, size, phantom type),
and PET image-related aspects (TBR and image noise). This work was done using
fillable phantoms allowing simple and controllable generation of well-defined target
objects. This section describes the algorithms implemented and the tools used to

evaluate their accuracy.

II. A. 1. Methods and materials used

II. A. 1. a. Scanner

The scanner available for the project was a GE (General Electric Healthcare,
Milwaukee, USA) Discovery 690 PET/CT, dedicated to clinical and research work. All
experiments were carried out with the acquisition and reconstruction parameters
described Table 1. The reconstruction algorithm used was Vue Point FX, which is based
on a Maximum Likelihood Ordered Subset Estimation Maximisation (ML OSEM)

method with TOF correction. The scanner is shown on Figure 3.
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Figure 3. GE Discovery 690 PET/CT scanner used throughout this project.

Parameter to set Value chosen
Matrix size CT (voxels) 512x512x47
Matrix size PET (voxels) 256 x256x47
Voxel size CT 1.37 mmx 1.37 mm x 3.27 mm
Voxel size PET 273 mmx 2.73 mm x 3.27 mm
Field of View dimensions 700 mm x 153 mm
Duration of bed position 3 min
Reconstruction algorithm Vue Point FX TOF-corrected
Algorithm settings 3D ML OSEM 24 subsets 2 iterations cut-off
Post-processing filter cut-off 6.4 mm
CT-based attenuation correction yes

Table 1. Scanner settings used for the acquisition of the phantoms scans.
II. A. 1. b. Phantoms

The NEMA (National Electrical Manufacturer’s Association) IEC (International
Electrotechnical Commission) body phantom (manufacturer: The Phantom Laboratory,
Salem, USA), used for quality assessment of the scanner images, was available for this
project. It consists of a 9700 cm3 fillable sealable plastic tank containing six spherical
fillable inserts of inner diameters 10, 13, 17, 22, 28 and 37 mm, corresponding to
volumes of 0.5, 1.2, 2.6, 5.6, 11.5, 26.5 mL respectively. The phantom is shown on
Figure 4. It includes a non-fillable central insert of low density representing lung tissue,

which was used in all scans of this phantom for this project.
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Figure 4. Picture of the filled NEMA IEC body phantom with central lung insert.
IL. A. 1. c. Hardware and software

A 2.7 GHz quad-core Intel Core i5 computer was dedicated to the project. The
algorithms were developed in the Matlab programming language with a Matlab 2010b
licence (The Mathworks, Natick, USA), including the Image Processing Toolbox. The
visualisation and processing of CT and PET images was done with the open source
software CERR (a Computational Environment for Radiotherapy Research) [110]. CERR
was developed at the university of St Louis (Michigan, USA) and is currently maintained
at the Memorial Sloane Kettering Cancer Centre (MSKCC) in New York (USA). The
statistical analysis software SPSS 20 (IBM, Chicago, USA) was used throughout this

project.

IL. A. 1. d. Segmentation algorithms

Following a review of the recent literature, a number of PET automatic
segmentation (PET-AS) approaches were selected as the most promising for PET
delineation. These were chosen based on the segmentation categories described by
Bankman et al. [111], and implemented in house into a common framework as fully

automatic methods.
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In addition to the PET-AS methods implemented in this study, three basic
thresholding algorithms using thresholds of 42% and 50% of the maximum SUV value
in the tumour (FT42and FTso) and a threshold of 2.5 SUV (SUV2s) were sometimes used
for comparison. The threshold values selected correspond to commonly used

delineation methods (cf. L. E).

II. A. 1. d. i. Thresholding methods

AT: Automatic iterative thresholding

The AT method implemented iteratively modifies the contour by applying to
the image successive thresholds. These are calculated for every iteration i from an
estimation of the background mean intensity as follows:

T = 0.45 * (SUViax' — Blmean) + Blmean Eq. 2
with SUVnax the maximum SUV value inside the lesion, By,qn, the mean background
(non-lesion) intensity, and T the absolute threshold intensity to apply to the image.
This method was based on the method developed by Drever et al. [80], but was
implemented with different initialisation and stopping criteria. The algorithm is
initialised with a mean background value calculated on voxels with intensity lower
than 50% of the maximum intensity, and a value of 0.4 for the relative threshold
applied in Eq 2 (instead of 0.45 for subsequent iterations). Equation 2 is applied at each
step until the region delineated changes by one voxel or less. The method is illustrated

on Figure 5.
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Figure 5. Illustration of different iterations in PET-AS method AT.
IL. A. 1. d. ii. Gradient-based methods
Gradient-based segmentation algorithms are based on the image intensity
gradient map, which is calculated in Matlab using the two-dimensional (2D) or three-
dimensional (3D) Sobel operator as described in [112]. The Sobel operator calculates
an approximation of the image gradient using a discrete differentiation of the image

intensity function.

GC: Gradient-based contouring

This segmentation algorithm utilizes the method used by the Pinnacle3 (Phillips
Healthcare, Guildford, UK) software as briefly described by Ford et al. [77]. It uses the
gradient image obtained slice-by-slice from the original image by applying the Sobel
filter in the transverse plane. The algorithm searches voxel-by-voxel for the highest
gradient neighbour in a clockwise manner, starting from the highest gradient value

voxel in the image. This process is illustrated on Figure 6.
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Iteration 1 Iteration n Iteration n+3

PET image PET gradient Gradient contouring (GC iterations)

Figure 6. Illustration of PET-AS method GC, extracting the gradient from the original
image, and following the highest gradient crest clockwise from the seed (red).

WT: Watershed Transform-based segmentation

This method was based on the Watershed Transform algorithm, described in
several studies [98], [100], [113], which finds the “crests” of the gradient image by
simulating a water level rising from the local minima in the image gradient. The process
is carried out until only one closed contour remains. The algorithm was fully written in-
house, only using the Sobel operator available in Matlab to derive the gradient image. It
is illustrated on Figure 7.

Gradient Gradient Gradient Final contour
intensity intensity intensity int

lterations

Figure 7. Illustration of WT method using seeds (in red).

IL. A. 1. d. iii. Region-growing methods

RG: Region growing

This algorithm selects one voxel as a seed and grows a region step-by-step by
including some of the voxels at the border of the growing region on the basis of their
intensity value. The method, based on the work of Day et al. [89], was developed and
optimised in-house, by automatically choosing the highest intensity voxel inside the
hottest region of the image as a seed, and stopping the algorithm when the number of
voxels added represents less than 5% of the total number of voxels in the growing

region. This value was chosen as a good trade-off between computation time and
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accuracy, for a number of voxels ranging between 9 and 5000 corresponding to typical
lesions observed at Velindre Cancer Centre. Voxels are added to the growing region if
their intensity is within the Confidence Interval (CI) of the mean intensity in the
growing region. CI was chosen as follows:

CI = min (20, (Tnean — Bmean — 95)) Eq. 3
with Trean the mean intensity value inside the lesion, B;,.q, the mean background
intensity, 0 and op the standard deviation (SD) of the intensities in the lesion and
background respectively. This criterion was chosen to take into account cases where
the intensity distributions for lesion and background are well separated, as well as

cases where they overlap. This is illustrated on Figure 8.
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Figure 8. Illustration of the confidence interval CI for method RG a) when lesion and
background intensity distributions are well separated and b) when they overlap.

IL. A. 1. d. iv. Clustering methods
Clustering methods have acquired great popularity in the last few years. These
methods are based on the iterative classification of the voxels into a defined number of
categories called clusters, and voxels are classified according to the updated
parameters so as to produce homogeneous regions. This is done iteratively, calculating

parameters describing the clusters (e.g. mean intensity value or SD) at each iteration,
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and updating the cluster memberships of each voxel to the different clusters. The
methods described in this section used an updated mean intensity value M for each

cluster k at iteration i, calculated as:

_ Zjufc_l(xj)*l(xj)

i
Mje = yiubtx)

Eq.4

where I(x;) is the intensity value of voxel x;, and u;'c_l(xj) the cluster membership
of voxel X; for cluster k at the previous iteration. In the final step, all but the lowest

intensity clusters are considered to form the tumour, and the remaining cluster, the
background. All clustering methods were implemented so as to be able to detect a given
number K of clusters, which was done in parts of this thesis. The clustering process is

illustrated on Figure 9 for K=5.

Cluster No lteration 1 Iteration 2 Iteration n

1

2 |

3 S

4

5

Clusters identified by the method at each iteration Final clusters: tumour Resulting contour
(white), background (red) shown on
(black) original PET

Figure 9. Description of the segmentation process using a clustering method, in the case
of K=5 levels.

The following clustering algorithms were implemented:

KM: K-means clustering
This algorithm assigns each voxel of the initial image to the cluster with mean

intensity value closest to its own value. This corresponds to

w1 o) = [1 9 1G> = el = min (i) = milD Eq.5
g 0 otherwise

where “|| ||” represents the absolute difference. The method was based on the method
described by Zaidi et al. [41] with a customised initialisation considering a partition of

the image intensity range into the number K of levels chosen by the user.
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FCM: Fuzzy C-means clustering

This algorithm was developed to account for the uncertainty arising at tumour
boundaries in particular, by using a fuzzy classification instead of a binary one. It was
based on the work described by Belhassen et al. [72]. In this case, each voxel is assigned
a membership value for each cluster, ranging between 0 and 1. The membership value
of a voxel x at iteration i is calculated as a probability to belong to the cluster k
considered, according to the difference between the voxel intensity and the cluster

mean intensity:

1(x)—M.
uk( ) | X k”

3 JiGo-mi]

GCM: Gaussian Fuzzy C-means clustering

This algorithm is based on the FCM algorithm, with the difference that each
cluster is assumed to have a Gaussian intensity distribution, of which mean and SD are
calculated at each step. The cluster membership for each voxel is the probability of the
voxel intensity value being generated by the cluster Gaussian distribution:

in2
uk(x) = exp <— —”I(:():;é‘ ” ) Eq.7
k

where (a,i)zis the variance of intensities in cluster k at iteration i. The method was
implemented based on the modifications of FCM suggested by Hatt et al. [91].

The clustering algorithms were first implemented for the detection of 2
clusters, and the names KM, FCM and GCM refer to the versions of the algorithms
corresponding to K=2. These were named KM2, FCM2 and GCM2 in later studies to

avoid confusion with other versions involving higher numbers of clusters.
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IL. A. 1. d. v. Deformable models
AC: Active contours

The active contours method implemented was based on previously published
work by Sussman et al. [114]. It uses a level set approach, defining the contour on each
slice using the signed distance function ¢. This function returns for each point of the
image its signed Euclidian distance to the closest contour point, which takes negative
values inside the contour, positive values outside, and equals 0 for the contour points.
The contour is evolved at each iteration I by updating ¢, in order to satisfy the

following equation for a voxel k on the contour:
K= b~ FVo| Eq.8
where F represents the force deforming the contour, V the gradient operator.

The process is illustrated on Figure 10.

Figure 10. Illustration of different steps in the 2D active contours process used in AC, with
successive contours (green) shown on the original image.

The force F was chosen so as to minimize the differences between the values of
the level set curve and both the values outside and inside the curve, while limiting the

length of the curve with a curvature term a as described in the literature [115], [116]:
i i i )2 i i) i
F' = (I((;bk ) — Mean int) - (I((;bk ) — Mean ext) +aC Eq.9

for iteration i, with I the original image intensity, Mean';,; and Mean',,, the mean
intensity values inside and outside the curve respectively, and C! the contour
curvature. The parameter a was set to 0.1, which provided the best results after some

preliminary tests.
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The gradient at voxel of x and y coordinates (i,j) was calculated using discrete
formulation as follows (for a voxel size of s in both x and y directions):

(pi—¢i-0)—(dur—Pi)

Vo = 2s Eg. 10
¢ (pj=9j-1)—(PG+1)=9)) 4

2s

IL. A. 1. e. Description of the metrics used

Throughout this work, the accuracy of the PET-AS methods was evaluated by
quantifying the agreement between the 3D test contour obtained and a reference 3D
contour, which were both extracted from binary masks in Matlab. This section
describes the different metrics used to quantify the accuracy of the segmentations
throughout the thesis. The following metrics were selected following the literature
review, as a set of the most commonly used metrics in the field providing
complimentary information, and were all implemented in house:

* Relative Volumetric Error (RVE) was used to evaluate the delineation

accuracy in terms of volume. It was calculated as:

¥=X)
Y

RVE = Eq.11

with X the volume obtained using the developed PET-AS methods, and Y
the volume corresponding to the reference contour. RVE can take any
positive (for a volume produced smaller than the true volume) or
negative value (for a volume produced larger than the true volume).

* Dice Similarity Coefficient (DSC) was calculated to quantify the
similarity between the structure delineated and the ground truth,
providing values between 0 and 1. A DSC above 0.7 was used as an

indicator of good overlap as suggested in the literature [117]:

2%|XNY|

DSC =
IX1+Y]

Eq. 12

The following additional metrics were used for each algorithm to further

evaluate the performance of each algorithm individually:
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* Sensitivity (S) gave the rate of “tumour” voxels detected by the

algorithm:

TP
~ FN+TP

Eq. 13

with FN the number of false negative voxels, TP the true positives. S ranges from 0 to 1.
* Positive Predictive Value (PPV) was used to determine the proportion

of the delineated volume accurately classified as tumour:

TP

PPV = Eq. 14
FP+TP
with FP the number of false positives. PPV can range from 0 to 1.
* Modified Hausdorff Distance:
1 1
HD = max (5~Xaead(a, B),-~Ypep d(b, A)) Eq.15
A B

with A and N,, B and Ng the set of points and number of points within the test contour
and true contour respectively, and d(a, B), the minimal Euclidian distance between
point a and the points in B. HD returns a positive value in cm. Distance metrics are used
to quantify the distance between the contour points of two different outlines. This
particular metric was chosen following the work of Dubuisson et al. [118], which shows
the superiority of this method in quantifying the similarity between two contours, as
opposed to other definitions of the distance metrics suggested by authors such as

Huttenlocher et al. [119].

IL. A. 2. Algorithms implementation and optimisation

IL. A. 2. a. Algorithms 2D vs 3D implementation

II. A. 2. a. i. Purpose
PET-AS algorithms as presented in the literature can be implemented as a slice-
by-slice process, or be applied to a full 3D image. Although some authors have
suggested that full 3D segmentation could be more accurate than 2D methods, some

published work has reported lower segmentation accuracies obtained for 3D
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implementations of some 2D algorithms [101]. However, such studies are scarce, and
include little evidence or discussion of the type of implementation most suited to the
segmentation of PET images. This section describes work carried out in order to check
for any advantage of a 3D implementation over a slice-by-slice version of the
algorithms implemented for this project.
The superiority of 3D implementation was hypothesised for the following reasons:

* Use of more spatial information (larger number of neighbours) e.g. for

clustering and region growing methods
* More degrees of freedom for curve expansion or drawing (AC and GC)
* Taking into account the global intensity distribution in the case of methods

or initialisations based on the maximum tumour intensity value.

IL. A. 2. a. ii. Experimental protocol

Test images were generated using the NEMA phantom described in II. A. 1. b.
Three different TBRs (3, 5 and 8) were achieved by filling the background and spherical
inserts with two FDG solutions of different concentrations. For this series of
experiments, 75 MBq were measured with a radionuclide calibrator, and injected into
the phantom background filled with water. This value was chosen to lead to a
background concentration of 5 kBq/mL at the time of the scan, which is representative
of clinical soft tissue values. The precision error associated with the calibrator is within
+2% of the measured value, which leads to an uncertainty of +4% on the actual TBR
value obtained. The plastic phantom was then shaken to homogenize its contents, and
the volume was completed with water. Next, the desired amount of FDG (calculated so
as to achieve the target TBR) was drawn, and was diluted in a 1 L vial available in the
laboratory. Finally the spheres were filled with the solution prepared using a shielded
syringe, and the phantom was sealed. During the phantom preparation, the times of
injection for both spheres and background were recorded, so as to account for tracer
decay.
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The phantom was positioned on the scanner bed with the sphere rods in the
superior-inferior direction, and aligned with the lasers so as to keep the midline of the
spheres at the same level in the transverse plane.

The algorithms AT, RG, KM, GC, WT and AC were implemented both on a slice-
by-slice basis and in 3D, and used to segment the same test images. KM was chosen to
represent the group of clustering algorithms. The accuracy of the resulting twelve
algorithms was assessed by comparing the contours generated to the reference ground
truth contour, using the metrics described in II. A. 1. e. This allowed looking for the
effect of the implementation version (2D or 3D) on the delineation performance, and
the variation of this effect with object size and contrast. The ground truth was extracted
for each scan and each sphere by automatically generating a spherical contour of the
same diameter as the sphere using a Matlab function written in-house. This contour
was then positioned on the high resolution CT so as to match the inside of the sphere
delimited by the visible plastic walls. It was then copied onto the registered PET image
using a function available in CERR.

The Mann-Whitney U-test in SPSS was used to test for statistically significant
differences in median between metric values obtained for 2D and 3D versions of each

algorithm, with a statistically significant p-value of p=0.05.

IL. A. 2. a. iii. Results
Figure 11 shows higher average DSC values for the 3D implemented version of
AT, RG, KM, WT. PET-AS methods AC and GC reached higher DSC when implemented in
2D. In the case of WT, the difference of the average DSC of 2D and 3D method was

smaller than the SD of results obtained across spheres.
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Figure 11. Comparison of DSC obtained on average on all NEMA spheres for the 6 PET-AS
methods implemented in 2D and 3D. Error bars correspond to one SD across sphere sizes

The results of the Mann Whitney U-test, used to determine if the difference in
median values between 3D and 2D implementation is statistically significant, are
shown in Table 2. Results are given for values taken by RVE, DSC and HD. Differences in
median are reported for the value reached by the 2D dataset subtracted from the value
for the 3D dataset. Negative differences therefore indicate better accuracy for the 3D
implementation for RVE and HD (higher RVE and HD correspond to lower accuracy),
whereas a positive difference indicates a higher accuracy for the 3D version in the case
of DSC, for which the values increase with the segmentation accuracy. Differences
between 2D and 3D implementation were statistically significant for AT, RG and KM,

and for GC except for HD.
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AT RG KM GC WT AC
RVE

-1.55 -0.33 -1.46 0.94 0.08 -0.06

Difference in
median (3D-2D)

U 282 259 289 281 187 196.5

sigma 5.8x10-5* 1.6x10-3* 1.6x10-5* 6.8x10-5* 0.44 0.28
DSC

Difference in

median (3D-2D) 0.42 0.18 0.39 -0.36 -0.03 -0.01

U 282 269.5 287 273 168 179.5

sigma 5.8x10-5* 3.8x10-4* 2.4x10-5* 2.4x104* 0.94 0.58

HD

Difference in

median (3D-2D)

U 312 318 314 195 166 189.5
sigma <106*  <10-6* <10-6* 0.31 0.91 0.39

*Statistically significant

-0.77 -0.28 -0.75 -0.03 0.00 0.04

Table 2. Results of the Mann Whitney U-test comparing accuracy metrics obtained for 2D
and 3D algorithms.

Figure 12 shows the change in accuracy achieved by using a 3D implementation
compared to a 2D implementation for all algorithms at TBR=3 for the different sphere
sizes. Results were similar but of lower magnitude for other TBRs. AT, RG and KM
showed a large improvement of the 3D implementation on the 2D scenario, except for
the smallest sphere where the 2D version of AT and KM performed better. GC showed
systematically higher accuracy for a 2D implementation. WT and AC were little affected
(less than 10% change in DSC) by the implementation type for spheres larger than 5
mL, but WT was largely (73% change) improved by the 3D implementation for the

smallest sphere, while AC reached 93% lower DSC.
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Figure 12. Change in DSC of the 3D implementation for the different algorithms and

sphere volumes at TBR=3. The light grey area corresponds to a higher DSC for 3D

II. A. 2.

implementation.

a. iv. Discussion and conclusions

The effect of 2D or 3D implementation was different for the different

algorithm

s tested. AT, RG and KM, which only use the original image intensities,

showed significantly higher accuracy when implemented in 3D. This can be due to the

following:

RG and AT rely on the determination of the maximum intensity voxel in the
image in order to define an intensity-based inclusion criteria, or a threshold
to apply. This means that slices with very different contrasts (e.g. the
middle slice compared to the last slice of a hot sphere) will generate
different inclusion criteria or threshold values, leading for example to very
large contours for a low contrast slice (low threshold value), but very small
contours for a high contrast slice (high threshold value). In addition, the
PET-AS methods are then unable to detect slices on which the structure
does not appear, and will thus generate irrelevant contours. This may also
explain why the improvement seen for these methods was lower for the

smallest sphere, which only consists of 2 to 4 slices.
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* RG and KM rely on the definition of 3D neighbouring regions and the
calculation of their mean intensity. Such regions will have different and
unrelated mean intensities across slices in the 2D version. For this reason,
the segmentation will again generate contours that do not match the ones
on neighbouring slices.

GC showed significantly lower performance when implemented in 3D (cf.

Figure 12). This is likely to be due to the initial 2D-design of this method, and the way it
was implemented in 3D. In 2D, the algorithm calculates for each slice the image
gradient, chooses the highest gradient point and follows a clockwise path of highest
gradient points, neighbour-by-neighbour. In 3D, the gradient and highest point, are
calculated for the whole volume, and the implementation needs to be modified to adapt
to a 3D image. In the present version, a 3D region corresponding to the object surface is
grown, rather than a 2D-contour, with the region growing function. Another approach,
consisting in finding all neighbouring highest gradient voxels until a closed 3D-contour
is reached did not yield any satisfying results. Due to the added complexity, there are
many possible approaches to adapting GC to a 3D version, which makes a direct
comparison between 2D- and 3D-implementations difficult. However, the two
approaches used in this study seem to suggest the superiority of the 2D-method.

The difference between 2D- and 3D-implementation was less consistent for the
remaining algorithms (cf. Figure 11 and Figure 12), which also make use of the gradient
of the image intensities. WT showed higher DSC and lower RVE when implemented in
3D, especially for the lowest sphere, whereas AC only showed a minor difference (<
10% for larger sphere volumes). In turn, AC showed much higher RVE when
implemented in 3D. However, none of these observations were statistically significant
across the whole dataset. This suggests that the 3D-method for those algorithms could
be used in some cases preferably to others. As an example, the WT method could be

applied in 3D preferably in the case of small structures (< 8 mL) with low uptake
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(TBR<6), as suggested by the results shown on Figure 12. This is in line with the results
obtained by Drever et al. investigating the accuracy of an axial and tri-axial
implementation of the WT algorithm for three spherical inserts at TBR values ranging
within 2-15 [120].

The AC method was transposed into 3D in a very straightforward way, only
modifying the computation of the force and curvature parameters. However, it could be
that this method needs tuning for the 3D case, in order to increase the weight of some
parameters, which could have been averaged or smoothed by the 3D effect. In addition,
the gradient calculation in AC assumes a cubic voxel size, which is not the case for the
images used within this project. An adaptation of the gradient formulation may have
led to better results.

This study helped selecting the best implementation method for all algorithms,
which is 3D for AT, RG and clustering methods and 2D for GC. In the case of WT and AC,
the expected improvement seems limited to a small portion of the image parameters
range and it was therefore decided to use the 2D version in this study. However, this
work has shown a potential improvement of these methods, and these results could be

used in a different study focusing on these two algorithms.

IL. A. 2. b. Implementation of a pre-processing step

II. A. 2. b. i. Purpose
One of the challenges in the accurate delineation of GTVs on PET images is due
to the PVE inherent to PET imaging. The PVE includes a phenomenon of image blurring
in 3D, which causes neighbouring regions of different intensities to “spill-out” into each
other, and a resampling effect causing signal emanating from within small or
neighbouring regions to be translated into a single combined intensity value. As a
consequence, accurate edge detection of tumours on PET images is difficult,

particularly for methods based on the identification of gradient crests. Gradient-based
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segmentation methods are also known to be particularly sensitive to image noise [120],
because of the gradient calculation process, which is based on the intensity difference
between consecutive voxels. A number of image processing techniques can be used to
recover the image quality via de-blurring, which consists in applying a de-convolution
filter to the PET image to reverse the effect of the system Point Spread Function (PSF)
[72], [121]. Alternatively, some methods already include a form of uncertainty at the
lesion edges accounting for this effect, in the form of a fuzzy cluster membership [91].
In addition, smoothing can be applied to reduce the effect of statistical noise in the
image. Pre-processing combining the two approaches was applied by Geets et al. [98]
within their segmentation algorithm. It has the potential to increase the accuracy of
segmentation algorithms, and particularly for gradient-based methods. In this study,
the effect of such a pre-processing (PP) step on some of the PET-AS methods

implemented was investigated.

II. A. 2. b. ii. Experimental protocol
PP was applied in two different steps, reproducing the method used in [98]:
1. First a bilateral de-noising (DN) filter was applied to the image to prepare for
the de-blurring step, which is known to increase the noise in the image [122].
2. A de-convolution filter was then applied iteratively to the image in the form of
the Van Cittert de-blurring (DB) algorithm.
The bilateral filter used was applied voxel-wise, assigning to each voxel a new

value corresponding to a weighted mean of the neighbouring values:

1

I(x) = EZyEN(x) L,(y)w(x,y) Eq. 16
with I, the original image, I the filtered image, N (x) the voxels in the neighbourhood of
voxel x, w(x, y) a weighting factor assigned to the pair of voxels (x,y) and C the sum of

all weights of (x,y) couples in the neighbourhood of x.
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The weighting factor for each couple of neighbouring voxels x and y is a convolution of
two kernels:
x—

llx=ylI? o () =1, (¥))?
w(x,y) = exp(—=—5o)exp(— == 57) Eq.17

The first kernel, or the space kernel, assigns higher weights to neighbours y
closer to x. The second kernel, or radiometric kernel, takes into account the intensity
variations in the neighbourhood of x. It results in lower weights for high intensity
gradients, which means that gradient crests or edges are preserved from smoothing.

Kernel SDs o5 and oy were chosen so as to approximate the PSF of the scanner,
according to measurements made by GE in 2010 at the Wales Research & Diagnostic
PET Imaging Centre, using hematocrit capillary tubes filled with 18F at 0 mm and 100
mm distance from the centre of the Field Of View (FOV). The NEMA spheres considered
in this study were on average 50 mm away from the centre of the FOV, which led to
approximating the PSF by a 6 mm FWHM Gaussian distribution. It is important to note
that the presence of I,(x) in the denominator of the second kernel term is used to
account for the fact that the variations in noise (image intensity) follow a Poisson
distribution, i.e. the variance o2 of the noise at each point x in the image I,can be
approximated by the intensity value I,(x). This adaptation of the standard bilateral
filter was used in [98].

Next, the de-blurring step was written as a filter applied iteratively to the
image:

[FD) = " 4 F s (I, — F + ™) Eq.18
with I, the original image, I" the deblurred image at step n, * the convolution sign and

F a kernel representing the point spread function of the scanner. F was chosen as a 3D

3

J2In (2) to

Gaussian kernel using the smooth3 Matlab function with a SD of o =

approximate a 6 mm FWHM Gaussian, and a filter kernel size of 3x3x3 voxels to

encompass the whole width of the Gaussian kernel (width of 6a).
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The number of iterations to achieve convergence was chosen as the number of
steps after which the relative intensity change per voxel between two consecutive steps
was smaller than 5%. The best combination of DN iterations and DB iterations was
identified from a selection of cases as the best trade-off between:

* Good mean intensity recovery (<5% true value)
* Good homogeneity in the lesion (SD lower than 10% of the mean value)
* Low computation time.

The PET-AS methods AT, RG, GC, KM, WT and AC were applied and evaluated
with test images corresponding to images of the NEMA phantom described previously
(cf. II. A. 1. b). Methods FCM or GCM were not considered in this study because their
design already includes a form of uncertainty accounting for PVE at the lesion edges

(fuzzy membership)[91].

IL. A. 2. b. iii. Results
Figure 13 shows the relative intensity change per voxel between the image
obtained at each step and the previous image, for up to 100 iterations in the DB filter.
This analysis was done on sphere S37 at TBR=3, because of a higher level of noise
expected at this TBR. The number of iterations necessary for acceptable convergence
was 31 in that case. This finding is consistent with the number of iterations used by
Geets et al. A total number of 35 iterations were used in the study, to account for

further small fluctuations of the change between DB steps.
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Figure 13. Visualisation of DB filter convergence, and chosen value of 35 iterations (red)
required for acceptable convergence (<5% relative intensity change/voxel) at TBR=3.

The effect of the de-blurring and de-noising filters is illustrated on Figure 14.
Figure 15 shows the mean sphere intensity recovery obtained for some of the
combinations tested on a 3570 voxels image. The difference between the filled-in mean
sphere intensity and the measured mean sphere intensity decreased with an increasing
number of DB steps. It reached values lower than 5% of the true intensity for three DB
steps, with a computation time of 46 seconds for 3570 voxels on a dual core. Further
DB steps provided even better intensity recovery, but also higher intensity
heterogeneity in the lesion. The SD of voxels within the lesion increased with the
number of DB steps, reaching 10% of the mean intensity for 4 iterations. A number of 3
iterations was used for the purpose of this work. The addition of DN iterations
improved the voxel homogeneity within the lesion, particularly when applied before

the de-blurring. The best result was obtained with two DN followed by three DB steps.
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Figure 14. Example of a) original PET image, b) de-blurred PET image using the one DB
filter step with 35 iterations. c) de-noised PET image using one iteration of the DN filter.
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Figure 15. Identification of the optimal DN and DB combination (red) to achieve the
lowest error in sphere mean intensity and lowest SD.

Table 3 gives the results of the Mann Whitney U-test for differences in median
between RVE and DSC values for each method with and without PP. The p-value is
given for the two-tailed test. All methods showed overall higher DSC when PP was not
applied, and only AC reached lower absolute median RVE value with the addition of PP.
Results obtained with AC were non-significant for both metrics. GC reached
significantly lower accuracy when PP was used in terms of both DSC and RVE, with
large differences in median. RVE values were significantly different between versions
with and without PP for AT, RG and WT while DSC values were significantly different

for KM.
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AT RG KM GC WT AC

RVE
p-value 6.6x10+* 6.6x104* 0.17  0.0048* 0.019* 0.63
U 266 266 206 256 236 1775
Differencein -, 020  -0.041  -0.69 2026  0.024
medians

DSC
p-value 0.091  0.0062* 0.023* 2.7x107* 0.3 091
U 216 247 234 307 210 165
Differencein ¢ 0.090 0.057 0702  0.076 0.035

medians
*statistically significant

Table 3. Results of the two-tailed Mann Whitney U-test for RVE and DSC testing for
differences in median for all six algorithms applied with and without PP. A negative
difference in medians corresponds to higher absolute RVE and DSC when PP is applied.

Further analysis was carried out for each algorithm, in order to identify sphere
size and TBR ranges for which the de-blurring could improve the performance. RG
showed systematically lower DSC and higher absolute RVE when PP was used. AT and
KM reached lower accuracy for all cases except for the smallest sphere at TBR=3. In this
particular case, PP reduced the RVE from -18% to -12% of the true volume for AT, from
-15% to -9.1% for KM, and increased the DSC from 0.098 to 0.15 for AT and from 0.12
to 0.17 for KM. GC reached DSC values more than 20% lower when PP was applied,
with a slight improvement in DSC from 0.11 to 0.18 for the smallest sphere at TBR=8.
Differences between the segmentation with and without PP were lower than 5% of the
value without PP for WT.

Figure 16 shows the improvement in segmentation accuracy of AC obtained by
using PP, in terms of both absolute RVE and DSC. Although the difference in accuracy
across spheres and TBRs was not statistically significant with the Mann Whitney U-test,
accuracy obtained at TBR=3 for the two smallest sphere was up to 40% and 35%
higher when PP was used in terms of RVE and DSC respectively. Results at TBR=5
showed no improvement, while values for TBR=8 indicated a reduction of the RVE for

the smallest spheres, which was however, translated into a lower DSC.
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Figure 16. Improvement obtained in terms of a) absolute RVE and b) DSC when using PP
prior to AC segmentation, for all TBRs and sphere diameters. The grey plot areas
correspond to higher accuracy when PP is used.

IL. A. 2. b. iv. Discussion and conclusions

The use of image processing prior to the segmentation was acknowledged and
addressed in a number of studies, especially for gradient-based methods. Different PP
approaches have been suggested in the literature [69], [123], including iterative
combination of segmentation and pre-processing [124]. In this work, one approach
containing both de-noising and de-blurring steps was selected, as it previously showed
promising improvement of gradient-based techniques [98]. The different filter
combinations tested were successfully implemented in the code for each delineation
method, and did not add any significant computation time. The delineation
performance results obtained varied across PET-AS methods and filter combinations

used but were useful to determine which algorithms could be improved by the addition
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of a PP step, and for which TBR and object size. However, this study was limited to
spherical fillable inserts, as it was aimed at gaining a better understanding rather than
fully investigating the use of PP for PET-AS methods.

The best performing de-convolution method was slightly different from the one
used by Geets et al. In this work, the optimal number of de-blurring iterations was 35,
and two de-noising steps were applied followed by three de-blurring steps. This can be
explained by the difference in the images considered, particularly in terms of noise, as
the study by Geets et al. used patient data, a Siemens Exact HR camera, without TOF
correction, and different acquisition times.

Results showed that the use of PP did not improve the overall segmentation
accuracy on a large range of TBRs and sphere sizes, although the segmentations
provided reached largely different accuracy values compared to situations with no PP
(cf. Table 3). For AC, which is based on the values of the gradient image for the
definition of the force deforming the adaptable contour, PP appeared to improve the
delineation at the smallest TBR and for the two smallest spheres (cf. Figure 16). Even
for AT and KM, which are not based on the gradient image but make use of the global
intensity value in the target and background, the use of PP proved beneficial for the
smallest sphere at the lowest TBR. The PP did not improve the delineation of non-
gradient based algorithm RG, nor of WT and GC except in one case. However, the
accuracy of these PET-AS methods was not negatively affected by the use of PP. This
work has shown the potential benefits of using a PP step before the segmentation in
some specific cases, which correspond mainly to small target objects and low TBR
values. This is in line with the fact that the PVE is strongest in those cases. However,
these situations might not be representative of typical clinical data. As an example,
primary tumours often present as large lesions with a high TBR. The use of PP could be
useful as an optional tool in specific cases where lymph nodes detected on a different

modality, but with a low PET uptake need to be delineated on PET.
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IL. A. 2. c. Algorithms initialisation

IL. A. 2. c. i. Purpose

The algorithms developed in this project are designed to be fully automatic.
However, the presence of the brain and other high intensity regions in some H&N scans
leads to the necessity of excluding these areas in the segmentation process. In their
investigation of a framework for segmentation evaluation [125], Udupa et al. insist on
the difference between lesion recognition, which consists in broadly identifying the
area to segment, and lesion delineation, corresponding to the detection of the lesion’s
edges. The recognition process is necessary at some point in the segmentation process.
Some methods suggested in the literature leave the recognition task to the clinician,
after the delineation algorithm generated a number of contours as a result of
segmenting the whole clinical image [72], [96], [104]. However, the lesion recognition
is most often applied before any delineation takes place, by applying the delineation to
a specific volume of interest (VOI) corresponding to a portion of the whole scan
including the target lesion. In this work, all algorithms implemented are therefore
applied to a VOI defined by the operator as a rectangular box. For the PET-AS methods
implemented, the operator input was reduced to a minimum, corresponding to the
initialisation VOI selection. The work described in this section aimed at evaluating the
degree to which this specific step of the process makes the PET-AS methods operator
dependent. For this purpose, the operator variability caused by different choices for the

initialisation box was evaluated for the different PET-AS.

IL. A. 2. c. ii. Methods
For this work, PET images acquired with the NEMA IEC body phantom were
used. The phantom was filled with a higher concentration of FDG in the six plastic
spherical inserts to achieve a TBR of 8. The known diameters of the spheres and the

high resolution CT image were used to generate ground truth contours for the different
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inserts. All segmentation approaches described above were applied to all spheres for
the following different initialisation VOIs:

* Bounding box of the true contour with a 2.5 mm, 5 mm, 10 mm and 17.5 mm
margin. These cases are named B025, B050, B100 and B175 respectively.

* Bounding box of the true contour with a 10 mm margin shifted by 10 mm in
left-right, antero-posterior and superior-inferior directions. These cases are
named BshiftLR, BshiftAP, and BshiftSI respectively.

For each insert the difference in volume was calculated as well as the DSC

between contours obtained for case B100 and with the other initialisation VOIs.

IL. A. 2. c. ili. Results

Figure 17 shows results of the segmentation by AT of the largest sphere in the
NEMA phantom (S37), and the outline of the corresponding initialisation VOI for B025,
B050, B100 and B175, and for BshiftLR, BshiftAP and BshiftSI respectively. Table 4
gives for each method tested the average across all inserts of the DSC values and
difference in volume (as a percentage of the true insert volume) between the contours
generated with initialisation VOI B100 and other initialisation VOIs. The fixed
thresholding methods tested showed very little variation with the initialisation VOIs,
with less than 1.1% difference of the total volume for a maximum difference in VOI
dimensions (in width, height and depth) of 7.5 mm. Similarly, FCM proved very robust
to the initialisation, with less than 2% difference on average across all spheres, in all
VOI cases. All PET-AS except GCM returned contours with conformity to the contour for
B100 higher than 0.95 DSC, and less than 15% difference in volume on average, except
for B025 in the case of RG, KM and WT. For all PET-AS, a shift of 10 mm in the box
position did not affect the final result more than 10% of its volume on average on the
different inserts, with conformity to the B100 contour higher than 0.95 DSC. The

largest differences were observed for GCM, which reached a difference in volume of 7.7
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mL between the contours obtained from B025 and B100 for the largest sphere,

corresponding to 29% of the true volume.

Method FT42 FT50 AT RG KM FCM GCM WT AC
DSC
B025 0.99 1.00 090 077 0.88 0.99 0.59 0.89 0.92
B050 1.00 1.00 096 095 094 0.99 0.76 096 0.93
B175 1.00 1.00 099 098 097 097 0.83 099 0.95
BshiftLR  1.00 1.00 100 099 098 1.00 0.97 098  0.99
BshiftAP  1.00 1.00 100 099 1.00 1.00 0.96 097 0.98
BshiftSI  1.00 1.00 099 099 098 1.00 0.95 1.00 1.00
Volume difference (% true volume sphere)

B025 2.02 0.39 13.50 41.95 2447 131 54.70 19.99 10.11
B050 0.00 0.00 588 9.58 13.45 0.93 35.87 8.16 5.22
B175 1.04 0.60 216 5.23 7.09 1.79 40.15 1.88 5.76
BshiftLR  0.00 0.00 0.16 1.83 3.79 0.06 6.09 3.46 0.85
BshiftAP  0.86 0.00 0.27 1.66 0.85 0.19 8.15 6.51 1.62
BshiftSI  0.00 0.00 0.84  2.85 3.95 0.00 8.98 0.00 0.00

Table 4. Effect of the use of a different initialisation VOI on the contour conformity (DSC)
and volume for the different PET-AS methods tested. Values are given as an average for
the six spherical inserts of the NEMA phantom.

Legend

—— BshiftAP
—— BshiftLR
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Figure 17. Initialisation box and associated segmentation result (same colour) for sphere
S37 by AT for a) B025, B050, B100 and B175 and b) BshiftAP, BshiftLR and BshiftSI.

IL. A. 2. c. iv. Discussion and Conclusions

This study was carried out to gain a better understanding of the relative
sensitivity of the different PET-AS methods to the initial VOI used in the segmentation
process. A more exhaustive study would require investigating this effect for more
complex and realistic target objects, but this was not the aim of this work.

The PET-AS methods used showed a good robustness to the initialisation VOI,
which was varied between extreme cases in these experiments. All PET-AS methods
were particularly robust to a shift in the localisation of the initialisation VOI, but

50



depended more on the VOI size. Initialisation VOI B025 is very tight around the target
object, and represents an extreme case of initialisation, unlikely to be selected by an
operator. Initialisation VOI B175 represents the other extreme of a very large
initialisation, which even includes a couple of high intensity voxels belonging to the
neighbouring sphere S5. This can explain some of the large differences observed for
these initialisations. For B050, only GCM reached differences larger than 15% of the
sphere volume on average. This is expected for clustering methods, which consider the
voxels in the background at each step of the segmentation. Gradient-based and
threshold based PET-AS, on the contrary, focus more on the object edges and are
therefore less influenced by the background voxels. The small effect of the initialisation
on AT, compared to FT42 and FT50 is due to the fact that the mean background
intensity is calculated at each step to update the threshold to apply. The fuzzy voxel
membership calculated in FCM allows the algorithm to be less dependent on the
intensity distribution in the background and tumour clusters, as “edge” voxels will have
a lower weight in the calculation of the cluster mean intensity at each step. GCM,
however, is particularly sensitive to the inclusion or exclusion of background voxels, as
these will modify the parameters of the Gaussian distribution fitted to each cluster at
each step.

Although a certain influence of the initialisation VOI was observed for some of
the PET-AS methods, it remains negligible in most cases. In particular, the variations
observed are very small compared to variability values reported in the literature
between manual segmentation by two different operators, which can reach 90% of the
lesion volume delineated with both CT and PET data [53], [126]. In addition, the
variability of the initialisation VOI definition is likely to be small, especially in the H&N
because of the presence of other high intensity uptake regions, which operators won’t

include in the initialisation.
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Eventually, non-rectangular initialisation VOIs could also be defined, to account
for nearby structures that should not be considered in the segmentation process. This

approach was considered at a later stage (cf. IV. B).

IL. A. 3. Investigation of the influence of several image

parameters on the segmentation results

II. A. 3. a. i. Purpose

The accuracy of PET-AS algorithm depends on the characteristics of the target
object. The segmentation of large objects with high contrast to the background often
leads to higher accuracy scores than more difficult situations of smaller and less
intense objects. Although a number of published PET-AS methods have been validated
on phantom data, this is often done for a limited set of imaging conditions. As an
example, the data used for the validation of the FLAB method was only derived for two
different contrast ratios and three different image noise values [91]. Studies often focus
on the variation of the segmentation accuracy with a single image parameter, such as
TBR or object size [127]. The investigation of the segmentation accuracy for varying
image parameters is crucial for understanding the performance of PET-AS methods and
for proper inter-comparison with other algorithms. This series of experiments aimed at
evaluating the impact of some key image parameters on the performance of the PET-AS
methods developed for this project, using extensive ranges of values for each

parameter.

IL. A. 3. a. ii. Experimental protocol
Experimental data were acquired for the NEMA IEC body phantom with six
fillable spheres of different diameters described in II. A. 1. b) for 8 different TBRs of 1.5,
2,29,4.3,49,5.5,7.4and 9.3.
After acquisition, a range of numerical noise realisations was simulated for the

case of TBR=4.9. The realistic noise values added were determined from 10 clinical
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H&N scans, by calculating the coefficient of variation (COV) in homogeneous Regions of
Interest (ROIs) such as fat and muscle tissue. The COV is defined as:

g

cov == Eq.19

where p is the mean intensity value and o the SD of the measured intensities. It is
expressed in this work in % of the mean intensity value. A template image was made
from the PET image obtained at TBR=4.9 by assigning to both background and spheres
regions their mean intensity value in the original scan. Gaussian noise was added as a
random number generated from a normal distribution with parameters y and o
corresponding to the noise level to apply. The image obtained was then smoothed with
a Gaussian kernel to reproduce the effect of the scanner PSF. The kernel size was
chosen to be 3x3x3 voxels to model the scanner PSF of 6 mm. The method is illustrated

on Figure 18.

Smoothing
with 3x3x3

Random noise
following Gaussian

distribution gaussian
corresponding to kernel
COV value
&
Original homogeneous template Intermediate template image Final test image

image

Figure 18. Method for the addition of numerical noise to the original template image
extracted from the case of TBR=4.9.

PET-AS methods AT, RG, KM, FCM, GCM, WT and AC were applied to the test
images obtained. In addition, the fixed thresholding methods FT42, FT50 and SUV2.5
were applied to the same images, to represent standard PET image segmentation
methods. RVE and DSC were calculated for each case, and the values were compared
across segmentation algorithms.

For the images containing additional numerical noise, the variation of the
methods’ accuracy with the COV was assessed by fitting the curves representing the
average DSC on the six spheres for each COV values with a linear regression. The

resulting slope and R2 coefficient were calculated and compared.
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The Friedman test for k related samples available in SPSS was used to check for
statistically significant differences among the methods, while the Sign test was used to
compare each method with FT42 and FT50 in terms of RVE and DSC. Non-parametric
tests were chosen because the values obtained did not follow a normal distribution for

most methods.

IL. A. 3. a. iii. Results
A total of 48 test images were obtained for the six sphere sizes and 8 TBRs. In

addition, 10 synthetic images of the NEMA phantom with added numerical noise were
obtained, each one containing six spheres. The results obtained for the resulting 108
test images generated were first checked visually for non-usable contours. These
corresponded to the following cases:

* the contours were empty,

* the contours did not include any voxel of the ground truth,

* the contours included the whole input image.

FT42 FT50 SUV2.5 AT FCM GCM AC
Method

Figure 19. Percentage of images with non-usable contours returned for each algorithm.
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The proportion of non-usable contours obtained by each method is displayed
on Figure 19. In the following analysis, these contours, for which the metrics could not

be calculated or would not be relevant, were discarded.
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The average values across all images for RVE and DSC, S and PPV and HD for
each PET-AS method are presented on Figure 20, Figure 21 and Figure 22 respectively.
Higher absolute RVEs were obtained for FT42 and FT50 compared to the PET-AS
methods, as well as lower average DSC (except for GCM). On Figure 20, large error bars,
which do not cross the line corresponding to 0% RVE, are observed for FT42, FT50 and
KM. Average RVE lower than 50% were obtained by GC, RG, WT, FCM and GCM. The
highest average (SD) DSC of 0.76 (0.10) was obtained for RG, with an average (SD)
negative RVE of 37% (99%). GC reached the lowest average (SD) RVE of 5.5% (22%),
with an average (SD) DSC of 0.66 (0.14). PET-AS methods also showed higher average
PPV (above 0.66 for all methods) and lower S (below 0.86 for all) compared to the
thresholding methods tested. RG reached the lowest average (SD) HD value of 0.20 cm
(0.10 cm). Only AC yielded higher average HD (0.41 cm) compared to the thresholding

methods, with a SD of 0.25 cm.
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Figure 20. Average values for a) RVE and b) DSC across all images for the different PET-AS
methods. Error bars correspond to one SD of the values.
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Figure 21. Average values for a) S and b) PPV across all images for the different PET-AS
methods. Error bars correspond to one SD of the values.
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Figure 22. Average values for HD across all images for the different PET-AS methods.
Error bars correspond to one SD of the values.

The Friedman test for k related samples, used to check for statistically
significant differences among the methods, returned a p-value smaller than 10-4 for
both DSC and RVE values. Table 5 summarises the results of the pairwise comparisons

of each of the PET-AS methods with FT42 and FT50 using the pairwise Sign test. RVE
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values were significantly higher for all PET-AS compared to FT42, and for AT, GC and
RG compared to FT50. All PET-AS reached higher median DSC values compared to
FT42, which was significant for AT, GC, RG, KM, GCM and WT. RG also reached

significantly higher median DSC than FT50.
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Figure 23. Influence of a) sphere size and b) TBR on DSC values for each PET-AS method.
Results are averaged on TBR and sphere sizes respectively.

Figure 23 illustrates the influence of sphere size and TBR on the DSC obtained
for each PET-AS method. The influence of noise on the delineation performance, using
the 60 test images generated for six spheres with 10 levels of numerical noise, is shown
on Figure 24. Due to the definition chosen, a high COV value corresponds to a noisy
image. SUV2.5 was discarded from this particular study because the method failed to

delineate the target images in more than 50% cases. The delineation accuracy of the
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different PET-AS methods decreased with increasing COV. The lowest DSC values were

reached by FCM, while AT reached the highest values for COV lower than 30%.

PET-AS Method AT GC RG KM FCM GCM WT AC
Comparison to FT42
RVE p-value <104* <10%* <10%* <10** <10%" <10%* <10** <10+**
Difference in medians 0.122 0.128 0.193 0.085 -0.039 0.023 0.161 0.019
DSC p-value 0.009* 0.211 <104* 0.002* 0.312 0.02* 0.01* 0.16

Difference in medians -0.11 -0.072 -0.12 -0.062 -0.016 -0.066 -0.078 -0.047
Comparison to FT50

RVE p-value <104* 0.001* 0.001" 0.024* <104" <104* 0.292" <10+**
Difference in medians 0.0016 0.0082 0.073 -0.035 -0.16 -0.097 0.041 -0.10
DSC p-value 0.196 0.461 <104* 0.094 0.186 0.961 0.723 0.581

Difference in medians  0.013 0.043 -0.00065 0.054 0.098 0.049 0.037 0.069

*Statistically significant (p<0.05)

Table 5. Results of the Sign test for paired samples of RVE and DSC values for each
method tested against FT42 and FT50, with a positive difference in medians
corresponding to higher RVE and lower DSC for the thresholding method.

Table 6 shows the results obtained by a linear regression of the average DSC
obtained at each COV for the different methods. The R2 value obtained for FT42 was
very low and does therefore not allow drawing any conclusions. For the other methods,
the highest slope coefficient (a) value was obtained for KM. Methods GC, KM, and WT
all reached coefficient absolute values higher than 0.03. The lowest value for the slope
coefficient (a) was obtained for FT42, followed by FCM. Methods FT50, AT and AC all

reached absolute values for coefficient (a) lower than 0.02.

Regression model: DSC= a*(COV)+b
FT42 FT50 AT GC RG KM FCM GCM WT AC
a -0.0056 -0.019 -0.019 -0.030 -0.023 -0.033 -0.011 -0.028 -0.032 -0.019
Rz 0.092 071 067 081 0.77 075 049 091 0.845 0.79

Table 6. Results of linear regression of the average DSC values obtained at each COV for
the different PET-AS methods.
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Figure 24. Average DSC on all spheres at different COVs for the different PET-AS methods
tested. Error bars given represent one SD of the values.

IL. A. 3. a. iv. Discussion and conclusions

This study aimed at evaluating the PET-AS methods implemented with data
covering a wide range of image parameters. Eight images, on which some of the
algorithms produced non-usable contours for calculating RVE, were discarded when
showing the corresponding results. Method SUV2.5 in particular was unable to
appropriately delineate any of those images, and returned particularly low accuracy
values throughout the study. Method SUV2.5 was suggested in the literature for the
delineation of lung tumours, which are most commonly in a cold or very low activity
background. However, this project focuses on delineation of H&N tumours, for which
the background intensity is much higher than in the lungs. SUV2.5 appears unsuited to
this type of data, and was therefore ignored in the rest of this project.

Results on Figure 20 a) and b) show RVEs of less than 100% (except for KM and
AC) and good overlap between delineated structure and ground truth (DSC>0.6) for all
eight algorithms developed. These results include the delineation of challenging cases
with spheres of less than 1 mL volume and TBR lower than 2. These cases were used to
investigate the robustness of the PET-AS methods to extremely challenging cases. More
detailed analysis on Figure 20 shows that the PET-AS methods reach DSC values higher

than 0.7 for TBR higher than 3.7 and spheres of diameter larger than 15 mm. RG was
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identified as the most promising method, with high average DSC and low RVE, followed
by AT showing very good performance as well. RG also performed better than FT42
and FT50 for both DSC and RVE, which was statistically significant as shown in Table 5.
The lowest DSC was reached by GCM, while AC had the highest average RVE.

On average over the whole dataset, PET-AS methods appear to perform better
than the three standard thresholding methods FT42, FT50 and SUV2.5. All PET-AS
methods implemented reached average DSC values higher than the thresholding
methods. This was confirmed by lower PPV values shown on Figure 21 and higher HD
values on Figure 22. The low RVE values on Figure 20 a) for SUV2.5 are due to the fact
that a large number of cases for which the RVE could not be calculated were discarded.
The higher accuracy of the advanced PET-AS methods was statistically significant
compared to FT42 for all methods, and to FT50 for RG. Results on Figure 20 a) also
showed that the RVE values vary within a range of negative values for FT42, FT50 and
KM, while the line corresponding to RVE=0 is crossed for all other methods. This shows
that systematic errors occur only for these methods while other PET-AS have been
tuned to avoid such systematic errors. Information provided by more specific
indicators (cf. Figure 21 and Figure 22) suggested how some algorithms could be
improved. As an example, KM has the highest S of all methods, but one of the smallest
PPV, suggesting that the contours generated by KM were in average larger than the true
contour. Similarly, GCM might reach higher DSC by increasing its sensitivity. In the case
of KM however, only parameter the clustering stopping criterion can be modified, but
this did not help improve the performance of the PET-AS.

Figure 23 a) and b) and Figure 24 illustrate the strong influence of the sphere
size, TBR and noise level on the delineation accuracy, showing an overall decrease of
the delineation accuracy with noisier images, smaller spheres and lower TBR for all
methods. This study was useful to identify the most robust methods as well as the

critical range of parameter values for which the algorithms reach different accuracy
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values. In terms of the influence of TBR, all methods reached low average DSC with very
similarly low values at the lowest TBR. Differences occur at TBR higher than 2 where
RG reaches a value of 0.66, while GC does not attain 0.40. The curves show large
variations for TBR lower than 4, with most methods reaching a saturation of their DSC
values at higher TBRs. This was the case for AT and RG at TBR higher than 3.7, for GCM
at TBR higher than 4.15 and for WT at TBR higher than 4.72. This type of trend is
representative of the PVE described in II. A. 2., which hampers the delineation process,
and is particularly strong for small spheres at low TBRs. Thresholding methods still
returned DSC values lower than 0.30 at TBR of 2.17. Similar trends are observed for the
influence of the sphere size on the delineation accuracy on Figure 23 a). RG reached its
threshold accuracy of 0.65 DSC for spheres larger than 13 mm diameter. In this case,
the methods can be differentiated at the lowest sphere size, where AT reached a DSC of
0.69 compared to the lowest DSC of 0.35 reached by KM. Methods GCM and AT appear
most robust to the sphere size, with a maximal difference in DSC across sphere sizes of
0.14 and 0.18 respectively. KM in comparison, reaches a maximum difference across
spheres of 0.47 DSC, making it the method least robust to sphere size on the dataset
analysed. It is also interesting to note that WT, AC, and GC, which were implemented as
2D processes, showed poorer performance than the 3D methods at TBRs lower than
4.7. This may be due to lower accuracy on some slices near the object axial boundaries,
for which the TBR measured in 2D appears lower.

The robustness of the methods to the addition of Gaussian noise in the image
was quantified using a linear regression, as the curves obtained on Figure 24 were
more suited to this type of analysis. The results of the regression given in Table 6
highlighted FCM, AC and AT as the methods most robust to noise, whereas WT, KM and
GC varied most with the addition of noise in the image. In the case of GC and WT, this is
likely to be due to the use of a single seed voxel in the process, which is applied to both

background and tumour for WT. In addition to this, GC follows voxel-wise process,
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making it highly dependent on single voxel values, and therefore on noise. KM showed
large fluctuations at COVs larger than 60%, but remained very stable with high DSC
values for lower noise levels. The remaining methods make more use of mean region
values, which may explain their higher robustness to noise.

The results of this study provided a validation of the PET-AS methods
implemented, and showed their superiority to commonly used fixed thresholding
methods FT42, FT50 and SUV2.5. In addition, these results have highlighted the most
promising methods, such as AT and RG, as well as the weakest ones, such as FCM, GC
and WT. Promising results were also obtained in specific cases, such as for GCM and AC
in terms of robustness to image parameters. The test images generated provided a
good starting point for the validation and comparison of the PET-AS algorithms, but
have little clinical relevance due to the fixed geometry of the inserts and their thick

plastic walls. Work presented in section I1. B was aimed at addressing these issues.

I1. B. Evaluation of PET-AS methods using thin
plastic wall inserts
II. B. 1. Investigation of the effect of cold plastic walls on image

quantification and segmentation

II. B. 1. a. Purpose

Fillable plastic inserts are commercially available for use in PET phantom
studies. Such inserts are useful in order to simulate hot regions in a “cold” or “colder”
background, by filling the inserts and the background phantom with different
radioactivity concentrations. Plastic inserts are increasingly used as a validation or
calibration tool within PET studies, as they provide a convenient way to perform such
simulations because of their known ground truth dimensions. One of the main
drawbacks of these inserts is the plastic wall, usually a few millimetres thick, which

separates the inner active region from the background active region. Due to the lack of
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activity in these walls and the low resolution of PET images, the overall activity in the
spheres observed on the PET scans is different from the actual activity injected. This is
due to the PVE causing both hot region and background region to “spill out” into the
cold region, and is especially true for small spheres for which the wall thickness
represents a high percentage of the overall sphere volume. As a consequence, the
images are quantitatively biased, with a reduced activity recovery [128] compared to a
wall-less case, and are not representative of a clinical situation where cold walls do not
separate active regions from background tissue. These issues have been discussed in
several documents, some of which suggested the use of different types of inserts, or
assessed the impact of inactive sphere walls on quantitative image analysis methods
[84], [85], [129], [130]. Bazanez-Borgert et al. [130] reported up to 21% higher activity
recovery when using wall-less spheres compared to plastic inserts. The groups of F.
Hofheinz [84] and ]J. van Dalen [85] derived theoretical models of PET-intensity
profiles, which included the presence of cold walls, and applied those to the
investigation of the effect of the inactive shells on threshold-based volume recovery.
Hofheinz et al. concluded on the systematic bias introduced when using phantoms with
standard plastic inserts for the calibration of optimal thresholding algorithms at finite
background levels. Although these works provided thorough investigations of the cold
walls phenomenon, further systematic work is required on this subject. In particular,
its influence should be investigated in some more extreme imaging conditions such as
low TBRs and small sphere sizes, and the effect of the inactive wall thickness should be
quantified. There is also a need for a study of the impact of the cold walls effect on the
delineation of volumes with automatic methods other than thresholding. This study
aimed to quantitate the influence of cold walls thickness on physical phantom PET
images, for an extended range of TBRs and sphere sizes, and at different wall
thicknesses. In this work the effect of the thickness of cold plastic walls on a range of

fully automatic segmentation algorithms was also evaluated.
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This work was peer reviewed and published in [131].

II. B. 1. b. Methods

A custom-made phantom, consisting of a cylindrical plastic body containing six
removable inserts, was designed for the purpose of this study. Inserts from the Liqui-
Phil body phantom (The Phantom Laboratory, Salem, USA) were used, as well as in-
house made plastic inserts with inner diameters replicating the Liqui-Phil set (10 mm,
15 mm, 20 mm, 30 mm, 38 mm and 58 mm). These six spheres were manufactured
with a “vacuum - moulding” technique allowing wall thicknesses of about 0.2 mm,
compared to wall thicknesses of 1-2 mm measured on the commercial spheres. Plastic
wall thicknesses were measured for both sets using a digital calliper (Absolute
Digimatic, Mitutotyo UK Ltd, Andover, UK) with a precision of 0.01 mm. Five
measurements were made and averaged for each sphere. The inner volume of each
insert was measured by weighing the spheres empty and filled with water. The
phantom is pictured on Figure 25 a), followed by the 58 mm diameter sphere of each

set on Figure 25 b).

Figure 25. a) Picture of the custom phantom used containing six spheres, and (b) of the 58
mm diameter sphere of each set (vacuum-moulded on the left, commercial on the right).

Six different TBRs, ranging from 2 to 7, were targeted by varying the activity
injected into the spheres while keeping the same background activity concentration of

5 kBq/mL. This value is recommended for the use of NEMA phantom devices as an
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approximation of the typical background uptake observed on clinical data [132]. For
each of the six sphere sizes, the corresponding thin- and thick-wall inserts were
scanned simultaneously at the six different TBRs targeted. The analysis was thus
performed on 72 different test images corresponding to a certain sphere size, wall type
(thin or thick) and TBR. All scans were acquired in house with the parameters
described in II. A. 1. a.

2D PET intensity profiles were generated with the method used by Hofheinz et
al. [84], which is based on the convolution of the true profile with a Gaussian
distribution simulating the PSF of the scanner. The equation used to derive the radial
profile P of a sphere of radius R (i.e. intensity as a function of the distance r to the

centre of the sphere) can be expressed as a function of the transformed radial

2./In (2 . 2,/In (2
n )r, and the transformed radius Z = n (2)
FWHM FWHM

coordinate z = R. For unit activity and

no background activity, this gives:

erf(Z)—\/iEZe‘Z2 ifz=0
Py(z) = 1 1 [e-@22_p~@+22] Eq. 20
E[erf(z+Z)—erf(z—Z)]—ﬁ f] ifz#0

with FWHM the Full Width at Half Maximum of the scanner PSF, and "erf" the error
function.
The radial PET-intensity profile A in the case of plastic inserts of wall thickness
w is then calculated by superposing the profiles obtained for the background of activity
B, the sphere of activity S, and the inactive wall:
A(z)=S-P;,(z) — B P;.,(2z) +B Eq.21
These profiles were calculated for each of the spheres, knowing their diameter
and wall thickness, and for each TBR, with B=1 and S the ratio between activities
injected in the spheres and in the background. According to measurements performed
on the scanner by the manufacturer the PSF of the scanner is assumed to be a Gaussian
with FWHM of 6.4 mm in the axial direction and 5.30 mm in the trans-axial direction at
100 mm off the centre of the Field Of View. In this work, the isotropic FWHM value of 6

65



mm was used at the position of the spheres, in order to use the equation provided by
Hofheinz et al.

From these profiles, expected values of the maximum, mean and peak intensity
were extracted. Mean intensity was calculated by taking into account all voxels with a
centre located within the sphere modelled, while the peak intensity corresponds to the
mean intensity of a 3x3x3 voxels cube around the maximum value. In addition, the
Recovery Coefficient (RC: ratio between the true activity and mean activity measured
on the PET image) and the apparent diameter of the spheres (AD), defined as the
background-subtracted FWHM of the intensity profiles generated, were calculated. The
location on the profile of the maximum intensity gradient point was also extracted for
each insert type and compared to the wall-less case to obtain a value of the
displacement due to the cold walls effect.

In order to assess the influence of the cold walls thickness on PET image
intensity, the test images obtained were analysed qualitatively by using intensity
profiles, as well as quantitatively with SUV-based indicators and RCs. In this study,
PET-image intensity was converted to SUVs by entering the phantom weight and
dimensions into the scanner protocol.

PET intensity profiles were derived on the scans obtained across the different
spheres, in order to visualize any difference in intensity distribution within spheres of
both sets. Lines were drawn on the middle slice for both thin- and thick-wall inserts,
and the AD of the spheres was derived as described previously. This was done five
consecutive times at different angles, and the average AD values are reported in this
document.

The activity inside the spheres was quantified with three different SUV-based
indicators, also used in the rest of this thesis:

* The mean activity inside the spheres was calculated and named SUVean

* The value of the maximum intensity voxel was named SUVnax
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*  SUVpeak was introduced as a potentially more robust indicator based on
SUVmax It considers an average value of neighbouring voxels in order to
reduce the influence of noise on the maximum SUV measured, as suggested
by P. Julyan et al. [133]. SUVpea was calculated as the mean intensity value
in a region of 16 voxels, comprising the maximum SUV in the insert and its
15 nearest neighbours. Given the voxel size of 2.73 mm x 2.73 mm x 3.27
mm, this approximated to a 1 cm3 sphere around the hottest voxel as
suggested in the PERCIST method used for assessment of tumour response
to therapy [134].

The RC was determined in each sphere and compared between thick- and thin-
wall inserts to quantify the difference between the activity observed on the scan and
the actual activity in the spheres. It was calculated from the equation used by E. Prieto
etal [128].

Mean activity measured (%)

RC = Eq. 22

Activity injected (o3)

The effect E of the cold walls thickness on each one of these indicators was
calculated as the relative difference between indicator values obtained for thin-wall
inserts (V (thin)) and thick-wall (V (thick)) inserts. As an example, the effect of the cold

walls thickness on the maximum SUV value measured in the sphere was determined as:

(SUVinax (thick)=SUV 45 (thin))
E(SUViax) = SUViax(thick) Eq. 23

with E negative when the indicator value obtained is higher for thin wall
inserts. When considering the global magnitude of the cold walls thickness on a group
of test images, the absolute value of E was averaged to obtain the metric E. The
variation of the effect of cold walls with different image parameters was investigated by
plotting E for each indicator against the TBR used for each sphere.

The software SPSS was used to detect any statistically significant differences in

median between all E values obtained for thin- and thick-wall spheres. The Wilcoxon
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signed-rank test was applied to values obtained for all three SUV indicators, with a
significance level set to p=0.05.

Segmentation results were first examined visually, in order to identify the test
images on which the algorithms failed to segment the sphere. This inspection pointed
out images with SUV lower than 2.5 or small SUV ranges, for which SUV;s, FT4;, and all
other methods using thresholds could not successfully delineate the spheres. The
contours obtained in those cases were excluded from the study for both thin- and thick-
wall inserts to avoid any bias in the results. This amounted to 10% of the test images
discarded, corresponding to the lowest TBRs and smallest spheres.

The delineation accuracy of all segmentations performed was assessed, by
comparing the contour obtained to CT-derived ground truth. Ground truth was
determined for each insert by drawing a sphere of the same diameter as the insert and
positioning it on the associated high resolution CT scan to match the image of the
sphere walls. The metrics described in II. A. 1. e) were used to directly compare the
performance of the algorithms

The overall relative difference E in accuracy metrics between values obtained
for thin- and thick-wall inserts was calculated for each sphere across all TBRs and PET-
AS methods used, in order to assess the general effect of the cold walls on the
performance of PET-AS algorithms. Indicators S and PPV were also averaged for each
sphere on all TBRs and PET-AS methods, to compare values obtained for thin- and
thick-wall inserts on the whole set of images.

The Wilcoxon signed-rank test was applied to RVE and DSC values obtained for
each of the PET-AS methods, to detect any significant difference in the median of the
values obtained for thin- and thick-wall spheres. The significance level was again set to
p=0.05.

The results obtained for thin- and thick-wall spheres were also compared for

the different methods. For this purpose, the difference between metric values obtained
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for thin- and thick-wall inserts on the whole set of images used was derived for each
method. The difference calculated was relative to values for thick-wall inserts, and
therefore RVE was positive and DSC, S and PPV negative when the algorithm performed
better on thin-wall inserts. Differences smaller than 5% were considered negligible in

the interpretation of the data.

II. B. 1. c. Results

The plastic wall thicknesses of the different inserts, measured with the digital
calliper, are displayed in Table 7 together with the inner volumes of the spheres, as
well as the radii derived from these volumes. Measurements showed a reduction in
plastic wall thicknesses for the custom spheres ranging from 83% to 93% compared to
commercial inserts. This corresponded to a range of 1.12-1.49 mm difference between
the wall thicknesses of both types of inserts. The mean (SD) measured wall thickness
was 0.18 mm (0.06 mm) for the custom inserts, and 1.53 mm (0.14 mm) for the Liqui-
Phil inserts. The spheres were renamed according to their derived diameter (cf. column

1 in Table 7).

The TBR values achieved in the experiments were 1.4, 2.1, 2.7, 2.8, 4.8 and 6.4.
These values correspond to the ratio between spheres and background activities filled
in the phantom, and were used as parameter S when deriving the PET-intensity profiles

from the theory (with B=1).
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Relative

Measured wall Measured Measured . .
thickness (mm) volume (mL) diameter (mm) d.lfference n
diameter (%)
Name Lt Ve Lot Ve Lokl e

S10 1.35(0.05) 0.24(0.07) 053 048  10.06 9.74 3.2

S15 1.55(0.09) 0.15(0.06) 170 174 1481 1493 -0.85

S20 1.72(0.24) 0.24(0.07) 4.16 4.13 19.90 19.95 0.26

S30 1.43(0.18) 0.096 (0.052) 14.47 14.02 30.24 29.92 1.1

S38 1.48(0.17) 0.14(0.05) 29.99 2820 3855  37.77 2

$58 1.65(0.11) 0.23(0.18) 102.20 97.38 58.02 57.09 1.6

Table 7. Measured inside wall thickness (SD of measurement), inner volume and inner
diameter of Liqui-Phil and custom spheres. The last column gives the difference in
diameter relative to the values for Liqui-Phil spheres.
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Figure 26. Theoretical radial profiles obtained for the different insert types at TBR = 2.8
for (a) S10 and (b) S20. The true profile, corresponding to the case of no walls, is shown
by the continuous line.

Figure 26 a) and b) provide examples of radial profiles generated from Eq. 20,

for spheres S10 and S20 respectively, at TBR=2.8. The effect of the PVE is visible on
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these profiles, where only a fraction of the voxels (none for S10) in the centre of the
sphere reached the nominal SUV of 2.8. A difference can also be noted between the
profiles generated for all three different types of inserts. The presence of the cold walls
causes the intensities inside the sphere to be lower than for the wall-less case. This
effect, however, appears smaller for the thin-wall inserts, for which the profile
generated was closer to the expected wall-less profile on Figure 26. This observation

justifies the investigation of thin-wall inserts, as it predicts a reduced cold wall effect.
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Figure 27. Expected differences between thick- and thin-wall inserts in (a) maximum and
(b) mean intensity values. The differences shown are relative to the values for thick-wall
inserts

The difference between thin- and thick-wall inserts (relative to the values for
thick-wall inserts) in terms of mean and maximum intensity values were extracted
from the theoretical radial profiles, and are plotted on Figure 27 against the TBR value
for each sphere size. The results indicated a systematic increase (except for S10 at

TBR=6.4) in mean and maximum SUV values when using thinner inserts. The smaller
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maximum SUV value obtained for the thin-wall S10 at TBR=6.4 was due to a slightly
smaller diameter than the corresponding thick-wall insert. This effect appeared most
important on small spheres and at low TBRs, and decreased with both parameters. The
expected magnitude of this effect was larger for mean (up to 18% increase in mean
SUV) than for maximum values (up to 11% increase in max SUV). The results predicted
a non-negligible effect (>5%) of the difference in cold wall thickness only for the
smallest sphere, at TBR lower than 3, for the maximum value. In the case of the mean
intensity value, the difference was non-negligible (>5%) for the two smallest spheres at
all TBR, and for all spheres except the largest at TBR=1.4. It is therefore reasonable to
expect that the differences observed on the experimental results would be larger for
the mean intensity values, and will decrease with increasing sphere size and TBR. The
same trend should be observed for RC values, which rely on the mean SUV.

The displacement of the maximum intensity gradient point was minor (<0.1
mm) for thin-wall inserts, and reached 1.1 mm for thick-wall inserts.

Figure 28 illustrates the PET-TOF intensity profiles drawn on the images for
thin- and thick-wall spheres S58 and S15. The profiles on Figure 28 show some visible
difference in the apparent sphere diameters AD between the two sphere sets, especially
for smaller spheres, as expected from the theoretical profiles. The SD of the measured
AD values did not exceed 4 % of the mean value for any of the spheres. The calculated
difference (SD) in measured AD between the two sphere sets showed a mean value of
2.1 mm (2.0 mm) across all the scans. These discrepancies are on average twice as
large as the maximum differences in measured wall thicknesses. It can also be noted

that SUVmax for S15 is 25% higher for the thin-wall insert, as shown in Figure 28 c).

72



S58

Intensity (SUV)

ol = = = thin walls
thick walls

o 1 2 8 4 s & 7 8 o
x (cm)

: ‘ | 515

IS
T

©
w o
T T

Intensity (SUV)

~
T

= = = thin walls
thick walls

0 015 1‘ 1.‘5 é 2.‘5 3
X (cm)

Figure 28. Thin- and thick-wall PET-TOF intensity profiles at TBR = 4.8 for (a) S58, (c)
$15. (b) and (d) show the line drawn across the middle slice of S58 and S15, respectively

The variation of the three SUV indicators with TBR for each sphere size is
presented in Figure 29. Results show higher SUVnean values for the thin-wall inserts (up
to 25%) except in one case. SUVnax and SUVpeak both show substantial differences
between thin- and thick-wall inserts for the smallest sphere at TBR=1.4, thin-wall
inserts yielding values up to 26% higher for SUVmax, 51% for SUVyeax (cf. Figure 29 b)
and c)). This observation is consistent with the results of the theoretical data shown on
Figure 27, which predicted a non-negligible effect (E>5%) of the difference in wall
thicknesses only for the smallest sphere at the lowest TBRs. The metric SUVpeak, which
was used as a more robust alternative to SUVmax, as suggested by Wahl et al. [134],
confirmed the result observed on the SUVnax data, of a large difference between inserts
for the smallest sphere at TBR=1.4 only. Figure 29 also highlights the increase in the
effect of cold walls with decreasing TBR for all indicators, and shows the substantial

(E>5%) effect of the cold walls on all indicators for TBRs smaller than 4.
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Figure 29. Influence of the cold wall thickness (relative difference E) on the different SUV
indicators at different TBRs: (a) SUVmean, (b) SUVmax, and (c) SUVpeak. The grey area

highlights positive values of E [i.e., SUV (thick) > SUV (thin), cf. Eq. (23)].
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Difference in measured RCs between thin- and thick-wall inserts
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Figure 30. Difference between RCs obtained for thin- and thick-wall inserts for each
sphere size and TBR.

Figure 30 depicts the difference in RCs observed between both sphere sets, for
each sphere size. The RC appears systematically higher for thin-wall plastic inserts,
which is in agreement with the results of the simulated data. Relative differences
between thin- and thick-wall inserts reach values of 0.17 (RC of 0.86 and 0.69
respectively), i.e. 17% of the nominal activity. The smallest RC value obtained,
corresponding to the smallest sphere was 0.50 for thick-wall inserts and 0.54 for thin-
wall inserts.

Table 8 summarizes the results of the Wilcoxon signed-rank test for each
indicator used in this study, displaying the difference in median values obtained
between thin- and thick-wall inserts and the corresponding p-value returned by SPSS.
The results show a statistically significant difference (p<0.05) in the median SUVnean
value of both insert sets of 0.19. The difference in medians for SUVna.x reaches the
smaller value of 0.14, which is also statistically significant (p<0.05). RC values yielded a
statistically significant difference in median values (0.028) between both sphere types.
The difference in medians, relatively high compared to the range of RCs observed
(0.17-0.68), shows the high influence of the cold wall thickness on the recovery of

injected tracer concentration.
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Indicator

SUVmean SUVmax SUVpeak RC

Difference in medians

(thin-thick)
p-value

0.19 0.14 -0.029 0.028

<0.01* 0.003" 0.139 <0.01"

*Statistically significant (p<0.05)

Table 8. Results of the Wilcoxon signed-rank test for the different SUV indicators.
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Figure 31. (a) DSC and (b) RVE values obtained averaged on all PET-AS methods for each

sphere size and TBR.
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Figure 32. (a) S and (b) PPV values obtained averaged on all PET-AS methods for each
sphere size and TBR.

RVE and DSC values obtained, averaged on all PET-AS methods are compared
on Figure 31 between both sets of spheres for each sphere size and TBR. The same
comparison is presented for S and PPV on Figure 32. The data show that segmentations
performed on thin-wall inserts yielded lower volumetric errors (up to 31%) and higher
similarity with the true contours (up to 14%) on average on all methods used. Results
of the Wilcoxon signed-rank test comparing values for RVE and DSC are given in Table
9. For each PET-AS method, the difference in median values obtained between thin-
and thick-wall inserts and associated p-value returned by SPSS are reported. The data
show statistically significant differences in delineation accuracy (RVE and DSC)

between thin- and thick-wall spheres for all methods except GC, KM and AC.
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PET-AS FT42, SUV:s AT GC RG KM FCM GCM WT AC

Method
Difference in
medians
p-value (RVE) 0.003* 0.00" 0.00" 0.267 0.00" 0.001" 0.002* 0.00* 0.00" 0.005"

Difference in
medians

p-value (DSC) 0.002* 0.004" 0.007" 0.372 0.008" 0.110 0.00° 0.001" 0.022" 0.481

-0.14 -0.15 -0.090 -0.079 -0.061 -0.10 -0.064 -0.56 -0.072 -0.14

-0.042 0.019 0.031 0.012 0.012 0.0085 0.051 0.041 0.0043 -0.027

*Statistically significant (p<0.05)

Table 9. Results of the Wilcoxon signed-rank test applied to RVE and DSC values obtained
with each PET-AS method on both sets of spheres. The difference in medians is relative to
thin-wall inserts.
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Figure 33. (a) Difference in RVE and (b) difference in DSC between delineations on thin-
and thick-wall inserts for the different algorithms.

Figure 33 compares the effect of the cold walls on the different algorithms in
terms of relative difference E in RVE and DSC values, averaged on all TBR and spheres.
Important differences between algorithms of different types can be observed. WT and
AT were the least affected by the wall thickness, with negligible differences for both
RVE and DSC. AC appears to be the most overall affected method, with 40% larger RVEs

but 39% higher DSC in average for thin-wall inserts.
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II. B. 1. d. Discussion and conclusion

In this work, the effect of cold walls thickness was quantitated on a large range
of TBRs and sphere sizes, and it was shown that plastic inserts with walls of 0.1-0.2 mm
provide improved SUV quantification in PET images. The results of this study
demonstrated a statistically significant effect of the cold walls thickness on image
activity recovery coefficients as well as on the delineation accuracy of PET-AS
algorithms. The effect on the delineation performance was dependent on the algorithm
used. The use of wall-less activity regions in a hot background is therefore
recommended for the validation and inter-comparison of PET-AS algorithms in
clinically relevant conditions.

This study provides a thorough investigation of the effect of the cold plastic
walls thickness in spherical phantom inserts, supported by both theoretical and
experimental results with thin- and thick plastic wall inserts. For this purpose, six
spherical plastic inserts (cf. Figure 25) were successfully manufactured with a
reduction of the wall thickness reaching 90%, using the vacuum-moulding technique,
and scanned. The equations used to derive 2D-intensity profiles have already been
used and validated experimentally by Hofheinz et al [84]. However, their study focused
on the calibration of the optimal volume recovery threshold, and investigated the case
of thick plastic walls at TBRs higher than 3. The results of this study, which extended
the TBR and sphere size range to low values, showed a good agreement with the theory
(cf. Figure 26 and Figure 28, Figure 27 and Figure 29), although some fluctuations
could be observed in the experimental data. These fluctuations could be due to the
presence of noise, which was not taken into account in the theoretical model. In this
study, higher activity levels were used, in order to reproduce typical clinical
background intensity values (50-70 kBq/mL in the phantom background compared to
0-46 kBq/mL for Hofheinz et al.). This would be the main source of noise in the present

data. On the other hand, the longer emission times used by Hofheinz et al probably
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compensated the expected lower sensitivity of their PET scanner. The use of a
transformation to radial coordinates, as applied by Hoftheinz et al.,, could have helped
minimize the impact of image noise in this study. However, the cold walls effect was
found to be statistically significant in the data presented despite the presence of
observable fluctuations from the theoretical values. In addition, the aim of this study
was to assess the magnitude of the cold walls effect directly on quantification and
segmentation of typical PET intensity data with a large range of TBRs. This implied
using standard routine scanning protocols and settings leading to typically observed
levels of noise in the data, as well as commonly available image processing tools, which
operate directly on the 3D matrix of image intensity voxels, and might not include such
a transformation. The application of a 3D voxel-wise de-noising filter like the one used
by Geets et al. [98] would be useful in a subsequent study detailing the role of noise on
the cold walls effect.

The data showed that higher SUVnaxvalues are measured in thin-wall inserts for
the smallest spheres only, while SUVyean is systematically lower in thick-wall inserts.
This can be explained by the fact that the mean SUV includes voxels located close to the
sphere walls. SUV,ea did not show an overall statistically significant effect of the cold
wall thickness (cf. Figure 27 and Figure 29), suggesting that the significant effect
observed for SUVmax should be considered with caution, as it could be affected by noise.
The investigation of the cold walls effect at different TBRs and sphere size, which had
been previously investigated on a smaller range of values [84], [85], showed that it
decreases with increasing TBRs and sphere sizes. The theoretical framework developed
by Hofheinz et al. [84] predicted that this effect vanishes when the TBRs reaches
infinity, i.e. in the case of a cold background. The model also suggests that PET-image
quantification should be carried out, when possible, in phantoms with inactive
background, especially when performing algorithms calibrations on a large range of

sphere sizes and TBRs. However, this situation is not encountered in clinical conditions,
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therefore this method would not be useful in studies simulating metabolic activity
distributions, for example when testing segmentation algorithms destined to be used in
radiotherapy treatment planning. This work focused on the experimental validation
and inter-comparison of advanced automatic algorithms for a clinically useful range of
TBRs and sphere sizes.

Large differences can be observed in the RC between results obtained for thick-
and thin wall inserts, as expected from the theory. The use of thin-wall inserts allowed
a systematic reduction of the quantification errors in terms of activity recovery in the
image (cf. Figure 30). This was confirmed by statistical analysis (higher median value
for thin-wall spheres with 0.028 difference, p<0.05). Bazanez-Borgert et al. [130]
quantified the gain in activity recovery obtained when using wall-less inserts compared
to fillable plastic ones, in a study validating the wax inserts suggested by Turkington et
al. [135]. They also found a tendency for high recovery coefficients for the wax spheres.
These results are particularly important in quantitative studies, and point out the risk
of underestimating the SUV measured within a plastic insert. In this work, thin-wall
inserts did not systematically reduce the error in activity recovery to negligible levels
(E<5%). This suggests that the effect of plastic walls on image intensity values cannot
be completely eliminated by using minimal plastic wall thicknesses. The effect of a 90%
reduction in cold wall thickness on the image quantification, as well as on the
evaluation and comparison of fully automatic segmentation algorithms was quantified.

In this manuscript, the impact of cold walls on the delineation accuracy was
quantified for several fully automatic segmentation algorithms (cf. Table 9 and Figure
31). In particular, Figure 32 shows higher sensitivity values obtained for thin-wall
spheres of all sizes, but lower positive predictive values for thin-wall inserts for all
spheres except the smallest, due to the overall decreased activity in the spheres.
However, differences in S were much larger than differences in PPV (up to 33% for S,

10% for PPV). This indicates that the reduction in plastic wall thickness allows the

81



algorithms to detect all voxels within the lesion, at the cost of including a few
background voxels. This may be the case in particular for high intensity lesions, which
can appear larger than their actual because of the PVE causing the high intensity region
to spill out into the background. Figure 31 b) and Figure 32 show that the values
obtained for two very close TBR values of 2.7 and 2.8 reached highly different metric
values, in particular for the smallest spheres. The values of 2.7 and 2.8 are within 4% of
each other, which corresponds to the uncertainty of the TBR value caused by the
calibrator precision error (cf. II. A. 2. a. ii). As a consequence, the difference between
the values obtained at these two TBRs cannot be interpreted as being due to the TBR.
The discrepancies observed on Figure 31 b) and Figure 32 are more likely to be due to
the high sensitivity of some methods to the image noise, leading to large differences in
values in particular for RVE, which is calculated relatively to the volume of the spheres.
This calls for caution when interpreting individual data points, and suggests that the
interpretation of the results should rather focus on the trend shown across TBRs.
Finally, methods based on different mathematical algorithms or initialisations
appeared to be influenced differently by the presence of cold walls as shown in Figure
33. For example AT, which is based on the maximum SUV, was less affected by the cold
plastic walls than algorithms based on regional mean SUVs, such as the clustering
algorithms and RG which perform significantly better on the thin-walls set. The high
differences in RVE observed for fixed thresholding methods were due to outliers at the
smallest TBRs and sphere sizes. On the other hand gradient-based methods GC and WT
showed little variation between thin- and thick-wall spheres. This is explained by the
fact that both algorithms rely on the position of highest intensity gradient in the image.
The theoretical analysis showed that, for the data presented here, the maximum
displacement of the highest intensity gradient only reached a value of 1.1 mm, which is
smaller than half the smallest voxel dimension (2.734 mm). This can explain why these

methods are less influenced by the wall thickness than SUVyean —based methods. This
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does not apply to AC, for which the initialisation step also uses a version of the GMM
method. These data show the importance of considering the thickness of cold walls
when evaluating and comparing the performance of segmentation algorithms using
fillable inserts as reference.

Cold background can be used for the calibration of segmentation algorithms as
a way of avoiding errors due to the cold walls effect. In this work, however, the
algorithms compared did not require any tuning. Therefore, thin wall inserts in a hot
background instead, to create more clinically realistic conditions, while accounting for
background scatter and heterogeneities. The results of this study are in line with the
decision of some groups to use wall-less inserts in their quantitative image analysis
studies, as this method did not completely eliminate the cold walls effect. Montgomery
et al. [90], for example, acknowledged the possible effect of using inactive walls, and
used the method described by Turkington et al. [135] to generate wax inserts for the
validation of their segmentation algorithm. However, such techniques present technical
difficulties, in particular for achieving homogeneous activity distribution inside the
wagx, as pointed out by Bazanez-Borgert et al [130]. Further work was carried out to
validate a technique for the production of printed subresolution sandwich phantoms to
be used as reference data for PET segmentation testing. This is described in details in

section III. A. 1 of this thesis.

II. B. 2. Evaluation of the segmentation of non-spherical

volumes

II. B. 2. a. Purpose

The validation of PET-AS methods is often done with test data generated from
3D fillable plastic phantoms, such as the Spherical Lucite Phantom (Canberra-Packard,
Zellik, Belgium), the NEMA IEC body, and the IEC quality phantom [77], [91], [98]. The

main drawback of this type of method is that images generated do not represent the
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reality of tumours in the clinical setting, particularly because most the inserts used
have a spherical shape and thick plastic walls. Although non-spherical regular [80], [87]
and irregular [87], [136] inserts have been used elsewhere, their geometrical
characteristics were not systematically used to assess the performance of the PET-AS
methods. This series of experiments relied on the hypothesis that carefully designed
inserts of different geometry, beyond fillable spheres provide relevant and
complimentary information about the performance of PET-AS methods. The aim of this
work was to generate a range of test inserts reflecting clinical situations, to compare
the performance of the implemented PET-AS approaches, and identify their
weaknesses and potential areas of improvement. This work was peer reviewed and

published in [137].

II. B. 2. b. Methods

II. B. 2. b. i. Description and quality assessment of test inserts

A total of 16 non-spherical fillable plastic inserts, listed in Table 10, were
designed with input from a consultant radiologist to represent geometrical
characteristics of interest for clinical tumours, such as high Aspect Ratio (AR: ratio of
length to maximum diameter) often encountered in H&N, ellipsoidal shape typical of
malignant lymph nodes, and necrotic centres often observed for lung tumours. All
inserts were generated in house with a 0.18 mm wall thickness using the vacuum-
moulding technique previously described (cf II. B. 1). Ellipsoidal and toroidal
(doughnut-shaped) inserts were derived with the same volumes as spheres S15, S20,
S28 and S38 of the Raydose phantom (1.8, 4.2, 11.5 and 28.7 mL). The remaining
inserts were designed to investigate of the impact of a particular parameter on the
delineation accuracy (e.g. sharp corner, high aspect ratio etc.). For this purpose, tubes
with rounded ends, drop- and pear-shaped inserts, were manufactured with a constant

volume of 28 mL (corresponding to sphere S38), representing typical stage T3 tumours
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encountered in the H&N at Velindre Cancer Centre. The inserts were derived with three
different Aspect Ratios (AR: ratio between the largest diameter and smallest

perpendicular diameter) of 2, 2.5 and 3.
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Geometry

Names

Purpose

Ellipsoid

et

_______________

Jousjul-louadng

E15,E20,E28,E38

- Aspect Ratio higher than 1
- modelling structures such
as malignant lymph nodes

Torus
%)
§ - small cross-section
_a To20, To28, To38 - modelling of necrotic
£y region
5}
5
Tube
Left - right
2
3 Tu38a, Tu38b, Tu38c - Aspect Ratio higher than 1
§_ (AR, of 2, 2.5, 3 respectively) - modelling “long” tumour
g.
Pear
2
% (AR, of 2, 2.5, 3 respectively) i £ 'ong .
) with asymmetric extension
- §.
Drops
” - Aspect Ratio higher than 1
5 - modelling “long” tumour
§' D38a, D38b, D38c with asymmetric extension
2 (AR, of 2, 2.5, 3 respectively)
- _6‘.

Table 10. Description of the vacuum-moulded plastic inserts used in this study

The actual volume of the non-spherical inserts was measured by subtracting

from the weight of the insert filled with water the weight of the empty insert. The
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XP205 DeltaRange Analytical balance (Mettler Toledo LLC, Columbus, USA) was used

after previous calibration.

IL. B. 2. b. ii. Comparison of PET-AS methods

All images were obtained with the settings previously described (cf. II. A. 1. a).
For the sake of comparison, spherical and non-spherical inserts of matched volumes
were scanned simultaneously in the custom-made phantom described previously (cf. I1.
B. 1). All scans were acquired with a TBR of 5, corresponding to an intermediate value
in the range of TBRs observed at Velindre Cancer Centre.

All PET-AS (cf. II. A. 1. d) and basic segmentation methods were applied to all
test images obtained. Non-usable contours were visually identified and rejected from
the study as in IL. A. 3. a. ii. The segmentation results were compared to the ground
truth using the metric DSC as previously described (cf. II. A. 1. e).

In addition the recovered physical dimensions of non-spherical inserts were
measured for each accepted contour (except ellipsoids and tori), by determining the
maximum diameter of the contour obtained in the transverse direction, and the
maximum length of the contour in the superior-inferior direction. The error in
recovered dimensions corresponded to the difference between the dimensions of the
contours generated and the true inserts dimensions, expressed as a percentage of the

true dimensions.

II. B. 2. c. Results

IL. B. 2. c. i. Generation of PET test inserts
Some of the manufactured inserts are shown on Figure 34. The measured
volumes of the inserts were compared to the values targeted for the manufacturing
process. The target volume was achieved (difference <5% target volume) in all cases
except for the toroidal objects, which were proved most challenging to manufacture.

The error for toroids ranged within 18% and 35% of the target volume for To20 and
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To38 respectively. This was due to a difference in the dimensions of the insert, while
the targeted toroidal geometry was maintained. As a consequence, the toroidal
reference contours used in the study were adapted to the manufactured inserts’

measured dimensions.

Figure 34. Vacuum-moulded plastic inserts with volume corresponding to the 38 mm
diameter sphere.

In a few cases the inserts produced were slightly different from the geometrical
models. This was due to:

* the presence of a plastic rod used to position the inserts,

* for D38c: a slight bend in the vertical axis (less than 1 mm deviation for 60
mm height),

* a truncation by 1-2 mm of the tip of drop-shaped inserts due to the
manufacturing process.

In those cases, the contours were manually edited on the high resolution CT to

match the analytical model.

II. B. 2. c. il. Evaluation of PET-AS methods
The DSC values obtained by the different PET-AS methods for each non-

spherical insert are reported in Table 11.
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Dice Similarity Coefficient

Insert AT GC RG KM FCM GCM WT AC
E15 0.83 0.73 0.76 0.74 0.79 0.79 0.76 0.78
E20 0.90 0.89 0.96 0.89 0.82 0.91 0.90 0.85
E28 0.93 0.92 0.94 0.95 0.80 0.91 0.91 0.89
E38 0.95 0.94 0.96 0.96 0.81 0.93 0.93 0.93
To20 0.52 0.31 0.45 0.39 0.38 0.33 0.34 0.41
To28 0.77 0.37 0.67 0.58 0.62 0.76 0.42 0.39
To38 0.83 0.49 0.78 0.74 0.83 0.80 0.42 0.38

Tu38a 0.95 0.94 0.95 0.95 0.76 0.92 0.91 0.92
Tu38b 0.94 0.94 0.95 0.94 0.75 0.91 0.92 0.89
Tu38c 0.93 0.92 0.94 0.95 0.73 0.89 0.92 0.88

P38a 0.93 0.90 0.93 0.92 0.78 0.91 0.85 0.90
P38b 0.91 0.90 0.92 0.92 0.77 0.90 0.86 0.92
P38c 0.95 0.91 0.87 0.93 0.76 0.92 0.86 0.92

D38a 0.93 0.89 0.93 0.94 0.78 0.91 0.88 0.92
D38b 0.93 0.85 0.91 0.93 0.77 0.91 0.87 0.91
D38c 0.94 0.91 0.92 0.94 0.77 0.92 0.87 0.93

Table 11. Accuracy (DSC) obtained by the different PET-AS methods on non-spherical
inserts.

Differences between the volume delineated and the true volume were smaller
than 2% of the true volume for all ellipsoids, and corresponded to an under-estimation
of the volume for all methods. DSC values were higher for the spheres compared to the
non-spherical inserts of matched volume in 88% of the cases, and this was true for the
smaller insert for all methods. RG produced contours with a high level of conformity to
the reference contour (DSC>0.94) for the three largest ellipsoidal inserts, and AT
reached DSC values higher than 0.83 at all ellipsoid sizes. FCM did not reach DSC values
higher than 0.82 for ellipsoidal inserts. The maximum differences between spherical
and ellipsoidal DSC values were obtained at the smaller volume (except for FCM), and
reached 0.17,0.11, 0.15 and 0.14 DSC for RG, KM, FCM and GCM respectively.

In the case of toroids, three scans were acquired with the inserts aligned with
an angle of 0°, 45° and 90° of the sagittal plane, to check for any impact on the image
quantification and segmentation. No trend linked to the insert position was observed,

and the average DSCs across the three instances are therefore reported in Figure 35.
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The DSC values obtained were smallest for To20 (DSC ranging from 0.38 to
0.83). WT and AC underestimated the volumes of To28 and To38 (volumes lower than
3 mL and 5 mL respectively), resulting in low DSCs. GC also underestimated the volume

of the largest torus.
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Figure 35. DSC obtained by the PET-AS methods on a) toroidal and b) spherical inserts of
matched volume, and c) reference and WT contour obtained for To38 aligned with the
coronal axis.
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Figure 35 a) and b) show the DSC values obtained for each method on toroidal
and spherical inserts respectively. The values were lower for toroids than for spheres
for all methods. GC, WT and AC yielded much lower DSC values (up to 0.46 lower) for
all toroidal inserts. This is depicted on Figure 35 c), showing that WT only recovered a
small part of the To38 torus, which was also observed for GC and AC.

The data in Table 11 show that AT, RG and KM were the best PET-AS methods
overall for recovering the volumes of tubes, pear- and drop-shaped inserts, with DSCs
higher than 0.91 (except for P38c for RG). AT and KM systematically under- and over-
estimated the volumes respectively, whereas RG did not show any systematic trend.
High DSC values were also obtained for GCM and AC on all inserts (>0. 89 and >0.88
respectively). FCM reached the lowest DSCs (DSC<0.79) for these inserts.

Figure 36 shows reference and PET-AS contours generated in the coronal plane
for D38c, and highlights the difficulties encountered by some PET-AS methods to
recover the tip of the drop-shaped insert. Methods such as GC, AC and WT tended to
generate a contour wider than the true insert, whereas methods such as RG or AT failed
to include the tip of the insert in the delineation. The figure also shows large errors or
the GC algorithm on the transverse plane near the insert tip. The measured values of
error in the height recovered by the PET-AS methods are presented on Figure 37 show
that the methods tended to under-estimate the object length, especially in the case of
drop-shaped inserts (12-36% error). All methods achieved errors smaller than 22% of
the true length, except for RG (>30%). AT, KM, GCM, AC and WT all achieved errors in
the length smaller than 14% of the true volume for all geometries. RG yielded high
positive errors in length for all geometries, which indicates a poor shape recovery of

such thin inserts.
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Reference AT

Figure 36. Reference and PET-AS contours generated for D38c. Contours are shown on
the coronal plane.
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Figure 37. Error in the recovered length averaged on inserts of the same type, with error
bars of one associated SD.

No correlation was found between the AR and DSC values for pear- or drop-
shaped inserts. A decrease in DSC with increasing AR was observed for the delineation
of tubes by some PET-AS methods. This was the case for AT, RG, FCM, GCM and AC, with
differences between values for AR=2 and AR=3 of 1.7%, 1.3%, 3.8%, 3.6% and 4.8% of

the value for AR=2, respectively.

II. B. 2. d. Discussion and conclusion

In this study, 16 different non-spherical inserts were specifically designed and
imaged to better model clinical tumours. This type of data has not been used to date for
the validation of automatic PET-AS methods. By using non-spherical test objects, this

work extends the range of variation of image parameters on which PET-AS methods
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have been tested (e.g. FCM tested by Hatt et al. [91]), while remaining in clinically
relevant conditions.

The small disparities observed between the targeted geometry and
manufactured inserts were due to minor modifications of the object geometry during
the manufacturing process, which were necessary for ensuring a good sealing and
attachment of the inserts to the positioning rods. However, these were accounted of by
modifying the reference contour’s geometry accordingly, and therefore had little
impact on the segmentation analysis.

Non-spherical inserts were introduced as more challenging test cases for PET
segmentation, for which the ratio between surface and volume, and therefore the
proportion of boundary voxels, is larger than for spheres. The thoroughness of the
testing was confirmed by the lower performance obtained for the non-spherical inserts
for most PET-AS methods, compared to previous results using spheres (cf. II. B. 1). The
insert geometry most difficult to delineate was the torus, for which DSC values ranged
from 0.31 to 0.82 (cf. Figure 35 a)). This can be explained by the presence of the “cold”
centre, and small diameter of the torus “tube”. A decrease of the delineation
performance of the tubes with increasing ARs was also observed for some methods.
This is due to the PVE, which affects a higher proportion of voxels in thin tubes, for
which the boundaries are only a few voxels apart. However, the effect observed was
small compared to the difference between spherical and non-spherical inserts (0.1-0.3
DSC compared to 0.1-0.7 DSC).

An iterative thresholding method, similar to the method AT presented in this
work, was developed by Jentzen et al. [75], and validated with the NEMA IEC body
phantom. The AT method presented in this work showed good performance (DSC>0.7)
for spheres larger than 0.5 mL at all six TBRs, which is in agreement with their findings
(error in recovered volume lower than 20% for spheres larger than 1 mL, at TBRs of

2.1-7.8). In addition the AT method produced the highest DSC score on the dataset used
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here (DSC>0.83, except for tori). The results are also in agreement with the good
performance obtained by Drever et al. [80] evaluating an iterative threshold
segmentation method on spheroids and two irregularly shaped inserts. In addition, the
choice of test data allowed highlighting the robustness of AT on a range of geometrical
inserts. The method’s performance showed little variation with the geometry, as shown
in Table 11 and Figure 35. AT was overall the best performing method on the dataset
used, which included volumes ranging between 0.5 mL and 102 mL, and TBRs between
1.4 and 6.4. Voxel-based approaches may be more advantageous when segmenting
heterogeneous structures as suggested elsewhere [75]. The detailed investigation of
the performance of PET-AS methods on heterogeneous tracer distributions was outside
the scope of this study. However, work is in progress at the Wales Research &
Diagnostic PET Imaging Centre to test the methods in such conditions.

Region growing is used within current commercial image processing software
in combination with fixed thresholding methods, because of its use of voxel
connectivity, which guarantees that the result is a single connected region. In this work,
however, a more complex algorithm was used, growing the region by including voxels
with intensity within an interval around the region mean intensity value. This was
based on work carried out by Day et al. [89], which showed a good agreement between
their method and manual delineation of patient data by experts. The authors
acknowledged the difficulty of validating methods on clinical images, for which the
ground truth is difficult to obtain. The results complement the findings from Day et al,
as they provide images with known ground truth, designed to represent realistic
clinical conditions. Although the RG method was superior in the delineation of spherical
inserts and showed a good volume recovery for the delineation of complex geometrical
test inserts (cf. Table 11), the measurement of the recovered length indicated a poor
shape recovery in the specific case of inserts with narrow ends (cf. Figure 37). This is

likely to be due to its underlying algorithm, which grows the region to delineate
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simultaneously in all directions. The performance of this method could be improved by
adjusting the speed of the region growing in different directions according to its rate of
expansion in each direction.

Geets et al. [98] found a systematic underestimation of the Spherical Lucite
Phantom inserts (2.1-92.9 mL at TBRs of 1.5-15) by the watershed algorithm, which
they attributed partly to the presence of glass walls. When using WT to delineate the
thin plastic wall inserts, overestimation of the volume was observed for small spheres
and for all non-spherical inserts (cf. Table 11). This could be explained by the use of
plastic objects instead of glass in the present study, and/or by the absence of a pre-
processing step in the present method compared to Geets et al. In addition to these
results, the lack of accuracy of the method was highlighted for delineating inserts with
thin ends, such as drops (cf. Figure 36). Similarly, the watershed-based method,
evaluated by Drever et al. [120]., showed difficulties in recovering the diameter of large
and small cylindrical inserts, although no systematic error was observed.

The GC method, which also segments the gradient of the target image,
performed well for spherical inserts (cf. Figure 35), but showed much lower accuracy
for small inserts and non-spherical geometries. The method failed to accurately recover
the contour on some 2D images, which was noticeable for the drop-shaped inserts (cf.
Figure 36). The difficulty of delineating complex geometries (especially when narrow
ends are involved) could be inherent to the use of the image gradient. As Drever et al.
[80], and Geets et al. [98] pointed out, the image gradient calculation is highly sensitive
to noise and image blurring. GC and WT could therefore benefit from a partial volume
correction, which Geets et al. used to improve the definition of the intensity gradient
image [98]. It is also worth noting that both GC and WT methods are implemented as a
slice-by-slice process initialised using a single seed voxel, which could explain why they

only delineated part of the toroidal inserts (cf. Figure 35 c)).
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Various versions of the K-means (KM), Fuzzy C-Means (FCM), and Gaussian
Mixture Models Clustering (GCM) algorithms have been evaluated in the literature.
Belhassen et al. [72] tested the FCM method on simulated data from the NCAT phantom
and clinical PET images. They found large underestimation of the volumes in both
cases, which was also observed in this study for both baseline and complex inserts (cf.
Table 11 and Figure 35). It can be noted that the low performance of FCM due to its low
sensitivity is more obvious for non-spherical inserts, as shown by Figure 35 a).
However, the systematic error in volume obtained for the baseline study was not
detected when developing the algorithm using thick-wall spheres from the NEMA
phantom. This consolidates the results of previous work in which the importance of
using realistic thin-plastic inserts for the evaluation and comparison of PET-AS
methods was highlighted [131]. Hatt et al. [138] evaluated FCM (among others) on the
IEC quality phantom, and suggested that the method is outperformed by region
growing schemes on low contrast images, which the results of this study confirm (cf.
Figure 35). Montgomery et al. [90] tested different clustering methods on spheroidal
wall-less structures, and found that KM significantly underestimated the volumes,
whereas the addition of Gaussian Mixture Modeling overestimated them. Such
systematic errors can be explained by the choice of test inserts used to develop the
methods (wall-less inserts compared to NEMA spheres in this study). In particular, the
parameter used to assign voxels from the fuzzy region to tumor or background clusters
is tuned according to the test data selected. In addition in this study, GCM performed
well for both spherical and non-spherical inserts of volumes larger than 1.8 mL (cf.
Table 11). The method models the spatial intensity distributions in both lesion and
background, which could explain its good performance and robustness to complex
shapes (cf. Figure 36).

The AC method developed in this study was based on methods developed

primarily for MRI images, predicting a high accuracy in the recovery of complex
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geometrical shapes [114], [115], [139]. AC, implemented on a 2D basis, includes an
“elasticity” parameter, controlling the length-to-surface ratio of the contour generated
on each slice. The errors in object recovery (DSC) and insert length by AC, shown in
Figure 36 and Figure 37, were relatively small compared to the other methods.
However, the method failed to recover the toroidal geometry, which suggests that the
elasticity parameter should be modified for targets with a central necrotic region.

This work shows that the thorough validation of automatic segmentation
algorithms requires the use of test volumes of more complex geometries than spheres.
The robustness and high performance of AT, observed for spherical inserts, was
confirmed for the segmentation of non-spherical inserts. On the other hand, the use of
non-spherical inserts added valuable information to the tests performed with spherical
inserts, highlighting large errors obtained by the slice-by-slice gradient-based
techniques, systematic under-segmentation from the fuzzy -clustering method
implemented in this work, and the lack of sensitivity of the region-growing algorithm
for complex geometries. This work provides useful data for further optimisation of PET
segmentation methods in clinically relevant reference conditions. One limitation of this
study is that the tracer uptake heterogeneity was not modeled. Including imbricated or
compartmented inserts would have added different FDG uptake regions, but making
such inserts while maintaining good sealing and a regular wall thickness across the
inserts would have required an industrial manufacturing process that was not
available. The use of a printed subresolution sandwich phantom presented in the next
chapter helped overcome this problem.

The experimental tests presented in this first chapter allowed the project to
move forward by validating the PET-AS methods implemented, and showing their
superiority to commonly used fixed thresholding methods FT42, FT50 and SUV2.5. In
addition, the results have highlighted the most promising methods, such as AT and RG,

as well as the weakest ones, such as FCM, GC and KM. The data also provided
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information useful for understanding and improving the methods, by using 3D
implementation and pre-processing in some cases (cf. II. A. 2. b) or further tuning the
methods (cf. II. A. 3). Some methods showed promising results in specific cases, such as
GCM and AC in terms of robustness to image parameters, and shape recovery (in this
section) and will benefit from further analysis. However, the approach of using
geometrical plastic inserts with homogeneous uptake to simulate tumour regions
remains highly unrealistic in a study investigating the segmentation of H&N tumours.

Work presented in the following chapter will address these issues.
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Chapter III. Development of an
optimised segmentation
framework

After ensuring optimal implementation of the different PET-AS methods, and
comparing them in targeted challenging situations, further work focused on
quantifying the accuracy of the methods for the delineation of realistic H&N PET
images. The aim was to evaluate the accuracy of the different PET-AS method in various
conditions modelling H&N background and tumour uptake as realistically as possible,
and use the results of these studies to develop an optimised segmentation process
applied to clinical data at Velindre Cancer centre. For this purpose, data from a printed
sandwich phantom was used, as well as data from a PET simulator tool, both of which
combined the advantages of a great flexibility in the definition of the FDG uptake to be

modelled, and the availability of a known ground truth.

I11. A. Evaluation of the PET-AS methods using a
printed subresolution sandwich phantom

III. A. 1. Development and validation of the method

IIL. A. 1. a. Purpose

The previous work decsribed in this thesis highlighted several drawbacks of
fillable phantoms, including fixed geometry, absence of heterogeneity modelling, and
the presence of thick plastic walls around the target objects.

The use of printed uptake patterns has recently been investigated as a novel
technique for generating radioactive sources for SPECT [140]-[143]. Work by Larsson
et al. [140] and van Laere et al. [141] has taken this forward with the use of stacked

radioactive printouts, applied to the generation of idealised SPECT images for
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experimental validation and comparison, and applications in neuroimaging activation
studies respectively. Both studies suggest using similar techniques for PET. In their
recent work, Sossi et al. [144] have applied the printing technique to the production of
planar radioactive sources for PET, using conventional ink and 18F nuclide printed on
ordinary paper. A quantitative calibration study of the printing method was described
in detail by Markiewicz et al. [145] for generating single-slice patterns with
applications to brain imaging studies. However, the stacking of several printed patterns
to produce a 3D object was not investigated in this study, which focused on the
characterisation of the experimental setup. For this project, a collaboration was started
with Robin Holmes (Bristol Royal Infirmary, Bristol, UK) who developed a similar
technique with the purpose of generating 3D brain HMPAO images for SPECT imaging
[146]. Such a printed phantom provided a great alternative to fillable phantoms,
involving a physical 3D object to be scanned as well as the possibility of designing any
given FDG uptake for modelling.

The work presented in the following sections therefore aimed at implementing
a protocol for the use at Velindre Cancer Centre of such a technique, with FDG. The
technique was given the name printed subresolution sandwich (SS) phantom because
of the distance between two printout sheets, which is smaller than half the axial
resolution of the scanner. The printed SS phantom technique was further used to
produce realistic PET images of H&N lesions, for evaluating PET-AS methods.

This section focuses on the development of the protocol for using a printed SS
phantom at Velindre Cancer Centre. This included:

* Demonstrating the feasibility of using a printed SS phantom for generating
realistic PET images in a useful timeframe whilst minimizing the operator’s
radiation dose

* Characterising the performance of the technique in terms of printing

homogeneity, reproducibility and accuracy
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* (Calibrating the phantom for accurate reproduction of the desired FDG uptake
In addition, the advantages and drawbacks of using a printed SS phantom for
modelling PET target objects were investigated, by comparing the PET images
obtained using the SS phantom and a cylindrical fillable phantom. This work focused
on the phantom’s ability to accurately reproduce spherical and non-spherical objects

in terms of geometry and tracer activity.

II1. A. 1. b. Methods

The phantom consists of 120 oval Polymethyl Metacrylate (PMMA) sheets of 2
mm thickness corresponding to axial slices, which can reach a maximum length of 24
cm when assembled with radioactive printouts. This is done using three plastic rods
attached to a cylindrical PMMA support, held together with a PMMA sheet screwed at
the top of the phantom. The phantom can then be scanned as a physical 3D object. A
picture of the assembled 3D phantom is shown on Figure 38 a), along with the position

of the phantom in the scanner on Figure 38 b).

Figure 38. a) Half-assembled printed SS phantom and b) assembled phantom positioned
on the scanner bed.

Plain A4 paper (80 mg per sheet) was cut to 168 mm x 197 mm and hole
punched to fit into the phantom. Tracer uptake printouts were generated as grey level

3D images in Matlab, resampled to 2 mm slices, and printed on a HP deskjet 990 cxi
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(Hewlett-Packard Limited, Berks, UK), using drop-on-demand thermal inkjet printing.
The advantage of this type of equipment is its use of refillable ink cartridges, making it
possible to add the desired quantity of radiotracer to the same cartridge before each set
of experiments. The printing settings “normal” and “black & white” were chosen to
minimise the printing time (and therefore the radiotracer decay and user exposure to
gamma emissions) while ensuring a good printing quality. The corresponding printing
speed is 6.5 pages per minute, with a resolution of 600 x 600 dpi.

The cartridge was filled with the desired FDG volume for each experiment and
topped with black ink. The printing was done in a hot cell (Gravatom Engineering
Systems Ltd, Southampton, UK), after leaving the cartridge upright with its dispensing
head down for 20 minutes to homogenize its contents, as recommended by the
manufacturer. All operations including filling the ink cartridge and assembling the
phantom were done behind a lead-glass shield (Bright Technologies Ltd, Sheffield, UK).
Any inaccuracy in the positioning of the pattern on the paper was corrected for by
aligning cross-shaped markers printed at the left (L), right (R) and top (T), at a
minimum distance of 10 mm to the uptake pattern, with reference markers drawn at a
fixed position on the transparent PMMA sheet. The phantom was scanned in the
available PET/CT scanner immediately after assembly with the protocol described
previously (cf. II. A. 1. a). Operator exposure to the radioactive tracer was controlled
using standard safety equipment (e.g. lead glass shields, shielded syringe carriers, hot
cell) and monitored with electronic portable dosimeters (EPD) (RAD-60S, RADOS

Technology, OY Finland) placed in the front pocket of the operator’s laboratory coat.

IIL. A. 1. b. i. Evaluation of the printing homogeneity and reproducibility
The printing homogeneity was assessed with a flood field test using a nominal
grey level rectangle of 210 mm x 280 mm printed on A4 with radioactive ink and
imaged in the PET/CT scanner as a single sheet in the coronal plane. Intensity profiles

of 1.3 mm (3 pixels) width were taken across the digital image obtained in vertical and
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horizontal direction. The reproducibility of the printing was evaluated with a similar
flood field, printed 66 times with radioactive ink and scanned in the assembled
phantom. The same 27 mm x 27 mm ROI was reproduced in the centre of each
transverse slice on the PET imaged obtained, and the mean intensity value and SD were
measured for each ROL

In addition, the number of counts was measured along two 50 mm paper strips
corresponding to homogeneous printing of the mixture of black ink and radiotracer in
left-right and anterior-posterior directions, using the thin layer chromatography (TLC)
equipment iScan (CANBERRA Nuclear Measurements Business Unit, Uppsala, Sweden)

ataspeed of 1 mm/s.

III. A. 1. b. ii. Evaluation of the accuracy of the phantom assembly
The accuracy of the paper positioning in the phantom was assessed using the
cross-shaped markers described in the previous section. The markers were printed
with the same radioactive ink as the printout, and were therefore visible on the PET
image obtained. Their alignment was evaluated by determining their position on the
resulting PET image for each slice, as the highest intensity voxel in a 5 x 5 voxel square
drawn around the imaged marker. For each one of the L, R and T markers, the

difference in positioning with the average marker position was measured on each slice.

III. A. 1. b. iii. Evaluation of the accuracy of grey level printing
The linearity of the grey level printing was first evaluated by investigating the
relationship between the intensity specified and the quantity of ink printed. For 10
grey level values, corresponding to 5, 16, 26, 37, 53, 68, 80, 89 and 100 % of the
maximum intensity, a 140 mm x 160 mm homogeneous rectangle was printed 5 times
with a mixture of black ink and radiotracer. The paper was weighed before and after

printing to measure the amount of ink added by the printer. The weight of ink printed
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for each grey level, averaged over the 5 instances, was then plotted against the grey
level values specified.

Next, the relationship between grey level specified and number of photon
counts was investigated, in order to derive a grey level calibration protocol for the
phantom. For this purpose, 20 distinct homogeneous 30 mm x 30 mm squares of grey
level values evenly spaced within 5-100% were printed one by one with the radioactive
ink mixture. The number of counts detected across the different rectangles was then
measured using the TLC equipment described previously. The average number of
counts was measured via TLC measurement across each square, with correction for
radioactive decay to compare all values at the same time point. This was done at three
instances with different activity concentrations in the ink at the time of measurement
corresponding to different volumes of black ink added to 2 mL of the same radiotracer
solution. The results of the previous experiment were used to plot the count values
obtained against the amount of ink printed on the paper, to focus on the imaging

process.

III. A. 1. b. iv. Comparison to a thin-wall fillable phantom

The following set of experiments tested the capability of the assembled SS
phantom in replicating a full 3D phantom. For this purpose, this work aimed at
reproducing the spherical and non-spherical removable inserts used in II. B. 2 with the
Raydose phantom. For the SS phantom, printout patterns representing the different
inserts positioned in the fillable phantom were derived.

The PET images obtained were evaluated in terms of intensity distribution
within the inserts and recovered object geometry. The true object contour and a
background ROI, which was measured within a sphere of the same size as S58 placed in
the background, were used to extract mean intensity values with associated SD and the
recovery coefficient (RC, cf. II. B. 1), in both inserts and background. The true

concentration was the filled-in activity for the fillable phantom. For the SS phantom, the
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amount of ink printed corresponding to sphere S58 was calculated, leading to the
corresponding amount of tracer, which was then divided by the sphere volume. The
COV was calculated for spheres and background as a measure of heterogeneity (cf. Eq.
19).

The recovery of the objects’ dimensions in the image was done by segmenting
all objects with a background-subtracted threshold of 50% of the maximum intensity,
using the background mean calculated previously. The contours obtained were then
compared to the true object contours, with metric HD described in II. A. 1. e) (cf. Eq.15).
RC, COV and HD obtained on the different inserts were compared pairwise between
values obtained for fillable and SS phantom, using the Mann Whitney U-test to detect
any significant differences. The level of significance was set to p=0.05.

In addition, the diameters of the contours obtained with segmentation were
measured in superior-inferior (for a subject positioned head first supine on the scanner
bed, perpendicular to PMMA sheet for the phantom), and left-right directions (parallel
to PMMA sheet). The use of a threshold value of 50% of the maximum intensity, with
subtracted background intensity provided an evaluation of the FWHM of the objects’
intensity profiles. The values obtained were compared to the true object dimensions,
and the Mann-Whitney U-test was used again to identify significant differences in the
error made in the dimension of the inserts in both directions.

Finally, the effect of the PMMA sheets on the imaging quality was assessed by
printing out nine spheres of 20 mm diameter, named S1-S9, with homogeneous uptake
corresponding to the grey levels used previously placed in a cold background. Printouts
for these small spheres were generated for 0.1 mm and 2 mm slice gaps, allowing a
comparison between the spheres printed and assembled between the 2 mm PMMA
sheet, and the same spheres modelled with paper printouts only. The continuously
printed spheres and 2 mm spaced printouts were assembled in the same phantom and

scanned simultaneously.
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II1. A. 1. c. Results

IIL. A. 1. c. i. Evaluation of the printing homogeneity and reproducibility
Figure 39 shows the number of counts measured by TLC along two stripes with
the same homogeneous grey level printed in left-right and anterior-posterior
directions. Measurements started at 20 mm from the edge of the printout. The printout
was 2.6 mm wide in left-right direction and 3 mm thick in anterior-posterior direction,
leading to a slight difference in average number of counts across the two stripes (11
and 14 respectively). The highest variations observed were 240% and 198% of the

average value in anterior-posterior and left-right directions respectively.

30 — Left-Right - Anterior-Posterior]
c 25 : P : ;
3 :: - ¢ ] ':. ; ] . :
o H 3 Pl Pogd o3 i
O : 3 i : ,1.: I
c 20 . N £ 3 TR Y
(@) N H 28 A
+— R - AR . e :
o R 5 JJaid s i oE :
& 15 hflME T | (et i
O i i H | B MGG R R
l:' ¥ 4 :: o g o Y i
« 10 WEYERER A P AL £
o A ' : A :
- 0Ll b =
g B : LA t

5 : : :
S i
>
=

0

0 5 10 15 20 25 30 35 40 45 50
Position (mm)

Figure 39. Results of TLC measurements of the number of counts detected along 50 mm of
grey level stripes printed in left-right and anterior-posterior directions.

Intensity values measured through the printed homogeneous grey level in both
directions of the paper showed slightly higher intensity levels at the extremities of the
sheet. The average difference to the mean value was 2.3% and 3.0% of the mean value
in horizontal and vertical directions, and ranged between 0.5-8.7% and 0.6-7.0%

respectively. For the 66 consecutive printouts of the same homogeneous grey level
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pattern, the average difference to the mean ROI value was 4.2%, with a variation range

0f0.27 - 12.8%.

IIL. A. 1. c. ii. Evaluation of the accuracy of the phantom assembly

Figure 40 a) shows the error in mm of the positioning of the alignment markers
measured on the resulting PET image at three different locations in the image. The
markers are shown on one slice of the printout template on Figure 40 b). Although
measurements were limited to the voxel size, errors values were systematically smaller
than 2.3 mm, which corresponds to a displacement of one voxel. In addition, no
systematic error was observed. The alignment of the markers, corresponding to
accurately aligned printout sheets, can be visualised on Figure 40 c) as the vertical

stripes on either side of the PET image.
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Figure 40. a) Error in positioning of the alignment markers at the left (L), right (R) and
top (T) of the printout, b) cross-shaped markers shown on single printout template, c)
sagittal view of PET image obtained with axially aligned markers L and R.

IIL. A. 1. c. iii. Evaluation of the accuracy of grey level printing
Figure 41 a) shows the grey level patterns printed and measured with TLC. A
non-linear relationship was obtained between the specified grey levels and the amount

of ink deposited on the paper when printing with a mixture of black ink and
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radiotracer, as depicted in Figure 41 b). The curve was best fitted to a third degree
polynomial (R2>0.99). The equation of this curve was used to transform the grey levels
specified in the following experiment into the amount of ink deposited on the paper.
Figure 41 c) shows the relationship linking the amount of ink deposited on the
paper and the number of counts measured in each square with TLC, for different
activities in the cartridge. The combined data for all activities, using values normalised
to the intensity obtained at the highest level for each case, was fitted to a proportional

relationship with R2=0.98 as shown in Figure 41 c).
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Figure 41. a) Printout used for the calibration, b) average measured weight of deposited
ink and associated SD displayed as vertical error bars, c) number of counts measured via
TLC for printing with three different radiotracer concentrations in black ink.

IIL. A. 1. c. iv. Comparison to a thin-wall fillable phantom

Table 12 shows the different phantoms scanned, together with the objects they
contained and their targeted TBRs. Some experiments combined two types of objects in
the same printed SS phantom, which was large enough to ensure at least 2 mm spacing
between the boundaries of different objects. In the case of the fillable phantom, spheres
S10, S20, S38 and S15, S37, S58 were scanned in two different instances. Differences
between the fillable insert volumes and the volumes of the printed objects, did not
exceed 9% of the fillable volume, and were due to the interpolation of the true contour
to the uptake map grid, which had a pixel dimension of 2 x 2 mm in the transverse
plane. The TBRs obtained for the SS phantom ranged within 6-6.8 (ratio of activities

printed), and were within 5% of the values obtained for the fillable phantom (ratio of
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activities filled-in), which allows a direct comparison of the two cases. The radiotracer
volume was approximately 260 mL for the SS phantom (163 mm x 159 mm pattern
printed on 100 sheet of 0.1 mm thickness), and 6080 mL for the filled Raydose

phantom with an inner height and diameter of 160 mm and 220 mm respectively.

Fillable Phantom SS phantom

Scan Objects TBR Scan Objects TBR
F1 S10, S20, S38 3 SS1 All spheres 3
F2 S15,S37,S58 3 SS2 All spheres 5
F3 S10, S20, S38 5 SS3 All spheres 8
F4 S15,S37,S58 5 SS4 Ellipses and Pears 6
F5 S$10, S20, S38 8 SS5 Tori and Drops 6
Fé6 S15,S37,S58 8
F7 E15,E20,E30, E38 6
F8 To20, To28, To38 6
F9 Tu38 a-c 6

F10 P38 a-c 6

F11 D38 a-c 6

Table 12. Summary of scans acquired for both fillable and SS phantom.

PET images were obtained for both fillable and SS phantoms modelling the six
spheres described above and the non-spherical objects presented in II. B. 2. Figure 42
shows coronal views of the images obtained for the spheres S15 and S58 at TBR=8 for
both phantoms. The dashed lines represent the intersection with the transverse plane,
from which the left-right profiles across the spheres were drawn. The dash-dotted lines
represent the superior-inferior profiles taken across S58.

Figure 43 shows the superior-inferior and left-right profiles obtained for both
phantoms at TBR=5 for the smallest sphere S10, for which differences were the most
visible. The intensity values for the fillable phantom were slightly higher than for the
printed SS phantom in both spheres and background, so that the TBR remained very
close. The presence of plastic rods holding the inserts, visible under the spheres on
Figure 42 b), results in a lower background intensity on one side of the inserts, which is
visible at the right of the peak corresponding to the insert on the superior-inferior
profiles shown on Figure 43 a), drawn through the insert and rod. Differences can be

observed at background intensities, for which profiles for the fillable phantom show
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more fluctuations than for the SS phantom. Finally, the images also show slightly larger

FWHM for the SS phantom.

Fillable

18475
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Figure 42. Coronal views of S15 and S58 spheres at TBR=8, for both types of phantom.
Dashed lines and dash-dot lines represent transverse and superior-inferior profiles
taken respectively.
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Figure 43. Comparison of profiles obtained for both phantoms at TBR=5 for sphere S10 in
a) superior-inferior and b) left-right directions.

The PET images obtained for both fillable and SS phantoms, modelling different
geometrical objects, were then compared. Table 13 provides a comparison of the COV,
given in % of the mean intensity, the geometry recovery (HD, in cm), and the RC, in %
of the true activity concentration, in the inserts and background. Values are reported in
terms of average (SD) for each sphere across the different TBRs, for each insert
geometry across inserts and for the background ROIs for scans at TBR=5. COV values
for the fillable phantom were slightly higher in the background, and systematically
higher inside the inserts compared to the SS phantom. This was found statistically
significant with the one-tailed Mann-Whitney U-test for spheres (p=0.03) and non-

spherical inserts (p=0.004). HD values were larger for the fillable phantom in some
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cases including the three smallest spheres, indicating a lower accuracy in modelling the
object shape for smaller inserts. There was no overall significant difference between
HD values for both phantoms. The RC values were systematically higher for the fillable

phantom for both spherical and non-spherical inserts

COV (%) HD (cm) RC (%)

SS Fillable SS Fillable SS Fillable
S10 0.19 (0.00) 0.26 (0.00) 1.37 (0.34) 1.50 (0.26) 46.7 (3.2) 63.1 (3.6)
S15 0.28 (0.08)  0.48 (0.02) 0.86 (0.02) 0.93 (0.13) 69.7 (5.2) 82.4 (3.7)
S20 0.58 (0.00) 0.76 (0.01) 0.96 (0.84) 1.20 (0.20) 73.5 (4.9) 94.5 (4.5)
S30 0.77 (0.26) 1.40 (0.01) 1.41 (0.13) 1.20 (0.18) 81.3 (6.5) 102 (4)
S38 1.60 (0.00) 2.00 (0.00) 1.45 (0.00) 1.30 (0.19) 84.9 (5.3) 112 (5)
S58 1.50 (0.69) 3.60 (0.00) 1.53 (0.19) 1.10 (0.29) 90.1 (3.4) 113 (4)

Drops 1.60 (0.01)  2.00(0.10)  2.00(0.01) 1.30(0.01) 71.7(1.1) 109 (3)
Pears 1.60 (0.01)  1.90(0.01) 2.00(0.01) 1.20(0.01) 73.6(0.8) 107 (0)
Ellipses  1.10(0.33) 1.20(0.33)  3.50(0.08) 1.10(0.020) 74.2(6.3) 108 (6)
Tori 0.67 (0.16)  0.72(0.19)  1.10(0.00) 1.60 (0.037) 74.7(4.9)  108(7)
Tubes 1.60 (0.01)  2.00(0.01)  1.60 (0.01) 1.10(0.010) 71.4(04) 105 (1)

B 3.20(0.29) 5.0 (1.0) - - 3 _

Table 13. Comparison of COV values, Hausdorff Distance and activity concentration
recovery RC in the background (B) and insert regions, averaged TBRs for spheres, on the
different ARs for other inserts, and on all scans at TBR=5 for the background.

In addition, measurements of the objects’ FWHM in superior-inferior and left-
right directions showed systematically higher values for the SS phantom (except for
S10), which was statistically significant with the Mann Whitney U-test (p<0.01). For
non-spherical objects, with results given in Table 14, absolute errors in dimensions
were lower for the SS phantom, or equal for both phantoms, for 14 out of 16 and for 12
out of 16 inserts in superior-inferior and left-right directions respectively. This
included all ellipsoids and drop-shaped objects. The errors in superior-inferior
dimensions of the drops and tube-shaped objects were smaller for the SS phantom, but
reached 15.8% of the object length for D38b. The one-tailed Mann-Whitney U-test
results comparing absolute errors in apparent dimensions across non-spherical objects
showed significantly higher values for the fillable phantom in the left-right direction

(p=0.019). Differences in the superior-inferior direction were not significant.
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Ellipsoid Torus Tube Pear Drop

Name E38 E28 E20 E15 To20 To28 To38 Tu38a Tu38b Tu38c P38a P38b P38c D38a D38b D38c
Superior-inferior dimensions (mm)

True 16 24 37 46 18 22 35 56 64 70 56 70 82 56 66 80
SS 13 23 36 46 19 22 31 56 62 72 56 62 79 49 56 69
F 13 20 36 43 17 24 32 52 59 69 56 65 75 49 56 62

Left-right dimensions (mm)

True 14 20 28 37 5.0 8.0 11 28 27 24 37 31 29 38 36 34

§S 15 19 27 33 59 69 10 27 25 28 26 23 26 28 26 31

F 13 14 25 32 81 88 12 27 23 25 26 24 26 28 23 30

Table 14. Comparison of dimensions measured with calliper on the insert (cf. II. B. 2) and
on SS and Fillable (F) phantom PET images, in superior-inferior and left-right directions.

Sphere S1 S2 S3 S4 S5 S6 S7 S8 S9
2 mm spacing 419 809 817 849 946 924 783 818 87.6
Continuous 285 859 106 101 107 110 102 985 109

Table 15. Activity Recovery Coefficient RC (% true activity) for 2 mm-spaced and
continuous printouts of spheres S1 to S9, corresponding to grey levels of 6-100%.

Table 15 shows up to 22% higher RC when using continuously printed patterns
instead of 2 mm PMMA sheet, except for sphere S1 which corresponded to a very low
grey level value. Values obtained with continuous printing and assembly are close to

the values obtained for the fillable phantom (cf. Table 13).

II1. A. 1. d. Discussion and conclusions

This work investigated the advantages and drawbacks of using the printed SS
phantom for generating realistic PET images, with the purpose of generating realistic
PET images for testing the PET-AS methods. This has taken forward the work published
by Markiewicz et al. [145] to the generation of a 3D object using a large number of
printed sheets. The printer was fully characterised and a custom calibration procedure
was developed for it. The amount of time necessary for a single operator to prepare the
phantom, after optimising the sequence of tasks, was approximately 80 min, including
a) filling the cartridge (10 min), b) leaving the contents of the cartridge to homogenize
(10 min), c) printing (30 min) and d) assembling (20 min) and e) scanning (10 min).

This allowed scanning the phantom within one half-life of the 18F decay. The total
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exposure to the radioactive tracer for one session with a single scan was 4 uSv on
average, which is comparable to the exposure of manipulating a conventional fillable
phantom, with the EPD in the same position. Aerosol exposure was made negligible by
printing all sheets in a closed hot cell.

A good homogeneity and reproducibility of the grey level printing were
obtained with the equipment used for this work (cf. Figure 39). The results of the TLC
showed large variations within a 3 mm stripe of homogeneous grey level, which are
likely to be due to background noise at the low activities used. However, these small
variations only led to variations on the PET image lower than 8.7% of the average.
Higher quality printing equipment and automatic paper cutting systems would further
improve the method in terms of accuracy as well as speed. The effect on the PET images
of blurring in the phantom due to the imaging process is expected to be minimal, since
the distance between two printouts (2 mm) is smaller than half the Full Width at Half
Maximum of the PET imaging system in the axial direction. This also means that using
planar printout sources closer than 2 mm from each other would not improve the
blurring effect. However, the presence of plastic as a medium (instead of water for a
fillable phantom) between the radioactive sources may lead to shorter positron range
for the printed SS phantom. This has a potential for slightly better image quality,
although it may not be as relevant for modelling patient data.

The results given on Figure 40 show the satisfactory accuracy achieved in
aligning the printout patterns with each other. The maximum error in positioning
obtained, corresponding to one voxel difference between slices. The absence of
correlation between errors obtained for the three markers on the same slice may
indicate uncertainties in the measurement on the PET image rather than a
misalignment of the printouts. Although the results suggest that some inaccuracies in
the paper alignment exist, the level of accuracy obtained was considered satisfactory

for this study. Further work on the technique will address this issue.
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The results published by Markiewicz et al. [145] for a similar two-dimensional
study showed a non-linear relationship between grey level specified and obtained on
the PET image, which was best fitted to a third degree polynomial. In the present work,
the phantom process was broke down into the printing process, and the imaging
process. Results on Figure 41 show that the non-linear effect observed by Markiewicz
et al.,, as well as in this work, is due in this case to the printing process, with a non-
linear relationship between the amount of ink and radiotracer mixture printed and the
grey levels specified.

The focus of the quantitative analysis was to evaluate the ability of both
phantoms to accurately reproduce the objects described II. B. 1 and II. B. 2, rather than
reproduce the whole Raydose phantom, which is made impossible by the different
geometry of both phantom structures. The spherical and non-spherical objects were
modelled in a homogeneous background, and the geometry recovery and homogeneity
of the objects with both SS and Fillable phantom was evaluated. The total activity
present in the phantom, however, and therefore the total number of photon counts was
different for both phantoms. This is due to the smaller quantity of tracer included in the
printed SS phantom, representing approximately 3.7% of the fillable phantom
radiotracer volume (cf. I1I. A. 1. c). Exact photon statistics of a fillable phantom cannot
be reproduced with the present version of the printed SS phantom, because of the
difference in material encountered by the photons (water for the fillable phantom,
PMMA and paper for the printed SS phantom). However, the printed SS phantom allows
modelling any given uptake pattern, which is its largest advantage on fillable phantoms.
This work aimed at investigating additional advantages in terms of control over image
heterogeneity and object geometry.

Coronal views on Figure 42 and profiles given on Figure 43 showed no effect of
the presence of the 2 mm gaps on the PET scans obtained with the SS phantom. On the

contrary, the background intensity profiles obtained for the SS phantom in superior-
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inferior direction (perpendicular to the PMMA sheets) showed less variation compared
to the fillable phantom. The good homogeneity observed when printing large
homogeneous grey level regions confirmed this finding. The data also showed that the
SS phantom provided systematically smaller COV than the fillable phantom, especially
inside the spherical objects modelled, where values were up to 58% lower for the SS
phantom (cf. Table 13). The higher COV obtained for the fillable phantom in the
background regions could be due to insufficient mixing of the radiotracer and water
solution, which was made difficult by the large phantom size, and limited in time to
minimise the operator’s exposure to radiation. The solution used to fill the spheres,
however, was prepared in a 1 L sealed vial behind leaded glass and was carefully
shaken to ensure accurate mixing. Therefore, the higher COVs obtained in the spheres
are more likely to be due to the presence of the inactive plastic walls causing lower
voxel values at the sphere boundaries, due to the PVE and scatter inherent to PET
imaging.

Both phantoms showed similar HD values for the recovery of the object shape
using a 50% of the maximum intensity background-subtracted threshold. HD values
obtained with the fillable phantom were higher for the three smallest spheres,
indicating lower accuracy in the shape recovery. In addition, the comparison of the
dimensions measured in superior-inferior and left-right directions showed that the
measured insert diameter was closer to the true value for the SS phantom compared to
the fillable phantom for all spheres except S10. The benefit of using printed patterns
instead of plastic inserts was also highlighted for the left-right dimensions of non-
spherical objects, for which the SS phantom achieved a better recovery of the object
shape, yielding significantly lower errors in the left-right direction (cf. Table 14). This
shows that at present, the technique developed with the materials available can model
geometrical objects with similar and even higher accuracy than the fillable phantom

used for comparison, which contained inserts with very thin plastic walls. However, it
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should be noted that the presence of the 2 mm spacing between printouts makes it
challenging to model details smaller than 2 mm in the superior-inferior direction, such
as the thin drop-shaped objects used in this work. This could explain the non-
statistically significant improvement on the fillable phantom observed in the superior-
inferior direction.

Although the object geometry recovery was higher for the SS phantom, the
recovery of the activity present in the imaged objects was systematically lower
compared to the fillable phantom, with differences up to 26% (cf. Table 13). This is
likely to be due to the thick cold plastic sheets separating the different printouts, and
lowering the recovered activity due to the PVE. A further experiment involving nine
homogeneous spheres showed that using continuous assembly of 0.1 mm printouts
allows increasing the RC up to 22% compared to 2 mm PMMA spacing, reaching values
similar to the ones obtained with the fillable thin plastic objects (Table 15).

The SS phantom technique showed great potential for modelling realistic
biological tracer distributions. The flexibility in the design of tracer uptake patterns
allows lesions to be represented with any geometry or uptake distribution, modelling
heterogeneities, necrotic regions and, theoretically, microscopic tumour extension. The
absence of a sufficient volume of radiotracer still represents the main limitation of the
approach described in this investigation, as it does not at present allow for an accurate
reproduction of the scatter properties for a 3D object or the total number of counts.
Tri-dimensional printing could combine the advantages of the SS phantom to the
benefit of having a 3D volume of radiotracer available. This promising idea was
investigated by Miller et al. [147], but requires high level and costly equipment. In
addition, more work is needed to overcome the difficulties of incorporating radiotracer
molecules within the printing material, and this was therefore not investigated in this
work. Alternatively, the use of continuous printing showed a potential for good activity

recovery, combined with the higher geometry recovery and heterogeneity control of
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the printing technique. Another limitation of the phantom investigated in this work is
the absence of a CT component, which would improve its usefulness for a number of

PET studies. These ideas will be taken forward in a future project.

III. A. 2. Evaluation of PET-AS methods for realistic H&N data

IIL. A. 2. a. Purpose

Previous work (cf. II. A. 3 and II. B) focused on evaluating and comparing the
delineation accuracy of a number of segmentation methods, using controlled fillable
phantoms and varying different parameters, to reveal the different relative accuracies
for the PET-AS methods tested in different conditions. The present work aims at
evaluating the PET-AS methods with realistic images of H&N cancer lesions, which
corresponded to the clinical objective for this project. Realistic oropharyngeal PET
data, covering a wide range of clinical scenarios encountered for oropharyngeal cancer,
was generated using the printed subresolution sandwich (SS) phantom described in III.
A. 1. and the help of a radiologist expert in H&N cancer. This data was then used to
cross-compare the ability of the different PET-AS tested for accurately delineating H&N

lesions, and conclude on the optimal PET-AS process to use.

II1. A. 2. b. Methods

The printed SS phantom described in III. A. 1. was used to generate a range of
clinically relevant 3D H&N models with tumour uptakes of known ground truth. This
work aimed at reproducing typical normal H&N FDG uptake, with the addition of
realistic H&N lesions for oropharyngeal cancer patients.

The printout template was generated from an available clinical PET/CT scan, by
segmenting a selected number of anatomical structures on CT or PET, and assigning to
each one a grey level value corresponding to its mean FDG uptake on the PET image.

The resulting image was resampled to 2 mm slices, representing transverse slices of
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the H&N, in order to fulfil the requirements for the SS phantom. The choice of the PET
scan and the design of the final template were both reviewed by a radiologist. Table 16
lists the anatomical structures present in the H&N template as well as the activities

assigned, and slices of the final template obtained are shown on Figure 44.

Structure . . Intensit
delineated Delineation method (Bq/mL%r
Skin Threshold on CT 1500
Fat Subtraction of other structures from outline 1500
Soft tissue Manual on CT 2000
Bone Threshold on CT 0
Grey matter Threshold on PET 18000
White matter Threshold on PET 6000
CSF, air cavities Threshold on CT 0
Tonsils & vocal cords Manual on CT 6000
Extra ocular muscle Manual on PET 10000
Eyeballs Manual on PET 4000
Spinal cord Manual on CT 3000
Parotids Manual on CT 2500
Submandibular Manual on CT 3500
glands

Table 16. Values assigned to the different anatomical structures of the H&N printout
template.
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Figure 44. Selection of single 2D slices (with corresponding slice number) of the FDG
uptake map generated from an existing PET/CT scan, with associated colour bar for
Matlab matrix values.

For the different experiments, irregularly or spheroid-shaped tumours, drawn
on the original CT image, were added to the background FDG uptake map, as shown on
Figure 45. The geometry, size and location of the tumour printouts were reviewed by a

radiologist as relevant for the modelling of tumours in this work. Tumour locations
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chosen included the base of tongue, tonsils and parotid space. Various tumour uptake
distributions were modelled, as well as different TBRs. Table 17 summarises the
different scans and corresponding lesions modelled. Heterogeneous tumour uptakes
modelled included:
* Gaussian smoothed: homogeneous uptake smoothed with a Gaussian
filter to model higher uptake at the centre.
* Necrotic: homogeneous high uptake with a homogeneous region of
typical soft tissue uptake at the centre of the tumour
* Gaussian necrotic: necrotic uptake smoothed with a Gaussian filter
* Noisy: random distribution of intensity values across the tumour, using

the Matlab function rand, with a SD of 20% of the mean intensity.

Irregular lesions Spheroidal lesions
Scan TBR Uptake Scan TBR Uptake
1 2 Homogeneous 9 2 Homogeneous
2 4 Homogeneous 10 4 Homogeneous
3 6 Homogeneous 11 6 Homogeneous
4 8 Homogeneous 12 8 Homogeneous
5 5  Gaussian smoothed | 13 10 Homogeneous
6 5 Necrotic 14 5 Homogeneous
7 5 Necrotic smoothed | 15 5 Homogeneous (larger size)
8 5 Noisy 16 5 Homogeneous (smaller size)
17 5 Necrotic
18 5 Necrotic smoothed
19 5 Noisy
20 5 Gaussian smoothed

Table 17. Summary of scans acquired, each containing a tongue, tonsil and parotid lesion,
for different TBRs, sizes and FDG uptakes.

Figure 45 a) shows a transverse slice of the original CT with contours
corresponding to the tongue, tonsil and parotids irregular lesions. The tonsil, tongue
and parotid lesions had volumes of 4.03, 4.35 and 3.99 mL respectively, while the
spheroids had volumes of 11 mL. For the purpose of this series of experiments, the

complexity of each irregular lesion’s geometry was evaluated by calculating the HD
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comparing the lesion contour to a sphere of the same volume centred on its centre of

mass. The different uptake patterns modelled are shown on Figure 45 b).

Gaussian

Homogeneous smoothed

QS

Necrotic Gaussian
necrotic

Random

Figure 45. a) Contours drawn on original slice No 134 for tongue, tonsil, and parotid
lesions added to the FDG uptake map, and b) tumour patterns modelled on the different
uptake maps shown for the parotid lesion.

The phantoms obtained for each case were scanned with an activity
concentration in the cartridge of about 1500 kBq/mL, as this provided a PET image
with activities corresponding to the original PET scan.

All target lesions modelled were segmented for all PET-AS methods and
evaluated with the accuracy metrics described in II. A. 1. e). The ground truth was
obtained from the printout template containing the lesion stored in Matlab, which was
resampled to the PET image grid. The methods’ accuracy was compared across
irregular and spheroidal lesions, for heterogeneous, homogeneous and necrotic uptake.

The accuracy obtained was also compared for the different irregular lesions drawn.

II1. A. 2. c. Results

A total of 60 H&N test lesions were obtained (3 lesions for each of 20 scans).
Figure 46 shows the average accuracy obtained across the irregular lesions for each

method, compared between the three lesions drawn. The contours drawn for tonsil,
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tongue and parotid lesions returned HD values of 3.2 mm, 5.6 mm and 3.1 mm
respectively when compared to a spherical contour of equivalent volume. The method
showing the highest robustness (least variation in DSC or RVE) to the type of lesion
delineated (tonsil, tongue or parotid) was RG, whereas FCM and GCM were highly
affected by the lesion type (up to 90% and 173% difference in RVE between sites
respectively). The largest RVE was reached for most methods for the parotid lesion, but

the lowest DSC was obtained with the tongue lesion for most methods.
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Figure 46. Average a) RVE and b) DSC obtained with the different PET-AS methods for
irregular tonsil, tongue and parotid lesions. Error bars correspond to one SD.

Figure 47 and Figure 48 show the RVE and DSC values obtained for regular
(spheroids) and irregular lesions respectively, separated for homogeneous,

heterogeneous (including Gaussian smoothed and noisy) and necrotic regions
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(including necrotic and Gaussian necrotic). Higher accuracy and robustness (small
error bars) were obtained for spheroidal lesions compared to irregular lesions for all
PET-AS methods. AT, RG, GCM and AC reached the highest DSC for homogeneous
spheroids (DSC of 0.914, 0.901, 0.905 and 0.904 respectively), with the lowest RVE
obtained with AT (RVE=-5.37%). GC showed the best accuracy in delineating
heterogeneous spheroids, with a RVE of 1.31% and a DSC of 0.915, followed by AT and
AC. Necrotic spheroidal lesions were systematically overestimated by all methods, with
the lowest errors achieved by clustering methods KM, FCM and GCM. KM also reached

the highest DSC for necrotic lesions (DSC=0.914).
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Figure 47. a) Average RVE and b) average DSC obtained with the different PET-AS
methods for homogeneous, heterogeneous and necrotic spheroidal lesions. Error bars
correspond to one SD.

For irregular lesions, the best accuracy in delineating homogeneous uptake
lesions was achieved by RG (highest DSC of 0.821) and AC (lowest RVE of 1.56%).
Average RVEs for AT, FCM, GCM and AC did not exceed +30% of the true volume, and
were lower than 13% for FCM. Methods GC, KM and WT appeared most affected by the
lesion heterogeneity, with differences in DSC up to 10.6% and 8.61% between

homogeneous and heterogeneous or necrotic irregular lesions respectively.
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Figure 48. a) Average RVE and b) average DSC obtained with the different PET-AS
methods for homogeneous, heterogeneous and necrotic irregular lesions. Error bars
correspond to one SD.

The necrotic area inside the spheroidal lesion was excluded from the contour
for AT but was included in the final contour for RG and the different versions of FCM, as
shown on Figure 49. This was not the case for irregular lesions, which were smaller in
volume. The true contours used for evaluation did include the necrotic area. Necrotic
spheroidal lesions were systematically overestimated by all methods except FCM2,
which achieved the lowest absolute RVE (note that it included the heterogeneous

region). FCM2 also reached the highest DSC for necrotic spheroids (DSC=0.887).
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Figure 49. Sagittal slices showing ground truth contour (black) and PET-AS contours
(white) for a) AT and b) FCM2 for the necrotic spheroid located in the parotid space.

II1. A. 2. d. Discussion and conclusions

These experiments have validated the accuracy of the implemented PET-AS
methods on realistic H&N data. The use of the SS printed phantom allowed modelling
H&N background and lesion heterogeneity as well as typical lesion location and
geometry.

The stratification of the methods’ accuracy with the irregular lesion allowed a
comparison of the effect on the delineation of the lesion geometrical complexity, and
the lesion background. HD values for comparison with an equivalent sphere showed
that the tongue lesion corresponded to the most complex geometry. Parotid and tonsil
lesion had similar HD values. Average DSC values were lower for the tongue lesion for
all methods, except RG and KM (cf. Figure 46). RG reached similarly high DSC values for
all three different types of lesions, which shows its robustness to lesion geometry and
location. All other methods were affected by the lesion type, in particular gradient-
based methods AC and WT, which reached 10% and 12% lower average DSC
respectively for the tongue than for the other lesions. In addition, the parotid lesions
modelled were surrounded by typical heterogeneous soft tissue uptake, whereas the
tongue and tonsil lesions boarded the oral cavity, with no FDG uptake (cf. Figure 45 a)).
This is likely to explain the large negative RVEs visible for the parotid lesion in Figure

46, especially for KM and GC, as it was otherwise the same volume as the tonsil lesion.
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The results confirmed the high accuracy and robustness of AT seen in Chapter
II, even in the case of irregular and heterogeneous lesions. However, the low accuracy
obtained by AT for necrotic spheroids, which were larger than the irregular lesions,
shows a weakness of the method for delineating highly heterogeneous targets. Figure
49 shows that some methods PET-AS methods such as AT did not include the necrotic
area in the delineation, whereas methods such as FCM2 did. This result can be
important when delineating heterogeneous tumours, for selecting the methods
satisfying the outlining protocol, which should specify if necrotic areas should be
included or not. In this work, necrotic areas were included in the GT contours because
such tumour regions are included in the GTV for the clinical protocol currently used at
Velindre Cancer Centre for H&N RT planning.

Results obtained with ellipsoids confirmed the high accuracy of RG, although
the method performed less well for heterogeneous, and particularly necrotic lesions (cf.
Figure 47 and Figure 48). RG however still largely outperformed GC and WT, for which
a low accuracy was confirmed in this work (negative RVEs larger than 20% for
homogeneous lesions). Method GC was discarded in the rest of this project, due to low
accuracy and large errors obtained in all the different studies carried out. In addition,
the stratified analysis highlighted the strengths of clustering methods KM (for
spheroidal lesions), and FCM, GCM and AC for realistic irregular H&N lesions. The high
accuracy observed for FCM and GCM on Figure 47 and Figure 48 could be due to an
averaging effect of underestimation for tonsil and tongue lesions, and overestimation of
the parotid lesion suggested by the RVEs on Figure 46. However, the robustness in DSC
values obtained for the different types of heterogeneities (cf. Figure 47 and Figure 48)

shows the potential of these methods for realistic H&N lesions.
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III. A. 3. Segmentation of heterogeneous lesions

IIL. A. 3. a. Purpose

Work presented in the previous section highlighted the robustness of clustering
methods tested on highly heterogeneous lesions. Structures consisting of a wide range
of intensity values can include several regions of different mean intensities. Binary
methods classify voxels into two categories corresponding to the tumour and the
background. With such methods, tumour voxels of low intensity will therefore be
classified as background, even if their intensity level is higher than the mean
background value. As a consequence, a reduced sensitivity is expected for binary
segmentation methods when delineating highly heterogeneous structures. Clustering
methods have the potential of overcoming this by identifying the multiple regions in a
heterogeneous structure. This is illustrated on Figure 50. For this study, the following
hypotheses were formulated:

e Multiple clustering methods are more accurate than binary methods for the
delineation of heterogeneous tumours of large volume.
¢ The optimal number of clusters for methods KM, FCM and GCM is related to the

number of homogeneous uptake regions in the tumour.

Binary method Multiple clustering
Cluster
Cluster

Tumour Tumour

Background Cluster 3

Figure 50. Comparison between binary segmentation and multiple clustering in the case
of a heterogeneous tumour with high SUV peak

The work described in the present section aimed at testing the hypotheses
listed above, by modelling highly heterogeneous test objects with controlled

heterogeneity levels using the SS printed phantom. These experiments focused on
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evaluating and comparing the accuracy of clustering methods when applied to the
detection of different numbers of clusters. This work concludes on the benefits of
applying clustering methods to the detection of more than two clusters for
heterogeneous target objects, on the influence of the number of clusters on the
segmentation accuracy of objects with different levels, on the optimal number of

clusters to use, depending on the method and heterogeneity level.

II1. A. 3. b. Methods

The six spheres contained in the NEMA phantom (cf. II. A. 1. b), named S10, S13,
S17,S22,S28 and S38, were modelled with the following uptake (cf. Figure 51):
* Homogeneous: uniform uptake
* Heterogeneous: 2 homogeneous uptake regions modelled as concentric
spheres
* Highly heterogeneous: 4 homogeneous uptake regions modelled as
concentric spheres.

The different spheres were modelled with a TBR of 5. A total of 18 images were
obtained for the different uptakes modelled for each one of the six NEMA spheres. The
reference contour was derived for each sphere by generating a spherical contour from
the sphere’s known diameter, and positioning this contour on the PET image. Methods
KM, FCM and GCM were applied to all spheres modelled for the detection of 2, 3, 4, 5, 6,
7 and 8 clusters. Binary methods AT, RG, WT and AC were applied to all images for
comparison. In addition for each clustering method, the accuracy of the different
versions applied was evaluated for each sphere size and number of underlying

homogeneous uptake regions.
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Figure 51. Schematic of the different uptake patterns, which were modelled for each of
the six spheres S10-S38.

II1. A. 3. c. Results

Table 18 gives the average DSC values obtained across homogeneous spheres,
and heterogeneous spheres with two or four homogeneous uptake regions, using
binary methods AT, RG, WT and AC, and all clustering methods evaluated in this
section. Binary methods AT, RG and clustering method (used as a binary segmentation)
GCM2 reached the highest average DSC across homogeneous spheres. For
heterogeneous spheres, the best performing methods were KM2, followed by RG, GCM4
and FCM4. For highly heterogeneous spheres, the best performing method was GCM4,

followed by KM2 and FCM4.

Uptake
regions
1 0.888 0.811 0.785 0.785|0.786 0.574 0.557 0.431 0.373 0.310 0.290| 0.503 0.745

2 0.635 0.748 0.684 0.652|0.772 0.630 0.664 0.529 0.460 0.381 0.364| 0.223 0.617

4 0.661 0.753 0.690 0.707|0.804 0.670 0.529 0.437 0.324 0.276 0.242| 0.313 0.658
FCM4 FCM5 FCM6 FCM7 FCM8|GCM2 GCM3 GCM4 GCM5 GCM6 GCM7 GCMS8

1 0.670 0.543 0.435 0.367 0.318|0.817 0.744 0.655 0.503 0.407 0.345 0.302

2 0.732 0.730 0.678 0.615 0.557|0.717 0.686 0.744 0.706 0.660 0.592 0.526

4 0.795 0.787 0.723 0.633 0.547|0.766 0.732 0.809 0.779 0.691 0.602 0.510

AT RG WT AC |[KM2 KM3 KM4 KM5 KM6 KM7 KM8|FCM2 FCM3

Table 18. Average DSC values obtained for all methods in the case of spheres with 1, 2 and
4 homogeneous uptake regions (values above 0.8 are shown in italic).

Figure 52 a), b) and c) show the DSC values obtained for KM applied to the

detection of 2, 3, 4, 5, 6, 7, and 8 clusters for delineating homogeneous spheres,
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heterogeneous spheres with two regions of homogeneous uptake, and four regions of
homogeneous uptake respectively. In the case of homogeneous spheres, KM performed
best for all sphere sizes when applied to 2 clusters. For heterogeneous spheres, KM2
reached the highest DSC in all cases except S37 modelled with two homogeneous
uptake regions, where KM3 performed better. Although KM2 performed best in most
cases, KM versions applied to a higher number of clusters reached DSC values much

closer to KM2 for heterogeneous spheres. This effect also increased with sphere size.

a) Homogeneous spheres b) Heterogeneous spheres (2 Levels)
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Figure 52. Accuracy of the segmentation by KM applied to 2, 3, 4, 5, 6, 7 and 8 clusters for
a) homogeneous spheres, b) heterogeneous spheres with 2 homogeneous uptake regions,
and c) heterogeneous spheres with 4 homogeneous uptake regions.

Figure 53 a), b) and c) show the DSC values obtained for FCM in the same
situation. For homogeneous spheres, FCM2 and FCM3 perform largely better than
versions of FCM applied to a higher number of clusters. However, FCM2 did not
perform well for heterogeneous spheres (DSC<0.51). For a heterogeneous uptake of
two homogeneous regions, the best performing version of FCM was FCM3 for the two
smallest spheres, FCM5 for the two intermediate spheres, FCM6 for S28 and FCM7 for
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S37. In the case of a four-region heterogeneous uptake, FCM4 was the best method for

S10, and FCMS5 for larger spheres.
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Figure 53. Accuracy of the segmentation by FCM applied to 2, 3, 4, 5, 6, 7 and 8 clusters for
a) homogeneous spheres, b) heterogeneous spheres with 2 homogeneous uptake regions,
and c) heterogeneous spheres with 4 homogeneous uptake regions.

Results for GCM, shown on Figure 54 a), b) and c) were similar to the ones
obtained for FCM. GCM2 and GCM3 were by far the best methods for homogeneous
spheres, while the detection of a higher number of clusters provided better accuracy
for spheres larger than 13 mm diameter in the case of two homogeneous uptake
regions, and spheres larger than 10 mm diameter for a sphere with four homogeneous

uptake regions.

131



a) Homogeneous spheres b) Heterogeneous spheres (2 levels)
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Figure 54. Accuracy of the segmentation by GCM applied to 2, 3, 4, 5, 6, 7 and 8 clusters
for a) homogeneous spheres, b) heterogeneous spheres with 2 homogeneous uptake
regions, and c) heterogeneous spheres with 4 homogeneous uptake regions.

Figure 55 a) shows one transverse slice of the printed pattern used to model a
four-region uptake in a 37 mm diameter sphere. Figure 55 b) shows a transverse slice
of the PET image obtained by scanning this same printed pattern within the printed SS
phantom, together with the contours provided by the GCM method applied to the
detection of 2, 4, 6 and 8 clusters. The volume delineated increased with increasing
number of clusters, leading to optimal accuracy when it was closest to the true volume.
The best delineation accuracy for the 37 mm diameter sphere (DSC of 0.94) was
reached by GCM for 5 clusters. The binary methods AT, RG, and methods FCM and GCM
applied to the identification of two clusters, all had DSC values lower than 0.80 in
comparison. This is due to the fact that they recovered only the most intense part of the
spheres, as illustrated Figure 55 b). KM reached a high DSC when used for 2 (DSC=0.93)

and 3 clusters (DSC=0.89).
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Figure 55. a) printout pattern for a 37 mm diameter sphere with four different
homogeneous uptake regions and b) resulting PET image and reference contour (white)
and contours from GCM applied to 2, 4, 6 and 8 clusters.

II1. A. 3. d. Discussion and conclusions

The investigation of the performance of the different PET-AS on heterogeneous
structures is particularly important when evaluating methods aimed for GTV
delineation in the challenging case of H&N tumours. Recent work has shown that the
impact of the PET-AS method used on the dose distribution delivered to the patient
during radiotherapy treatment is particularly important in the case of heterogeneous
lesions [148]. This work aimed at evaluating the segmentation accuracy of three
different clustering-based PET-AS methods for heterogeneous delineation targets,
using to binary segmentation for comparison. For this purpose, the number of clusters
used by the clustering methods in the segmentation process was increased from 2 to 8
clusters. The printed SS phantom (cf. IIIl. A. 1) was used to acquire PET images of
spheres of different volumes modelled with homogenous, heterogeneous (2
homogeneous uptake regions) and highly heterogeneous intensity distribution (4
homogeneous uptake regions).

Average DSC values calculated across sphere sizes showed that binary methods
performed best for homogeneous uptake, but that clustering methods reached higher
accuracy for spheres of heterogeneous uptake, especially for spheres modelled with 4
uptake levels (cf. Table 18). RG was the only binary method reaching a DSC higher than

0.71 for heterogeneous spheres, which shows that it is more robust to heterogeneities
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than AT, WT and AC. However, RG was less accurate than clustering methods for highly
heterogeneous spheres. The best performing methods in this case were clustering PET-
AS applied to two (for KM) or more (for FCM and GCM) clusters. These results
confirmed the necessity of using methods identifying more than two regions in the
image, for the delineation of heterogeneous target objects.

The results also suggested that there may be an optimal number of clusters to
use for each heterogeneous case. This can be seen on Figure 53 and Figure 54 for FCM
and GCM, for which the optimal number of clusters to use increased with heterogeneity
and sphere size. This result is intuitive and corresponds well to the hypotheses
previously formulated. However, it seems that the number of clusters to use does not
necessarily correspond to the number of underlying homogeneous uptake regions in
the tumour, nor did it follow a strictly proportional relationship in this work. For
example, even for the spheres with the largest number of homogeneous KM2 out-
performed all other versions of KM. A thorough investigation of the relationship
between the number of homogeneous uptake regions and the optimal number of
clusters to use for KM, FCM and GCM would still require further investigation. However,
the number of homogeneous uptake regions in a given real tumour cannot be known,
and such a study would therefore only provide qualitative indications as to the number
of clusters to use.

In comparison to FCM and GCM, the optimal number of clusters for KM was less
affected by the number of homogeneous uptake regions in the tumour, as KM2 was the
best performing method in most cases. This could be due to the fact that KM uses a
binary membership function for each cluster involved (i.e. 1 if the voxel belongs to the
cluster, 0 otherwise), whereas FCM and GCM use a continuous membership function,
assigning to each voxel a set of values representing the probability of belonging to each

cluster, according to intensity distribution criteria.

134



These results are in line with work published by Hatt et al. [138] showing
higher delineation accuracy of their clustering-based method FLAB when using it to
identify 3 regions instead of 2. However, the results have also shown that the optimal
number of clusters to detect may be extended to values higher than 3, which are
therefore used in the rest of this work. The use of a higher number of clusters in the
segmentation could also improve the geometry recovery of such methods (cf. II. B. 2).
For example, thin areas in a target object may yield low intensity values due to PVE,
and could therefore be identified by clustering algorithm as lower intensity
homogeneous regions, which would only be included in the final contour if a larger
number of clusters are detected. Clinical lesions, in particular are likely to be highly
heterogeneous with various uptake patterns observed, such as necrotic centres. Work
by Belhassen et al. [149] uses the Bayesian Information Criterion to determine the
optimal number of clusters to use based on the image intensity distribution complexity
[72]. The authors also acknowledge that their fuzzy clustering method underestimates
the volume of heterogeneous tumours when it is limited to detecting 2 regions.
However, in the case of relatively homogeneous regions, binary methods may still
outperform multiple clustering schemes. In the rest of this work, the clustering
methods are therefore extended to the detection of 2 to 8 clusters, and focused on
combining binary PET-AS and multiple clustering approaches in order to provide an

optimal segmentation applicable to the variety of lesion types observed clinically.

I11. B. Development of ATLAAS: an optimised
decision tree segmentation method

IIL. B. 1. Purpose and description

The number of published and validated advanced PET-AS methods is currently
growing, as a number of centres are aiming at implementing such methods into their

planning protocol. However, the focus of the literature remains on individual
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experience of different centres with single PET-AS methods. The wide range of
variation in tumour characteristics observed for clinical H&N cases, and the large
number of segmentation methods published independently make it difficult to
recommend a single delineation method. The previous chapters have addressed this
issue by comparing a selection of promising state-of-the art PET-AS methods in a wide
range of clinically relevant conditions. The results have highlighted strengths and
weaknesses of different approaches in different situations, and shown the necessity to
combine the advantages of the most promising PET-AS methods, instead of selecting a
single one for segmentation.

A small number of publications in the field of medical image segmentation have
suggested the use of machine learning techniques, for continuously improving
algorithms, which “learn” from the data they are used on. Machine learning allows a
given algorithm to be built and optimised using existing data for which the ground
truth is known, in order for it to achieve optimal performance in cases where the
ground truth is unknown. Machine learning techniques include methods such as K
Nearest Neighbours [150], [151], Support Vector Machine [152], [153] and Artificial
Neural Networks [111], [154], which have been used in the literature for the
segmentation of medical imaging by classifying voxels into different categories. The
main advantages of such techniques are their high predictive power, and their ability to
adapt to any given dataset. In addition, training methods can be continually improved
or updated by modifying the training dataset, which implies that a method developed
for data acquired in one centre could be easily transferred to a different centre,
provided training data is available. Machine learning methods are commonly applied
within one test image, to classify the voxels into different categories [155], or for
diagnostic purposes [156]. However such methods could also be applied to the
classification of test cases into groups for which a particular segmentation algorithm

would perform best. In particular, Decision Tree Learning is another supervised
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learning method providing a set of classification rules for the training dataset learned
during the training process (the tree). The advantage of such a technique is that it
provides a way of implementing these rules into an optimised decision process.
Decision Tree Learning could therefore be a powerful tool in the exploration of a wide
range of data cases representative of clinical tumours, to achieve optimal segmentation
in routine clinical practice.

This section describes the implementation of ATLAAS: Automatic Tree-based
Learning Algorithm for Advanced image Segmentation, a segmentation framework built
using decision tree learning techniques, aimed at achieving optimal segmentation

accuracy for H&N PET data.

II1. B. 2. Materials and methods

IIL. B. 2. a. Design of the model

The flowchart for building the ATLAAS method is shown on Figure 56. ATLAAS
extracts from the target image (Clinical data on Figure 56) a number of parameters,
which are used to select and apply the best among a number of available PET-AS
methods. This is done using decision trees calculated from a large training dataset
(Training data on Figure 56). For each PET-AS method and for a given set of image
parameter values, the decision trees provide the expected accuracy of the method in
generating an optimal contour. ATLAAS then applies to the target image the algorithm

with the highest expected accuracy.
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Figure 56. Steps in the training and use of ATLAAS.

The following metrics describing the simulated tumours were identified:

* Vol: tumour volume (mL)

*  TBRpeak: Ratio between the tumour SUVpeax, calculated as the mean value
in a 1 cm3 sphere centred on the maximum SUV in the tumour and the
background SUV, calculated as the mean intensity in a 5 mm thick
extension of the contour.

* COV: Coefficient of Variation (cf. Eq. 19 in IL. A. 3)

Regional texture features were extracted to investigate the influence of the
number of intensity levels in the tumour. These metrics rely on the identification of
regions of connected voxels with the same intensity value, after resampling the tumour
to 64 discrete intensity levels as described by Haralick et al. [9]. The following texture
metrics were calculated:

* Iv: Intensity Variability:

Iv=3,%(nu)" Eq. 24
With n; jy the number of voxels in regions of intensity level i and size j.

* Sv: Size-zone Variability
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2
Sv = lej(n(w)) Eq25

* NI: number of intensity levels

* NR: number of homogeneous regions

* NRS: number of homogeneous region sizes.

IIL. B. 2. b. Description of the PET simulator tool PETSTEP

A fast simulator tool, developed at the Memorial Sloan Kettering Cancer Centre
(New York, USA), and implemented in CERR for this project was used for the
generation of the training dataset. The tool is named PETSTEP: a Positron Emission
Tomography Simulator of Tracers via Emission Projection. PETSTEP was calibrated for
generating PET images equivalent to the ones obtained at Velindre Cancer Centre in
Cardiff. The description of the PETSTEP and outputs of this calibration work have been
submitted to a peer reviewed journal and were presented at international meetings

[157].

IIL. B. 2. c. Building of the model

Realistic simulated PET images were generated using PETSTEP for training the
decision trees to be generated for each method. The FDG uptake map defined for the
printed SS phantom in IIl. A. 1 was used as a simulation template, to model typical
background H&N activity levels. A large dataset was generated, by adding tumours of
varying sizes and activity distributions to the background FDG uptake map. This was
done automatically from initial tumour contours drawn manually on the FDG uptake
map, to model different irregular shapes and locations.

The data were aimed at covering the range of tumour metrics observed for
clinical H&N data at Velindre Cancer Centre. For this purpose, two types of lesions were
identified on available clinical data:

* Primary lesions, located around the oral cavity, tonsils and base of tongue,
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* Nodal lesions, located in the parotid and submandibular spaces.

A number Nc=10 of different initial contours was used a for generating the
dataset. Five of the ten initial contours corresponded to typical primary lesions
locations, and were used to generate synthetic tumours with targeted volumes and
intensities ranging within 7-75 mL and maximum SUV values of 5-40, corresponding to
the ranges clinically observed for primary tumours. The remaining contours
represented nodal lesions and corresponding synthetic tumours were similarly
generated with volumes ranging within 0.5-40 mL and maximum SUV values of 2-25.
For each initial contour, tumours were modelled for Na=5 uptake values spanning the
specified SUV range, and for Nv=>5 values of the tumour volume within the specified
range. For each tumour geometry, uptake value and volume, Nt=4 different uptake
textures were simulated:

* homogeneous uptake,

* 2 homogeneous regions with the highest uptake level in the centre,
* 3 homogeneous regions with the highest uptake level in the centre,
* necrotic uptake in the tumour centre.

A total of 1000 lesions were modelled (Nc * Na * Nv * Nt = 1000). Global
tumour uptake noise was modelled in each modelled tumour by randomly assigning to
the voxels uptake values extracted from a Gaussian distribution centred on the targeted
mean uptake value, with SD of 100% of the mean.

The statistical analysis software SPSS (cf. II. A. 1. c) was used to derive decision
trees for the selection of the optimal segmentation approach among AT, RG, AC and WT
and clustering methods KM, applied to the detection of 2 or 3 clusters, and FCM and
GCM applied to the detection of 2 to 8 clusters. For each segmentation approach, a tree
was grown for the prediction of the DSC score obtained on different tumour types. The
Classification and Regression Tree (CRT) growing method [158] was used with all

tumour and image characteristics entered into the model as prediction variables. The
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impurity measure “Gini” was used to ensure homogeneity of the cases classified into
the same groups. The maximum tree depth was set to 10 with a minimum number of 50
cases per node, as a good trade-off between tree accuracy and tree growth. The
software returned the trees obtained for each segmentation approach, together with
the risk estimate RE, which represents the average error made on the whole dataset if
assigning each case to the DSC value predicted by the tree, rather than the actual DSC
obtained. The importance to the model was also calculated for each variable, as the
improvements brought to the model when using the given variable (summed across all
steps of the classification tree). It quantifies the amount by which the use of a given
predictive variable (image metric) in the tree reduces the error in prediction of the
outcome (the DSC). The trees were pruned back to the smallest size possible for a
minimum classification risk allowed of 1 SD of the average risk, to avoid over-fitting the
model to the training dataset. ATLAAS was finally built using the decision trees derived
for each PET-AS method. It calculates for each new case the image parameters using a
single estimate of the tumour contours, followed by the predicted DSC score for each
approach based on these parameters. The method then selects the algorithm reaching

the highest predicted DSC value to be applied.

II1. B. 2. d. Evaluation with simulated data

A first validation dataset was generated by simulating 100 new cases of tumour
in H&N background. Each case was generated with volume value, maximum intensity
value and uptake pattern randomly chosen from the range of values obtained in the
training dataset. Only the images for which these fell into the range used in the training
dataset were kept. The ATLAAS model built as described in the previous paragraph was
applied to each test case of this validation dataset, on the basis of image parameters
calculated from an initial estimate of the contour. The contour estimate was obtained

using KM2, selected as the PET-AS with the lowest SD of DSC values across the training
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dataset, so as to provide a robust estimate of the image parameters. For comparison
purposes, ATLAAS was also built using parameters extracted from the true (GT)
contour. This model is named ATLAAS_GT in the following sections.

For the evaluation of ATLAAS, the mean, median and minimum returned by the
method were calculated across the validation dataset. In addition, the percentage of
cases where ATLAAS returned the best DSC (Pbest) and a DSC value within 10% of the
best (P10), were determined and compared to the single PET-AS methods.

In addition, the distribution of DSC values obtained for ATLAAS was compared
to the single PET-AS methods using the Mann Whitney U-test. The test was also used to
compare the results from ATLAAS for the array of DSC values corresponding to the best
DSC achieved across the single PET-AS methods for each case. These values correspond
to the highest segmentation accuracy achievable by a model such as ATLAAS using the

same single PET-AS methods. It is named HS in the rest of this work.

IIL. B. 2. e. Evaluation with phantom data

A total of 115 cases were used for the validation of ATLAAS, including:

* 58 H&N homogeneous and heterogeneous (random, Gaussian smoothed
and necrotic uptakes) cases generated with the subresolution sandwich
printed phantom,

* 39 fillable phantom cases using thin-wall spherical and non-spherical
plastic inserts,

* 18 cases of heterogeneous spheres (1, 2 or 4 homogeneous regions of
different uptakes) obtained with the printed subresolution sandwich
phantom.

These validation cases corresponded to the ones obtained for testing the

different PET-AS methods, as described in II. A. 3, II. B. and II1. A. 2., excluding spherical

142



NEMA inserts, and cases for which TBRpeak or volume values fell outside the range of
values used for training ATLAAS.
The ATLAAS method was applied and evaluated similarly as for the simulated

validation dataset.

II1. B. 3. Results

IIL. B. 3. a. Building of the model

Simulated training cases for which the TBRpeak or Vol values were
outside the observed clinical range were discarded. In particular, low TBRs were
sometimes achieved due to the proximity of intense normal uptake (tonsils, brain, etc.),
which hampers the delineation process. Overall, a total of 845 cases were used to build
the model. Table 19 presents the range of values obtained for the different metrics
considered, for both simulated and clinical images. The parameter values simulated
closely matched the clinical values observed, with minor differences in texture feature
values (e.g. lower values for Iv in the simulated cases). Figure 57 shows the coverage
of the range of clinically observed TBRyeax and Vol values achieved by the training
dataset. Small gaps observable between cases of similar volume values are due to the
fact that the data were generated by choosing evenly spaced values for the maximum

tumour intensity and volume, spanning the range of values targeted.

Parameter TBRpeak Vol (mL) COV Iv Sv NI NR NRS

Clinical 1.1-84 0.44-67 10-51 153-12x105 19-72x103 13-63 15-1756 2-344
Simulated 1.1-9.7 0.62-76  9.7-53 194-79x10% 19-47x103 17-63 18-1304 1-402

Table 19. Comparison of the range of values measured for the parameters considered for
clinical, simulated and validation phantom data.
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Figure 57. Range of TBRpeak and volume values obtained for simulated cases, compared to
clinical primary (P) and lymph node (N) cases recorded at Velindre Cancer Centre.

Methods FCM and GCM, applied to 6 or more clusters, did not reach the
highest DSC value for any of the training cases, and were therefore discarded in the rest
of this study. A total of 14 trees were generated using all parameters described
previously as classifiers, corresponding to predictions for the delineation accuracy of AT,
RG, AC, WT, KM2, KM3, FCM2, FCM3, FCM4, FCM5, GCM2, GCM3, GCM4 and GCMS5. Table
20 provides for each one of the methods the mean DSC obtained on the training dataset,
the percentage of cases for which it returned the highest DSC (Pbest), the risk estimate of
the tree obtained, and the normalised importance of each one of the variables included in
the tree. All trees were built with an estimated classification risk of less than 5%,
demonstrating good classification accuracy. TBRpeak was included in all of the decision
trees generated but one, and was the most important variable to the model for 10 out of
14 methods. COV was also included in 10 out of 14 trees. Sv was included in none of the
trees generated, which shows that no classification of the data allowed predicting the
DSC of the PET-AS methods with enough accuracy to be included in the tree building

process. For this reason, Sv was excluded from further analysis.
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II1. B. 3. b. Evaluation with simulated data

The 100 simulated images generated for the model validation had TBRpeak and
Vol values ranging within 1.3-9.3 and 0.6-68 mL respectively. The results of the
validation with the phantom data are given in Table 21 for the validation dataset,
showing the mean, median and lowest DSC obtained on the dataset as well as the
percentage of cases for which the method achieved the best DSC across all methods
tested (Pbest), or a DSC within 10% of the best DSC value (P10). These results are
compared to the results obtained for PET-AS methods AT, RG, KM2, and WT, which
were the only methods achieving mean or median values higher than ATLAAS across
the different datasets. For the simulated validation dataset, ATLAAS_GT reached the
same mean DSC and P10 value as the best performing PET-AS method on this dataset
(KM2), with a slightly higher minimum DSC value. Slightly lower values were obtained
for ATLAAS but the results were still very close to the best performing method. ATLAAS
returned exactly the best DSC in 7% cases, and a DSC within 10% of the best in 89%
cases. The largest error (difference to the best DSC obtained for single PET-AS
methods) was 21%. These results are illustrated on Figure 58 a), which shows the DSC
values obtained for ATLAAS (in black) and the selected single segmentation approaches
for each case of the validation dataset. It can be noted that the black curve

corresponding to ATLAAS covers the highest DSC values in most cases.

145



Simulated data

! “==WT
0.9 - e=—KM3
0.8 w==AC
0.7 =—RG
§ 06 1 GCM3
E 0.5 “===FCM3
® 04 - ==FCM2
3
8 03 ‘ =—=GCM2
0.2 ¢ 1] AT
0.1 — M2
(U ==ATLAAS
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
Case No
b) Phantom data
SS phantom 1 1 SS phantom
H&N data Fillable phantom data  heterogeneous
1 spheres “=WT
0.9 e=—=KM3
0.8 e==AC
Q0.7 7 =—=RG
[%2]
206 - GCM3
g 0.5 - ==FCM3
304 - =—GCM2
< J—
0.3 - FCM2
0.2 ; AT
i i KM2
0.1 H v I
0 1 1 e==ATLAAS

1 5 91317212529333741454953 1 5 9 13172125293337 2 6 101418
Case No
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approaches over a) the simulated and b) the phantom validation datasets.
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PET-AS AT RG WT AC GCM2 GCM3 GCM4 GCM5 KM2 KM3 FCM2 FCM3 FCM4 FCM5

Method
Mean DSC 0.752 0.724 0.722 0.805 0.826 0.823 0.782 0.732 0.863 0.784 0.676 0.824 0.793 0.744
Pbest (%) 7.6 5.2 21.4 3.2 2.8 1.9 1.2 <1 18.2 18.3 0.2 0.0 1.3 <1

RE 0.018 0.049 0.031 0.01 0.004 0.005 0.008 0.007 0.007 0.008 0.017 0.005 0.007 0.007
Relative importance (%)

TBRpeak 71 97 100 85 100 100 100 100 n.i. 100 100 100 100 100
Vol 25 44 n.i. n.i. n.i. n.i. n.i. n.i. 100 n.i. 12 n.i. n.i. n.i.
cov 100 84 77 100 86 46 n.i. 24 n.i. n.i. 100 52 n.i. 21

Iv 37 n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. 55 n.i. n.i. n.i. n.i.
Sv n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i.
NR n.i. n.i. n.i. n.i. n.i. n.i. 24 n.i. ni. n.i. n.i. n.i. n.i. 24
NRS n.i. 100 n.i. n.i. n.i. 17 n.i. n.i. 77 n.i. 24 17 n.i. n.i.
NI 72 n.i. 99 ni ni n.i. n.i. ni. n.i. ni. n.i. n.i. ni. n.i.

n.i.: not included in model

Table 20. Description of the decision trees training using all image parameters for the different PET-AS methods selected (with mean DSC, Pbest: % of
cases where the method returned the highest DSC, and risk estimate RE) and importance of the image parameters to the tree models.

HS AT RG KM2 WT ATLAAS GT ATLAAS

Mean DSC 0.906 | 0.847 0.640 0.890 0.862 0.890 0.878
Median DSC 0.932 1 0.905 0.672 0.915 0.921 0.915 0.915
Min DSC 0.716 | 0.419 0.095 0.643 0.332 0.667 0.667
Pbest (% cases) 100 3.0 5.0 13 51 11 7.0
P10 (% cases) 100 80 22 96 89 96 89

Table 21. Results of the evaluation of ATLAAS_GT and ATLAAS with simulated data, including mean, median and minimum DSC obtained, Pbest and P10
values (cf. IIL. B. 3. b). Segmentation results are given for AT, RG, KM2, WT and the highest achievable segmentation accuracy HS for comparison.
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IIL. B. 3. c. Evaluation with phantom data

The results of the evaluation of ATLAAS with phantom data are given in Table
22 for the H&N printed phantom, fillable phantom, and heterogeneous spheres printed
phantom separately, and for the phantom data overall. The results show that the
different single PET-AS methods performed differently on the three types of phantom
data used: AT was the best method for H&N subresolution sandwich phantom data, RG
for fillable phantom data, whereas KM2 reached the highest mean DSC for the
heterogeneous spheres. Overall, ATLAAS reached mean and median DSC higher than
any of these methods, as well as a higher minimum DSC value (when built using KM2).
ATLAAS provided the best DSC value in 20% cases, and DSCs within 10% of the best
value in 77% cases. ATLAAS reached slightly lower DSC values than the best single
PET-AS method for H&N printed and fillable phantom data (AT and RG respectively),
but still performed better than all other methods. For the highly heterogeneous spheres
generated with the printed phantom, it was again more accurate on average than the
best single PET-AS (KM2). The largest error (difference to the best DSC obtained for
single PET-AS methods) was 32%, and only 5 cases reached errors higher than 20%.
Figure 58 b) shows the DSC values obtained for ATLAAS (in black) and the selected
single segmentation approaches for each case of the three phantom datasets separately.
The curve for ATLAAS is again covering the highest DSC values obtained by single PET-

AS for most cases.
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HS AT RG KM2 WT | ATLAAS_GT ATLAAS
Mean DSC 0.844 |1 0.806 0.787 0.731 0.716 0.788 0.799
H&N Median 0.854 | 0.799 0.784 0.730 0.723 0.814 0.809
SS printed Min 0.698 | 0.579 0.530 0.411 0.389 0.137 0.552
Pbest (% cases) | 100 17 22 6.9 1.7 14 14
P10 (% cases) 100 79.3 65,5 39.7 414 72 47
Mean DSC 0917 | 0.891 0901 0.879 0.851 0.897 0.889
Fillabl Median 0.918 |1 0.921 0.938 0.929 0.896 0.929 0.927
ph'a::tofn Min 0.640 | 0.640 0.500 0.492 0.436| 0.492 0.492
Pbest (% cases) | 100 | 179 308 308 5.1 33 33
P10 (% cases) 100 89.7 89.7 846 795 92 87
Mean 0.842 | 0.686 0.728 0.765 0.690 0.771 0.758
Heterogeneous Mfadian 0.851 | 0.714 0.760 0.817 0.743 0.775 0.756
spheres Min 0.642 | 0.353 0.345 0.207 0.476 0.556 0.556
Pbest (% cases) | 100 3.4 1.7 5.2 1.7 3.5 1.7
P10 (% cases) 100 17.2 155 20.7 5.2 19 19
Mean 0.869 | 0.817 0.817 0.787 0.758 0.823 0.824
overall Mfadian 0.891 | 0.824 0.840 0.824 0.789 0.854 0.851
phantom data Min 0.640 | 0.353 0.345 0.207 0.389 0.137 0.492
Pbest (% cases) | 100 | 165 226 165 3.5 20 19
P10 (% cases) 100 235 29.6 243 5.2 77 77

Table 22. Mean, median and minimum DSC, Pbest and P10 values (cf. III. B. 3. b) obtained
by ATLAAS_GT and ATLAAS on the phantom datasets. Results are given for AT, RG, KM2
and WT for comparison, and for the highest achievable accuracy segmentation HS.

The Mann Whitney U-test comparing the distribution of DSC values obtained
for ATLAAS and the single PET-AS methods showed significant differences (p<0.05)
with all methods except WT on the simulated dataset, and with WT and AC on the
phantom dataset. When the values obtained for ATLAAS were compared to the highest

DSC value obtained for each case, the differences were not significant.

II1. B. 4. Discussion and conclusions

The aim of this study was to develop a model able to select and apply the best
performing method among a selection of promising segmentation algorithms. The
combination of several algorithms has been investigated in other studies using other
combination processes. McGurk et al. [108] compared two voxel-wise methods for the
combination of 5 different segmentation algorithms, in order to limit inconsistencies of
the segmentation accuracy on a large dataset. In the present work, a different approach

was used with the aim of optimising the accuracy of the PET-AS segmentation by
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considering only the predicted best performing method. This optimisation approach
relies on the training of a prediction model to apply the best PET-AS method out of a
selected range. This differs from the approach of McGurk et al in that it does not
include the results of all PET-AS methods in deriving the final contour, but only uses
the results of the best among the PET-AS methods used. This work aimed at providing
the highest possible accuracy, whereas the method from McGurk et al is focused on
avoiding large errors observed for some methods in specific cases. The final method,
ATLAAS, showed excellent accuracy across a wide range of simulated and phantom
data (mean DSC of 0.878 and 0.824 respectively), and achieved a prediction of the best
or near-best segmentation (DSC within 10% of the best) in a large number of cases
(96% and 77% for simulated and phantom data respectively), as shown in Table 22.
These results, together with the data shown on Figure 58, also demonstrate the
robustness of ATLAAS, which systematically returned DSC values higher than 0.67 and
0.49 on the simulated and phantom validation datasets respectively. The mean and
median DSC values obtained for ATLAAS were within 7% of the hypothetical values
achieved if the model was perfect, corresponding to the highest segmentation accuracy
among single PET-AS methods for each case (HS), for both simulated and phantom data
(cf. Table 22). In addition, the results of the Mann-Whitney U-test showed that the
distribution of values obtained for ATLAAS was not significantly different from the
distribution of HS values.

In this work, a full protocol was also developed for the building and application
of the ATLAAS method, including the automatic generation of a large dataset
representative of the clinical situation targeted. This was made possible by using
PETSTEP, a fast and flexible PET simulation tool, and building an automatic process for
the generation of images covering a wide range of image parameters. However, since

the quality of the model depends largely on the quality of training dataset, it is expected
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that any improvement to the training image quality, such as with future releases of
PETSTEP, would further increase the accuracy of the ATLAAS model.

The data obtained in the evaluation of PETSTEP also suggests some possible
improvements for the method. The simulated validation dataset showed a very similar
accuracy for KM2 and ATLAAS, both methods reaching values very close to the HS
situation of an ideal model (cf. Table 22). This is due to the very high accuracy of KM2
for the simulated validation dataset, as the PET-AS achieved DSCs within 10% of the
best in 96% of the cases. For the phantom dataset, KM2 showed lower accuracy than
AT and RG on the H&N phantom and fillable phantom datasets, corresponding to cases
with largely irregular and relatively small tumours. This suggests that although the
methodology used aimed at generating a training dataset representative of observable
clinical cases, the introduction of several extreme cases, more accurately delineated by
a method other than KM2, could improve the building and evaluation of the ATLAAS
model.

The comparison of ATLAAS to ATLAAS_GT shows little difference in the
accuracy, which is a sign of a low sensitivity of the method to the initial contour
estimate. However, the use of KM2 for estimating the tumour parameters may bias the
model toward selecting and applying KM2. Additional work could therefore investigate
the use of a different method for estimating the tumour parameters, or preferably,
focus on tumour parameters little influenced by the exact contour estimate. Future
work could also aim at assessing the importance of different aspects of the tumour on
the model accuracy. For example, additional parameters describing the tumour
geometry could be included, such as the shape indices used by Tixier et al for
predicting response to therapy [159]. A thorough study determining the metrics most
adequate for the extraction of such parameters would also greatly benefit the
development of ATLAAS, and the number of parameters describing the tumour

heterogeneity may be reduced to maintain a better balance between the different
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tumour characteristics. However, such analysis would require a project on its own, and
it was not the aim of this present study.

The robustness observed for ATLAAS across phantom datasets (cf. Table 22) is
also due to the fact that the single PET-AS performed differently on the three phantom
datasets used (cf. Table 22), suggesting that images from these datasets are different.
This is likely to be due to the difference in image quality between simulated images and
printed subresolution sandwich phantom data, including differences in the image
scatter and photon statistics. The results showed high accuracy of ATLAAS for all of
these different datasets, which shows potential robustness of the method to data from
different sites.

This work describes the development of ATLAAS, a model for automatic
selection and application of a range of PET-AS method, providing high segmentation
accuracy for realistic H&N data and challenging phantom images. ATLAAS was
validated on a selection of the highest quality phantom data currently available the
Wales Research & Diagnostic PET Imaging Centre. This work showed that it presents
many advantages on the use of a single PET-AS algorithm in terms of accuracy,
reliability and robustness to both tumour and data type. In addition, a full framework
for the automatic training and building of such an optimised segmentation method was
applied, which could be applied to data from any centre, positron emission imaging
system and selection of automatic segmentation algorithms. Throughout this work the
future work necessary for improving the method was also identified, such as the use of
a higher quality PET simulator, or the inclusion of more complex cases in the training
dataset. The use of ATLAAS is expected to be highly beneficial in the RT planning
process, as it provides rapid, reliable and accurate GTV segmentation. Future work will
therefore also aim at implementing the method in routine clinical practice at Velindre

Cancer Centre, and making it available as a package for other centres.
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Chapter IV. Application of the
PET-AS to clinical data

IV. A. Development of a clinical protocol

IV. A. 1. Purpose

POSITIVE was designed as a pilot study for the implementation of PET-AS
methods within the routine clinical RT process at Velindre Cancer Centre, and with the
aim of recruiting 20 H&N cancer patients for evaluating the methods in clinical
conditions. The involvement of patients in the study set the requirement for a well-
defined clinical protocol, allowing efficient and accurate patient scanning and
segmentation, while remaining within the time constraints due to the treatment
timeline. The definition of such a protocol was also required as a key step to
implementing the use of PET into the RT process at Velindre Cancer Centre, for further
studies involving PET-AS. The recruitment of patients started after a clinical protocol
was finalised together with the clinicians involved in the study. This section describes
the clinical protocol derived for POSITIVE, and followed for the studies presented in IV.

CandIV.D.

IV. A. 2. Definition of the patient population

The aims of the study included implementation of a PET auto segmentation
protocol for routine delineation of H&N GTVs for patients at Velindre Cancer Centre. A
single subsite was identified a within H&N cancers, so as to limit the study population
and maintain homogeneity within the study. The oropharynx was chosen, as it is the
most common subsite for H&N cancer at Velindre Cancer Centre. In order to recruit a
consistent patient population, it was also agreed to focus the study on patients

undergoing non-surgical therapy, with neo adjuvant chemotherapy followed by
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concurrent chemotherapy with a curative intent. The patients received 66 Gy in 30
fractions delivered over six weeks by IMRT with concurrent chemotherapy.

The study protocol was accepted by the National Health Service (NHS)
Research Ethics Committee and given the number 12/WA/0083. It is part of the UK

Cancer Research Network portfolio database, under number 13769.

IV. A. 3. Image acquisition

Since the study was open to patients undergoing neoadjuvant chemotherapy
prior to the RT treatment, the planning PET/CT scan was acquired just before the start
of chemotherapy. This was done to avoid planning the patients with tumour volumes
changed by the chemotherapy, so as to target the whole initial tumour burden. The
planning scan was performed at PETIC following patient consent, with an
immobilisation shell to maintain a reproducible position during radiotherapy. Time to
start of treatment after the scan ranged from 6 to 9 weeks. Therefore the
immobilisation shell was checked before starting the treatment, to make sure that it
still provided a good fit to the patient contour. If this was not the case, e.g. following
weight loss or weight gain due to chemotherapy, the mask was refitted, and the patient
was re-scanned and re planned if necessary. All patients were scanned using the
scanner and settings described in II. A. 1. a) using 6-8 bed positions of 3 min each,
ranging from the top of the head to the sternum. All CT scans were resampled to 2.5
mm slice and interval thickness for the RT planning.

The scanning protocol was defined as follows:

* 90 minutes uptake for the patient, after injection in the back of the hand

preferably,

* routine whole body CT scan with a noise index of 16 and 700 mm FOV. This

scan was resampled to 3.75 mm slice thickness to be used for attenuation

correction of the PET data.
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* Contrast Enhanced CT (CECT) with Niopam 300 (75 mL at 2 mL/s, from
Bracco UK limited, Bucks, UK) followed by a Saline flush (10 mL at 2 mL/s)
for 2-3 bed positions to include the whole of the head and neck.

*  Whole body PET scan, 3 min per bed position

* CECT resampled to 2.5 mm slice and interval thickness.

Reporting was done by trained radiologists following the planning scan.

IV. A. 4. Data transfer

The following series were sent in DICOM! format to VCC via the Picture
Archiving and Communication System (PACS), together with the radiologist report:

*  Whole Body CT resampled to 2.5 mm slice and interval thickness

* CECT resampled to 2.5 mm slice and interval thickness, used by the

clinicians for planning

*  Whole body PET scan

The series were then retrieved from the PACS for use on workstations in VCC,
including VelocityAl (version 2.7, Velocity Medical Solutions, Atlanta, USA) and
ProSoma (Version 3.1, MedCom GmbH, Darmstadt, Germany).

In addition, all series acquired were anonymised via the PET Xeleris (version
3.0, GE Healthcare, Milwaukee, USA) workstation linked to the scanner and copied onto
a DVD for use on the Matlab research workstation.

The data transfer was verified before the start of the project by comparing the
SUV within defined regions of routine scan of the NEMA body phantom on the different
workstations used. This was done to ensure that the DICOM information was not
affected by the transfer, and check that any difference in SUV values calculated at the

two centres (due to different software settings) did not exceed 10%.

Lhttp://medical.nema.org/standard.html
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The data transfer workflow is shown on Figure 59.

Patient scan

PET Xeleris

Matlab (CERR)

Figure 59. Workflow for the transfer of data across centres and workstations.

IV. A. 5. Outlining of GTV

GTVs were outlined by three experienced clinicians prior to starting the
radiotherapy. Imaging data included the latest available diagnostic MRI (axial T1-
weighted post contrast) scan for the patient, which was acquired at the referring
hospital (data from various institutions), the resampled contrast CT acquired in
planning position at PETIC, and the registered planning PET. For the first 10 patients
recruited, the following volumes were outlined in this order:
i) Primary GTV (GTVy), nodal GTVs (GTV,) and OAR volumes were manually
outlined on fused CT/MRI, registered with Mutual Information using
ProSoma

ii) A GTV, and nodal GTV, were manually outlined on registered planning
contrast CT and planning PET in VelocityAl. PET/CT manual delineation
was done using a fixed window level of 6, recommended by expert

radiologists at Velindre Cancer Centre.
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iii) PET-AS contours were generated in Matlab using CERR, within an initial
VOI drawn by a non-experienced user.
For the next 10 patients, step (ii) was not carried out, and the PET-AS contours
were provided to the clinicians after CT/MRI (i) outlining.
The PET-AS volumes were exported to VelocityAl and all volumes were then
sent to the ProSoma workstation, where the final planning outlines were derived by the
clinicians using the contours obtained in (i), (ii) and (iii). The implementation of the

PET-AS method is presented in details in the following section.

IV. B. Implementation of the PET-AS tool
IV. B. 1. Purpose

One of the aims of the POSITIVE project was to develop one or several PET-AS
methods for optimal delineation of the GTV within the RT planning process at Velindre
Cancer Centre. Following discussions with the clinicians involved in the planning
process the following requirements were identified:

» The segmentation tool should provide accurate contours for the type of

tumours targeted.

The segmentation process should be rapid and simple.

It should be accessible to non-experts in Matlab or CERR.

CT-based thresholding should be available, to allow using anatomical
information such as the presence of bone or air.

In addition, the observation of existing cases highlighted the fact that high
intensity structures, such as the tonsils or malignant lymph nodes could be located
close to the target tumour, and therefore included in the GTV delineated by the PET-AS.
This led to an additional requirement that the initial region in which to perform the
segmentation could be manually selected, so as to ensure that the GTV contains only

the primary tumour burden.

157



IV. B. 2. Methods

IV. B. 2. a. PET-AS algorithm

At the time of planning the patients recruited for the study, the optimised
method ATLAAS (cf. II. B) was not yet fully developed. For the clinical cases described
in this chapter, a simplified version of ATLAAS was used, based on the analysis of a set
of 60 H&N images simulated using PETSTEP as for ATLAAS. The best performing binary
method on this dataset was AT, while the best multiple clustering method was GCM5.
The data were used to determine an optimal cutoff value for selecting the most
accurate method from AT or GCMS5, based on TBRpeax, calculated as for ATLAAS (cf. IIL
B). TBRyeak was chosen as a classifying parameter because of its low dependency on
both contour estimate (obtained using KM2) and absolute SUV values. The decision
process used for applying the optimal segmentation method is illustrated on Figure 60.
The best performing method for each case considered is shown on Figure 61 together
with the cutoff chosen of TBRpeak=5. The method’s accuracy was evaluated with the

phantom data used for validating ATLAAS (cf. I1I. B).

use AT —— .
<5 \ |

TBRpeak
5

>5

use GCM5 |—— '

Figure 60. Description of the PET-AS method used in this chapter.
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Figure 61. Best performing method of AT and GCMS5, for 60 phantom cases, shown by
TBRpeak and volume, with the TBReax cutoff value chosen (dashed line).

IV. B. 2. b. PET-AS implementation

The methods were implemented in Matlab, for use with the CERR platform. The
code was optimised so as to reduce the processing time. The PET-AS methods can be
called from the command line, only specifying:

* the number of the scan to be segmented

* the name to give to the generated contour,

* the VOI in which to perform the segmentation.

The VOI is specified by the coordinates of the six sides of a rectangular 3D box
(if the VOI is a 3D rectangle), or in the form of a mask of the same size as the target
scan, consisting of voxels with a value of 1 at the location of the initialisation VOI and
zeros otherwise. The initialisation VOI coordinates (or mask) could be selected
manually by the user on the CERR viewer, but this would require a good knowledge of
the software and make this a time consuming process. In addition, this would not allow
selecting a non-rectangular VOI. For these reasons, a graphical user interface (GUI) was
built to enable the following actions:

» visualisation of the image on three views (transaxial, sagittal and coronal),

» zooming back and forth each view,
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= scrolling through each view using crosshairs and a slider bar,

» drawing a rectangle on each view,

» drawing an irregular contour on each view,

= propagating a contour on a selection of slices to make a 3D contour on the

current view,

= editing a contour,

= resetting the views.

The GUI returns a mask corresponding to the VOI drawn by the user, obtained
as the intersection of the 3D contours drawn on the three different views. In cases
where the mask is not a 3D rectangular box, the segmentation is applied to the
rectangular bounding box of this non-rectangular initialisation VOI, but only considers
the voxels contained in the non-rectangular VOI image for identifying maximum SUV
values. The final segmented volume is then masked with the non-rectangular
initialisation mask.

A CT-based editing tool was also implemented with a user interface, allowing
the user to select a Hounsfield Unit (HU) value as a threshold for removing
corresponding voxels from the PET contour, based on the fact that CT and PET images

are co-registered.

IV. B. 3. Results

IV. B. 3. a. PET-AS algorithm

The results given in Table 23 show that the method choosing between AT and
GCMS5 based on TBRpeak was an improvement on AT alone, in particular for the case of

the largely heterogeneous spheres included in the “Heterogeneous spheres” dataset.
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Dataset| H&N SS printed Fillable phantom Heterogeneous Total
spheres
AT GCM5 Comb| AT GCM5 Comb| AT GCM5 Comb| AT GCM5 Comb

Mean |0.806 0.648 0.806| 0.891 0.681 0.891|0.686 0.398 0.716| 0.817 0.621 0.821
Median | 0.800 0.814 0.800| 0.921 0.695 0.921|0.714 0.303 0.733| 0.825 0.670 0.827
Min 0.579 0.137 0.579| 0.640 0.419 0.640|0.353 0.142 0.48 | 0.353 0.142 0.480

Table 23. Comparison of the accuracy (DSC) obtained for AT, GCM5 and the combination
of the two methods (Comb) on the phantom dataset used for evaluating ATLAAS.

IV. B. 3. b. PET-AS implementation

Figure 62 shows a snapshot of the initialisation GUI. Contours were drawn with
the rectangle tool on the left (transaxial view) and with a manual drawing tool on the
right (coronal view). The button “Generate Mask” closes the window and returns a
mask variable in the variable space corresponding to the intersection of the 3D
contours drawn on each view.

800 itialisati UI2

Transverse slice No 58 Sagittal slice No 133 Coronal slice No 107

EH

1 73 1 256 1 256
| Draw rectangle | | Draw/Edit | T Draw rectangle | | Draw/Edit (7 | ( Draw rectangle | | Draw/Edit (& |
[ Propagate contour J l Reset J 'Propagaleconlour‘ | Reset ( Propagate contour ] | Reset |
You can now propagate and edit the contour slice-by-slice on this view Generate Mask Close

Figure 62. Initialisation interface for selecting the cropped image in which to perform the
segmentation.

The GUI developed for the CT-based editing is shown Figure 63. It is called from
a single command line with the identifier in CERR of the contour to edit as only input
argument. The user can select a high Hounsfield Unit (HU) value, for which all voxels
with a higher HU are removed from the corresponding PET contour, or a low HU value,
for which all voxels with a lower HU are removed from the corresponding PET contour.
This can be done by entering the value in a box or via a slider, automatically positioned

161



between the minimum and maximum, which is updated when the editing box value is
changed. The value in the box is also updated according to the slider position.
Suggested values, corresponding to arbitrary thresholds for removing air cavities and
bone tissue appear as default for the boxes and sliders. The “Apply” button generates a
new contour on the PET scan from the original PET contour, using the CT-based editing
specified by the user. The user is prompted to enter the name of the new contour,
which is then generated on the corresponding data file opened in CERR. A checkbox

also allows creating a copy of this new contour onto the registered CT image.

8 OC CT editing tool

Select tissue type to exclude

(") Tissuet (air cavities) < 1103 HU or 0 4071
() Tissue2 (bone) > 2101 HU or 0 4071
Name Structure name
L Apply J L Quit J

[ "] Create copy of contour on CT scan

Figure 63. User interface allowing modifications of the PET-AS contour based on the
corresponding CT values.

IV. B. 4. Discussion and conclusions

The tools implemented are simple and easy to use, and allow a good navigation
through the image to be segmented. A clinical case can be segmented within one
minute, the limiting factor being the selection of the initial cropped image. This is often
trivial if the tumour can be encompassed in a rectangle with 10 mm margins, without
including any other high intensity structure. At present the PET-AS still heavily relies
on the availability of Matlab and CERR (although CERR is freely available for
download), and on a basic knowledge of both language and software. Although the
current implementation was easily used for the studies described in the following
sections, future work will consider implementing the tool in a different environment

more accessible to clinicians and non-Matlab experts.
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IV. C. Retrospective analysis of outlines for ten
oropharyngeal patients

IV. C. 1. Purpose

Following the development and implementation of an optimised PET-AS
method, its use was assessed within the clinical RT planning process at Velindre Cancer
Centre. This first study, which was retrospective, aimed at testing the workflow and
methodology described in IV. A, and at evaluating the differences between PET-AS and

clinician outlines, so as to determine the usefulness of PET-AS contours in the process.

IV. C. 2. Methods

Ten oropharyngeal cancer patients were recruited and scanned at VCC
following the protocol described in IV. A. The outlines were generated following the
same protocol, leading to CT/MRI manual outlines named GTVpcr/mri and GTVncr mri for
primary and nodal volumes respectively, and PET/CT manual outlines named
GTVpeer/cr and GTVnpgr/cr for primary and nodal volumes respectively.

The PET-AS contours were automatically edited based on the HU values of the
corresponding CT image to exclude air cavities and bone tissue. This was done using
the interface described in IV. B. with threshold values of 600 and 1700 in CERR
respectively, corresponding to values around -600 and +900 HU. The outlines obtained
were named GTVxpgr.as, with “x” corresponding to the letter p for the primary tumour
volume, and n1-nz for lymph node volumes numbered as 1 to z.

The final planning GTV contours were drawn by the clinicians on the basis of
the CT/MRI and PET/CT manual outlines, and named GTVXsna. The interpretation of
the PET information in the definition of the final planning GTV was recorded for each
case.

All outlines generated were copied onto the planning CT scan. The outlines

obtained for each patient with the PET-AS method (GTVxper.as) were compared to both
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manual outlines (GTVxcrmmi and GTVxperscr). The volumes corresponding to the
different outlines were calculated in Matlab. The conformity of each PET-AS outline
with the corresponding PET/CT and CT/MRI outlines was calculated with the DSC.

In addition, the DSC compared to both GTVpcr/mri and GTVpper/ct was calculated
separately for each slice of the primary tumour containing one of PET-AS, PET/CT or
CT/MRI outline. For each slice with a DSC lower than 0.7, the difference between the
reference and PET-AS outline was analysed visually, to check for differences due to the
proximity of bone tissue, air cavities and to the absence of outline on one or several

slices in the superior-inferior (sup-inf) direction.

IV. C. 3. Results

IV. C. 3. a. Primary volumes

The PET-AS primary volumes were smaller than the CT/MRI volumes for 7 out
of 10 cases (cf. Table 24), with absolute differences ranging from 8.9% to 66% of the
GTVpcrymri. The comparison to the PET/CT outlines showed smaller PET-AS volumes for
8 out of 10 cases, and absolute differences in volume ranging between 8.5% and 38% of
the GTVpper/ct. The PET-AS contours showed a good agreement with CT/MRI contours
(median DSC of 0.67) and an excellent agreement with PET/CT contours (median DSC
of 0.85). The PET-AS showed greater overlap with PET/CT than with CT/MRI outlines

in all cases, but the PET-AS volume was closer to the CT/MRI for 2 out of 10 patients.

Patient No 1 2 3 4 5 6 7 8 9 10 Median

CT/MRI 448 169 20.2 13.7 27.4 13.7 55.0 16.5 109.9 654 -
PET/CT  33.1 11.7 25.7 209 22.8 209 44.6 17.4 78.1 39.1 -
PET-AS 30.3 9.00 33.6 17.8 18.5 17.8 33.7 23.8 483 71.2 -
DSC(PET-AS vs CT/MRI) 0.77 0.59 0.70 0.74 0.66 0.64 0.70 0.47 0.59 0.68 0.67
DSC(PET-AS vs PET/CT) 0.92 0.72 0.85 0.84 0.87 0.86 0.85 0.73 0.72 0.85 0.85

Volume
(mL)

Table 24. Comparison of PET-AS with manual outlines for primary GTVs, in terms of
volume and DSC. The lesion volume given corresponds to the CT/MRI outline.
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Figure 64 shows selected slices with manual CT/MRI and PET/CT, and PET-AS
outlines for different patients. Differences between automatic and manual outlines
were observed in particular in terms of the sup-inf extent of the tumours (cf. Figure 64
a), b) and c)) and around bone tissue (cf. Figure 64 d) and e)) and air cavities (cf. Figure
64 f) and g)). Other differences were due to different soft tissue extent identified in the
transverse plane (cf. Figure 64 h) and i)). Table 25 gives the percentage of slices with
dissimilar outlines (DSC<0.7), for which the differences between manual and PET-AS
outline are due to:

* Different sup-inf extent

* Differences around air cavities or bone tissue

* Other differences in soft tissue extent

Across patients, different sup-inf extent accounted for 10% to 64% of the large
differences (DSC<0.7) observed between CT/MRI and PET-AS outlines, and up to 76%
of the large differences observed between PET/CT and PET-AS outlines. The
differences occurring around bone tissue and air cavities accounted for up to 36% of
the large differences with the CT/MRI outline and up to 46% of the large differences

with the PET/CT outline.

Patient No

Reference % of slices with 1 2 3 4 5 6 7 8 9 10
DSC<0.7

CT/MRI E;{ie;f“t sup-inf 0 o9 34 50 61 60 11 10 64 48

Air/bone . - 57 - - 43 36 25 49 12

Other 50 71 60 50 39 36 53 65 31 40

PET/CT E;{ie;f“t sup-inf o 51 37 . 46 50 27 22 76 33

Air/bone - - 5.3 - - - 46 44 - 13

Other 40 79 58 100 54 50 27 34 24 44

Table 25. Percentage of the dissimilar tumour slices (DSC<0.7) for which the difference
between outlines is due to different sup-inf extent, to the proximity of air or bone
regions, or other differences.
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(transverse) (transverse) (transverse)

Figure 64. Example of outlines obtained for different patients in the transverse and
sagittal directions.

IV. C. 3. b. Lymph nodes

A total of 22 lymph nodes were considered in this study, and are listed in Table
26 for each patient. Differences between the outlining processes were observed in

terms of the total nodal volume. In particular, 2 lymph nodes detected on CT/MRI were
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PET-negative, while 3 additional malignant lymph nodes were detected when PET was
included in the outlining process, one of which was a contralateral lymph node.

The PET-AS nodal volumes were smaller than the CT/MRI volumes for 8 cases,
and the comparison to the PET/CT outlines showed smaller PET-AS volumes in 10
cases. The median geographical overlap [160] with the clinician outlines was 0.65 for

CT/MRI and 0.64 for PET/CT.

Patient 1 2 3 4 5 6 7 8 9 10
LN1 LN1 LN1 LN1 - LN1 LN1 LN1 LN1 -
CT/MRI LN2 LN2 - - - - LN2 LN2 LN2 -
- - - LN3 LN3 - LN3 LN3 LN3 -
- - - LN4 - - - - - -
LN1 LN1 LN1 LN1 LN1 LN1 LN1 - LN1 -
PET/CT and - LN2 - LN2 LN2 - LN2 LN2 LN2 -
PET-AS - - - LN3 LN3 - LN3 LN3 LN3 -
- - - LN4 - - - - - -

Table 26. Lymph nodes outlined for each patient using CT/MRI and with the inclusion of
PET (PET/CT or PET-AS outlines).

IV. C. 4. Discussion and conclusions

The results of this analysis show a high similarity between PET-AS outlines and
PET/CT outlines obtained by manual delineation. The PET-AS outlines were highly
similar (DSC>=0.7) to manual CT/MRI outlines for 4 out of 10 patients. Differences with
manual outlines were observed around air cavities and bone tissue, due to a different
use of the registered CT information. The PET-AS volumes outlined were smaller than
manual outlines in most cases, due to a different extent in the superior-inferior
direction. However, the use of FDG-PET provided additional information to manual
CT/MRI outlines, in particular in terms of superior-inferior extent, soft tissue extent
and lymph node status. This is in line with findings published in the recent literature
[24]. The current study shows the potential of using, within the radiotherapy treatment
planning process, PET-AS methods, which combine FDG-PET information with fast and

reliable delineation of the GTV. Nevertheless, this study does not yet show if notable
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differences between PET-AS and manual outlines would be translated into a
modification of the final contour, used for RT planning. This is the aim of the next study.

The results of this first study were promising, in particular because the
clinicians provided excellent feedback on the quality of the contours generated. Their
confidence in the PET-AS contour, acquired during this retrospective analysis, as well
as the quantitative results obtained led to planning of a second prospective study for

which the PET-AS contours would replace clinician manual PET/CT outlines.

IV. D. Prospective analysis of outlines for ten
oropharyngeal patients

IV.D. 1. Purpose

The results of chapter IV. C have shown that PET-AS contours provided
additional information to manual contours derived by clinicians on PET-CT or CT/MRI
data. However, the patients in the previous study were still planned using manual
PET/CT outlines. The work presented in this section aimed at demonstrating the
feasibility of using PET-AS in replacement of manual PET/CT delineation within RT
planning at Velindre Cancer Centre. In addition, the usefulness of the PET-AS contours
on clinical H&N data was evaluated by determining in detail the impact of the PET-AS

information on the final planning contour of primary and nodal volumes.

IV. D. 2. Methods

Ten oropharyngeal cancer patients were recruited and scanned at VCC
following the protocol described in IV.A. Manual CT/MRI outlines and PET-AS contours
were generated following the same protocol as for the previous study (cf. IV. C.).

In this case however, the final planning GTV contours were drawn by the
clinicians on the basis of the CT/MRI, modified when necessary using the PET-AS

contour, with the help of other relevant clinical information. The final planning GTV
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was named GTVxsna. These contours were then used for planning the RT for each
patient.

A thorough analysis of the GTVs produced in this process was carried out a. The
final planning GTV was compared to both CT/MRI and PET-AS outlines, to identify the
cases in which the PET-AS volume was used for producing the final planning contour.
The overlap between the final and CT/MRI outlines, as well as the overlap between
final and PET-AS outlines were quantified using the DSC (cf. II. A. 1. e). The number of
slices included in each contour was also recorded to identify any growth or reduction of
superior-inferior extent due to the PET-AS.

Furthermore, a slice-by-slice comparison of the outlines provided the following
information:

* Number of voxels in the CT/MRI contour not included in the final contour,

corresponding to a shrinkage of the CT/MRI contour,

* Number of voxels outside the CT/MRI contour included in the final contour,
corresponding to a growth of the CT/MRI contour,

e Number of voxels in the PET-AS contour not included in the final contour,
corresponding to areas where the additional PET-AS information was
ignored,

e Number of voxels outside the PET-AS contour included in the final contour,
corresponding to areas where the additional PET-AS information was
ignored,

For each slice for which a modification (growth or shrinkage) of the CT/MRI
contour was found, visual examination was used to determine if the modification was
due to the inclusion of the PET-AS data, or to other clinical considerations. For each
slice on which additional information brought by the PET-AS was ignored, the reason
(i.e. spill-out in bone region, in or around air cavities, or different soft tissue extent)

was assessed visually.
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IV. D. 3. Results

IV. D. 3. a. Primary volumes

Table 27 provides, for each patient, the volumes of the primary outlines and the
DSC quantifying the conformity of the final volume to CT/MRI and PET-AS volumes, as
well as PET-AS to CT/MRI volumes. The PET-AS volumes were smaller than the
CT/MRI volumes for all patients, with absolute differences ranging from 3.1% to 61%
of the GTVpcr/mri. The final contour was larger than both CT/MRI and PET-AS contours
for 7 out of 10 patients, with differences of up to 16.5% of the CT/MRI volume. In the
three remaining cases, the final volume was intermediate between the CT/MRI and
PET-AS volumes for patient No 11, closer to the CT/MRI for patient No 12 and closer to
the PET-AS volumes for patient No 16. PET-AS contours showed very good agreement
with CT/MRI contours (DSC>0.70) for 7 out of 10 patients. Low agreement for patients

No 13, 15 and 20 was due to a much smaller volume outlined on PET-AS.

Patient No 11 12 13 14 15 16 17 18 19 20 Median

Volume Final 33.1 459 215 36.6 27.5 54.7 33.1 19.0 33.1 17.4 -
(mL) CT/MRI 27.1 47.5 19.8 32.3 269 60.8 285 16.6 30.1 156 -
PET-AS 273 419 7.8 245 15.6 525 29.0 16.1 23.3 8.6 -
DSC(final vs CT/MRI) 0.90 0.92 0.96 0.91 0.99 0.84 0.91 0.85 0.96 0.94 0.92
DSC(final vs PET-AS) 0.78 0.79 0.53 0.81 0.68 0.97 0.84 0.92 0.83 0.58 0.80

DSC (PET-ASvs CT/MRI) 0.77 0.76 0.43 0.73 0.67 0.82 0.74 0.73 0.76 0.51 0.74

Table 27. Comparison of PET-AS with manual outlines for primary GTVs in terms of
volume and DSC. The lesion volume given corresponds to the CT/MRI outline.

Table 28 provides the results of the slice-by-slice analysis, describing for each
clinical case the changes made to the CT/MRI on the basis of the PET-AS to make the
final contour. The top row of the table shows that the whole PET-AS volume was
included in the final GTV in 4 cases, and more than 83% was included for all patients.
The second row provides the proportion of the final GTV volume that was modified
using the PET-AS contour, which ranges from 0.4% to 33.3% across patients. The

changes made to the CT/MRI contours included superior-inferior growth of up to 15
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mm for six patients, and a reduction in superior-inferior extent for one patient. For six
patients, additional differences in superior-inferior extent did not lead to any
modification of the CT/MRI volume. The CT/MRI volume was grown locally based on
the PET-AS information for all patients, with up to 11.6 mL added to make the final
volume. This accounts for the fact that the final contour was often derived as the union
of the CT/MRI and PET-AS volumes. This was the case for patients No 11, 13, 14, 17, 18,
and 19, for which all CT/MRI and PET-AS information was included on most slices, as
can be seen with the examples of patients No. 11 and 17 in Figure 65 a) and b)
respectively. However, in some specific slices for these patients, the final contour
differed from the union. This was the case for example on some slices for patient No 11,
when some bone tissue was included in the PET-AS contour (cf. Figure 65 c)). This is
also quantified in row 9 of Table 28. A compromise between CT/MRI and PET
information was sometimes derived when the contour was modified on the basis of the
PET-AS information, but following the edge of anatomical structures seen on CT or MR,
as shown for patients No 15 and 12 on Figure 65 d) and e) respectively.

A non-negligible amount of information provided by the PET-AS contour was
not considered in drawing the final volume (cf. row 7 of Table 28). This includes both
areas where the PET-AS was smaller than the CT/MRI contour, and areas where it was
larger, which explains that differences can be larger than 100%. For patient No 13 and
No 20, these large differences are due to the fact that the PET-AS was 61% and 44%
smaller respectively than the CT/MRI outline, but the final contour was not reduced
based on the PET-AS, as can be seen on Figure 65 f) and g) respectively. For patient No
12, the PET-AS included large areas (8.4 mL in total) around air cavities, as shown on
Figure 65 h), which were not always suitable to be included in the planning volume. In
some cases, additional clinical information led to inclusion or exclusion of the PET-AS
information. For patient No 17, the PET-AS contour included tumour extension in the

soft palate, which was not shown clinically. The CT/MRI contour was not extended
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superiorily following the PET-AS in that case. Similarly for patient No 13, clinical
examination had shown abnormal mucosal extent, which is not visible on PET data. The
volume was therefore not shrunk on the basis of the smaller PET-AS volume. A similar
situation was encountered for patient No 20, for which the inferior extent of the PET-
AS was much smaller, but this was ignored in the final contour. For patient No 18, the
clinical report confirmed extension of the tumour to the midline, which was observed
on the CT data but not on the MRI scan. The contour was extended to the midline on
some slices following the PET-AS contour, which agreed with the CT data, confirmed by
the clinical finding, as shown on Figure 65 i) and j) for patients No 14 and 20

respectively.

Patient No
11 12 13 14 15 16 17 18 19 20

% PET-AS included in
GTVfinal 99.6 832 100 100 94.0 99.1 918 100 100 88.0
% of change in GTVfipa due
to PET-AS information 09 163 77 08 25 333 08 282 04 108

Superior-inferior Grown 8 15 - 4 3 6 - - - 8
extent (mm) Shrunk . ) ) ) ) . ) 4 ) )
Transverse using Grown 7.4 15 19 58 13 116 57 45 29 12
PET-AS (mL) Shrunk - - - 05 01 246 06 11 - -
% PET-AS not considered
in GTVfinal 13.7 433 1006 458 89.0 53 350 184 424 126.1
Superior-inferior extent
(mm) 4 - 38 - 3 - 4 - 4 11
Bone regions (mL) 0.14 - - - - - - - - -
Air cavities or vicinity (mL) - 1.0 - - 1.7 09 1.3 - - 1.9
Transverse soft tissue
extent (mL) 67 71 89 138 254 17 93 34 115 138

Table 28. Quantification of the use of PET-AS data in the outlining process given as a
percentage of the final planning GTV volume.
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Legend CT/MRI:—— PET-AS: Final:

a) b) C)
.

Patient 11 Patient 17 Patient 11

(transverse) (transverse) (transverse)
d). | u |

Patient 15 Patient 12 Patient 13

(transverse) (transverse) (transverse)
h). | .
Patient 20 Patient 12 Patient 14
(sagittal) (sagittal) (transverse)

Figure 65. Examples of transverse slices showing the use of PET-AS contour in deriving
the final volume from the CT/MRI volume. The GTViinal is overlayed on the GTVcr/mgri,
which is itself overlayed on the GTVpgr-as.

IV. D. 3. b. Lymph nodes

The PET-AS outlines were generated for all patients, but were not used for
deriving the final volumes. This was due to the very high similarity between the GTVn
volumes for CT/MRI and PET-AS in some cases, such as for patient No 20, as shown on
Figure 66 a). However, in 4 out of 10 patients, the PET-AS lymph node volumes

included large parts of adjacent blood vessels, and were therefore not considered in
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deriving the final volume. This is shown for patients No 11 and 17, on Figure 66 b) and
c) respectively. Two lymph nodes for patient No 20, which were not identified as
malignant on CT/MRI information, were outlined by the PET-AS method and included

in the treatment.

Legend: —— CT/MRI PET-AS

| b) C)
] 1.

Patient 20 Patient 11 Patient 17

Figure 66. Transverse slice of CT/MRI and PET-AS outlines of lymph nodes for a) patient
No 20, b) patient No 11 and c) patient No 17.

IV. D. 4. Discussion and conclusions

This work follows a retrospective study during which the clinicians Velindre
Cancer Centre familiarised with the PET-AS methods and workflow. The retrospective
study discussed in the previous section was very important in growing the team’s
confidence in using a PET-AS method for routine clinical practice. In this prospective
study, a complete workflow was evaluated including patient recruitment, scanning,
reporting, outlining and planning for the RT management of H&N oropharyngeal cancer
patients. This included quality testing of the different steps in the workflow, training of
the radiographers for acquiring planning PET/CT images of the H&N, including
contrast CT, which had not been used at Velindre Cancer Centre previously in
combination with FDG-PET. Most importantly, manual PET-CT contours were not
needed in this study, which allowed reducing the clinicians workload by about a third
for one GTV, leaving to them only the manual CT/MRI and final contours to outline.

This represents an important change in clinical practice, and the positive results of this
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work show that the inclusion of PET-AS into the RT planning process at Velindre
Cancer Centre was achieved for oropharyngeal primary tumours.

The results of this study highlight the similarity between PET-AS outlines and
CT/MRI outlines obtained by manual delineation. In all cases, some additional
information provided by the PET-AS contours contributed to the delineation of the final
target volume. This positive result shows the confidence of the clinicians in using the
PET-AS volumes clinically. The role of the clinicians remained of course paramount in
making the final decision of including or excluding the PET-AS information. In
particular, the analysis highlighted some limitations of the PET data, such as the
absence of signal in abnormal mucosa (for patient No 13) and signal spill-out in air
cavities or bone tissue (cf. Figure 65 and Table 28).

The decision of including the PET information or not highly depends on the
clinician’s judgment and expertise, and on the availability of additional clinical data,
such as endoscopy or other clinical examinations. It is important to note that even
when the PET-AS contours did not significantly differ from the CT/MRI contours, they
were still very useful in reassuring the clinician that no additional malignant regions
were missed. In addition, in cases for which conflicting or inconclusive data from CT
and MRI were available (e.g. due to different patient positioning or poor image
registration), the PET-AS data was useful in guiding the clinician and confirming the
findings of one or the other imaging modality.

As far as lymph nodes are concerned, the PET-AS did not provide information
that would change the planning process. This is because lymph nodes are often well
defined on CT data, particularly if contrast is added to the imaging like it was in this
study. The contrast agent allows a better visualisation of blood vessels, which are not
well discriminated in the PET scan. However, this work has shown that the PET
information provided by PET-AS delineation can play a crucial role in the detection of

malignant lymph node, with potential consequences on patient management (cf. IV. C).
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The results of this study have shown that including in the RT planning process
FDG-PET information provided by PET-AS outlines can lead to significant changes to
the final planning volume. A fully automatic outlining process was used within a simple
workflow to provide PET-AS contours to the clinicians. The PET-AS is a very rapid
process, lasting no more than 1 minute for a single outline. Therefore the time required
for the patient GTV outlining was reduced by about a third compared to a process
requiring both CT/MRI and PET/CT manual delineation. This represents a major
advantage beyond the use of manual PET information in the RT planning process. As
well as a reduction in time, other advantage of PET-AS compared to manual PET
delineation are its low inter-observer variability, and reproducibility. The use of PET-
AS could prove extremely useful for treatment involving dose escalation or volume

boosting and this will be further investigated at Velindre Cancer Centre.
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Chapter V. Discussion and
conclusions

V. A. Future work

Throughout this work, a range of advanced PET-AS methods were evaluated
and compared, and the knowledge acquired during the project was used to develop an
optimal segmentation process for routine clinical practice at Velindre Cancer Centre. To
achieve this goal, several novel phantom techniques were also developed and
evaluated, and additional work was carried out to implement a new PET simulator tool.

The literature review carried out at the start of the project (cf. I. E) revealed a
great variability of the segmentation and validation approaches published to date. This
was also observed by expert panels such as the IAEA [43], and the American
Association of Physicists in Medicine (AAPM), which appointed the Task Group 211
(TG211) on “Classification, Advantages and Limitations of PET segmentation
methods”2. TG211 issued a first report highlighting the need for a benchmark tool
allowing standardised evaluation of PET segmentation methods on a wide range of
clinically relevant data [161]. Due to the relevance of such work in the context of
POSITIVE, a close collaboration was started with TG211 in 2012 for the development of
the benchmark tool, which was named PET-AS suite of evaluation tools (PETASset).
The group in Cardiff University led data processing and software development of the
PETASset code, which is currently maintained there. The tool is described in a
publication currently under review by the AAPM committee, and was presented to the
wider community at several occasions ([157], [162]).

The PET-AS methods used throughout this project were inspired by published

work, but were developed in house with custom implementation, as fully automatic

2 http://aapm.org/org/structure/default.asp?committee_code=TG211
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algorithms. These were first tested and optimised with the data from the NEMA IEC
body phantom used in II. A. 2. b and III. A. 3. To make the optimisation as general and
robust as possible, it was carried out using a clinically relevant range of target images
with four different techniques:

* NEMA IEC spherical inserts (cf. II. A. 3)

* Raydose thin-wall spherical and non-spherical inserts (cf. 1. B)

* Printed subresolution sandwich phantom irregular and heterogeneous

tumours (cf. I1L. A. 2)

* PETSTEP simulated irregular and heterogeneous tumours (cf. I1l. B)

The use of non-spherical and heterogeneous tumours highlighted strengths and
weaknesses of some PET-AS methods, which had not yet been previously identified
when using spherical target objects. For example, a lack of sensitivity of RG was
observed, as well as large errors of GC and other gradient-based methods for thin-end
objects (cf. II. B. 2). The results also demonstrated that binary methods are not
adequate for highly heterogeneous tumours (cf. III. A. 3). This shows the drawback of
using basic phantoms to develop PET-AS algorithms. However, some other PET-AS
methods, such as AT, RG or GCM, which were also included in ATLAAS (cf. III. B),
showed robustness to the different target object types, and performed well on all
datasets. This shows that the optimisation using spherical inserts did not hamper these
algorithms’ usefulness. The robustness of the PET-AS methods was investigated using
data from Velindre Cancer Centre only. Testing the PET-AS methods with data from
other centres would represent an important step in the validation of the segmentation
processes, in particular in future developments of ATLAAS, and for participating in
large multi-centre trials.

It is important to note, as shown in II. A. 3, that the choice of the initial VOI does
have an impact on the final segmentation result, which represents the only operator

input in the segmentation process implemented throughout this work. It is not fully
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clear how much of an impact the operator input has on the performance of the PET
segmentation process. Some studies have shown that higher levels of interactivity lead
to higher accuracy [161], but any operator input increases the dependence on human
judgement, and generates inter-observer variability. This variability can be minimised
by using a protocol for selecting the initial VOI, for example with a set window-level.
However, clinician judgment will still have a large impact on the structures to include
in the initialisation VOI, and should not be ignored. The role of the clinician extends far
beyond the PET-based delineation, and the PET-AS contour should always be checked
and edited if needed before being used for planning.

Throughout this PhD work, a number of tools were developed for the
generation of realistic PET phantom images. The Raydose phantom inserts,
manufactured with a vacuum-moulding technique developed at VCC played a key part
in the assessment of the effect of cold walls on PET imaging, which is of crucial
importance in the field of nuclear medicine imaging. Work carried out throughout this
PhD project has contributed to the knowledge of the field by exposing the limitation of
commonly used phantoms (cf. II. B. 1). Using the vacuum-moulding technique, non-
spherical inserts were also produced, and further used to identify strengths and
weaknesses of the PET-AS approaches implemented during the course of this project
(cf. II. B. 2). The printed subresolution sandwich phantom developed within this PhD
work (cf. III. A. 1) and the PET simulator PETSTEP, which was implemented and tested
during this PhD work [157], proved extremely useful tools for the production of
heterogeneous PET uptake. This is currently a hot topic in the field of PET imaging. The
PETSTEP tool is under continuous development at the memorial Sloane Kettering
Cancer Centre in New York (USA), and it is expected to become a useful tool for the
scientific community. PETSTEP was implemented in the PETASset framework and it
will be publicly distributed together with the CERR software. The subresolution

sandwich printed phantom was shown to be very useful in validating PET-AS methods.
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More work is needed to ensure that the technique can also be used in quantitative
imaging (cf. III. A. 1). Current work is in progress (HiRis-NM: 3-D Printed sources for
High-Resolution Molecular Imaging, Velindre grant number SGS/13/01) to eliminate
the use of 2 mm PMMA sheets and print 3D activity volumes.

The use of non-spherical, heterogeneous and irregular lesion models was
extremely useful in identifying the benefits of different segmentation approaches in a
range of clinically relevant situations for H&N cancer. In particular, this work
demonstrated that no PET-AS method was systematically the most accurate among
those tested, but showed that different approaches performed best in a specific set of
conditions (cf. II. B. 2, IIl. A. 2 and III. A. 3). Following these observations, it was
concluded on the need to combine these methods to achieve optimal segmentation. An
Advanced decision Tree-based Learning Algorithm for Automatic Segmentation
(ATLAAS) was therefore proposed. ATLAAS is an optimised predictive model for
automated PET image segmentation based on the statistical approach of Decision Tree
Learning. The model showed high accuracy across a range of test images including the
phantom and simulated data generated in this work (cf. IIl. B). The model achieved the
near-optimal segmentation accuracy targeted and returned values within the best DSC
achievable in 77% of the cases for the different phantom datasets.

The results of the clinical study were highly encouraging, as they showed good
conformity between the PET-AS contours and the clinicians’ contours. Since ATLAAS
was still under development at the time of patient RT planning, the contours were
generated with a simplified version of the model described in III. B, only using two PET-
AS methods (cf. IV. B). The current version of ATLAAS, which is in continuous
development, includes 14 PET-AS methods, to be trained on data from an updated
version of PETSTEP, with the addition of metrics describing the tumour geometry.
Future work will also aim to improve the segmentation by adding more complex

information extracted from registered anatomical imaging, such as CT or MRI data. This
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could be particularly helpful in the case of lymph nodes (cf. IV. D) for which contrast
enhanced CT-based information could discriminate between nodal tissue and blood
vessels.

As a pilot project, POSITIVE was key in validating the segmentation workflow
described in IV. A. The use of PET-AS algorithms was embedded in the clinical
environment and no issues were reported. The current workflow relies on three
different software platforms, and on expertise with Matlab/CERR, VelocityAl and
ProSoma. Work is in progress to modify the current workflow and to have a single
clinician operating all segmentation tasks on one single platform. This will involve
building a standalone package including ATLAAS and the initialisation tools described
inIV.A4.

The clinical use of PET-AS contours provided by the optimised segmentation
workflow was found beneficial for the planning of oropharyngeal cancer patients at
Velindre Cancer Centre (cf. IV. C). In the final prospective study, the PET information
previously provided via manual PET/CT-based delineation was provided only via the
PET-AS process, which reduced the delineation time for the clinicians involved in the
planning by about a third. The additional information brought by the PET-AS contours
was largely used to grow or shrink the CT/MRI-based GTV to derive the final volume.
Future work should aim to further validate the segmentation process, further
underpinning the application of the optimised PET-AS methods and clinical workflows
to other tracers, and other malignancies. This is expected to improve the ability of the
clinical team to provide patients with state-of-the-art treatments and to lead future
research and clinical trials in the field.

In this work the accuracy and reliability of the optimised PET-AS method for
delineating H&N tumours was extensively validated. An increasing number of
publications currently focus on using such outlines for identifying specific regions

within the tumour, rather than the whole tumour extent [58]-[60]. The study described
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in III. A. 3 showed that binary approaches tend to delineate the high intensity areas in
highly heterogeneous lesions. This type of method could be used to determine a volume
to be boosted in dose escalation studies. In this case, additional work would be
required to evaluate the required sensitivity for the PET-AS methods involved in the
segmentation process. Additionally, application of PET-AS segmentation algorithms or
a predictive model such as ATLAAS, could be tested and validated with different tracers
more specific than FDG to cell radioresistance, such as 18F -MISO, or to tumour hypoxia,

such as 18F -FAZA.

V. B. Final remarks

This project aimed at investigating PET automatic segmentation (PET-AS)
approaches and providing an optimised method for use in H&N RT planning at Velindre
Cancer Centre. For this purpose, the following results were achieved:

* Validation, optimisation, and comparison of a selection of eight advanced
PET-AS approaches using a total of 204 phantom images, including 144
fillable inserts and 60 printed H&N lesions. Adaptive iterative thresholding
(AT) and region-growing (RG) showed high accuracy in most cases, with
Dice Similarity Coefficient values higher than 0.7. The Gaussian mixture
models-based clustering method GCM proved the most robust clustering
PET-AS method to target object characteristics,

* Demonstration of the fact that PET-AS accuracy increases with object size,
tumour to background ratio, and decreases with noise level, object
geometry complexity and heterogeneity. The lack of sensitivity of the region
growing method was highlighted for thin geometrical shapes, as well as the
difficulties encountered by gradient-based methods for delineating complex
geometries. The accuracy of clustering methods and of the adaptive

iterative thresholding method varied the least with these image parameters,
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* Development of ATLAAS, an Advanced decision Tree-based Learning
Algorithm for Automatic Segmentation which uses a limited set of PET-AS
approaches to provide contours of accuracy within 10% of the best
achievable Dice Similarity Coefficient in 89% and 77% cases for simulated
and phantom data respectively,

* Developement and application to 10 oropharyngeal cancer patients of a
protocol and a workflow for the use of PET-AS in H&N RT planning, which is
being considered for implementation as standard clinical practice in
Velindre Cancer Centre.

Additional achievements included:

* Use of custom-made vacuum-moulding inserts to show that the presence of
inactive plastic walls in fillable phantoms can decrease the image activity
recovery by 25% and lead to significantly different segmentation results
from PET-AS methods [131]. As a consequence, more advanced phantom
techniques were used in the rest of this work,

* Demonstration of the fact that using non-spherical thin-wall inserts to
evaluate PET-AS methods can highlight strengths and weaknesses of these
methods not seen previously [137],

* Development and validation of a printed subresolution sandwich phantom,
which enabled modelling a custom FDG uptake map of the H&N including
13 anatomical structures, to which irregular and heterogeneous lesion
uptakes could be added with known ground truth,

* Development and validation of ATLAAS, a model for optimal segmentation
that could potentially be applied to any tumour site and used at any
institution,

* Demonstration of the use of PET-AS in addition to CT and MRI outlining

within a clinical protocol for RT planning of oropharyngeal cancer patients
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can lead to (a) growth or reduction of the initial GTV and to the
identification of additional involved lymph nodes, while reducing the

workflow and bringing the contouring time down by about a third.

This project has contributed to the knowledge and understanding of the PET-AS
process in the field of nuclear medicine, in particular within the institutions involved.
The work presented in this thesis has paved the way for an increased use of PET-AS in

clinical practice at Velindre Cancer Centre.
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Glossary

AAPM: American Association of Physicists in Medicine

AC: Active Contouring segmentation method

AD: Apparent Diameter

AR: Aspect ratio: ratio between the largest diameter and smallest

perpendicular diameter

AT: Automatic Thresholding segmentation method

ATLAAS: Advanced decision Tree-based Learning Algorithm for Automatic
Segmentation

ANN: Artificial Neural Networks

BTV: Biological Tumour Volume

CECT: Contrast Enhanced Computed Tomography

CERR: open source software: Computational Environment for Radiotherapy

Research

CT: Computed Tomography

COV: Coefficient Of Variation

CRT: Concomitant Radio-Chemotherapy

CTV: Clinical Treatment Volume

EGFR: Epidermal Growth Factor Receptor

FCM: Fuzzy Clustering Method

FDG: 2-deoxy-2-[18F]Fluoro-D-Glucose

FLAB: Fuzzy Locally Adaptive Bayesian segmentation method

FN: False Negatives

FP: False Positives

GC: gradient-based contouring method

GCM: Gaussian mixture models clustering method

GSO: Gadolinium orthosilicate

GTV: Gross Target Volume

GUL: Graphical User Interface

HMPAO: Technetium (99mTc) exametazime or Hexamethylpropyleneamine,
radiotracer used for brain perfusion SPECT imaging

H&N: Head And Neck

HU: Hounsfield Unit

[AEA: International Atomic Energy Agency

IEC: International Electrotechnical Commission

IC: Induction Chemotherapy

IGRT: Image Guided Radiotherapy Treatment

IMRT: Intensity Modulated Radiotherapy Treatment

KM: K-nearest neighbour clustering Method

LSO: Lutetium Orthosilicate

ML OSEM: Maximum Likelihood Ordered Subset Estimation Maximisation

MRI: Magnetic Resonance Imaging

NEMA: National Electrical Manufacturers Association

NHS: National Health Services

OAR: Organ At Risk

PACS: Pictures Archiving and Communications System

PET: Positron Emission Tomography

PET-AS: PET Auto-Segmentation method

PETIC: Wales research and diagnostic PET Imaging Centre
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PETSTEP:

PMMA:
PMT:
PSF:
PTV:
RC:
RG:
ROLI:
RT:
RTP:
SCC:
SD:
SPECT:
SS:
STAPLE:
SUV:
TBR:
TG211:
TLC:
TNM:
TOF:
TP:
UK:
VCC:
VOI:
WT:

3D:
2D:

Positron Emission Tomography Simulator of Tracers via Emission
Projection

Polymethyl Methacrylate

Photomultiplier Tube

Point Spread Function

Planning Target Volume

Recovery Coefficient

Region-Growing Method

Region Of Interest

Radiotherapy Treatment

Radiotherapy Treatment Planning

Squamous Cell Carcinoma

Standard Deviation

Single Photon Emission Computed Tomography
Sub-resolution Sandwich (phantom)

Simultaneous Truth And Performance Level Estimation
Standardised Uptake Value

Tumour-to-Background Ratio

Task Group 211

Thin Layer Chromatography

Tumour, Nodes, Metastases (cancer stage classification system)
Time-Of-Flight

True Positives

United Kingdom

Velindre Cancer Centre

Volume Of Interest

Watershed Transform or Watershed Transform-based segmentation

method
Three-dimensional
Two-dimensional
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" 4-8 Apr 2014, European Society for Radiotherapy and Oncology (ESTRO) 33,
Vienna: “Comparison of PET auto-segmentation of GTV with manual PET-CT and
CT/MRI outlining in oropharyngeal cancer patients”, B. Berthon, T. Rackley, C. Marshall,
M. Evans, N. Cole, N. Palaniappan, V. Jayaprakasam E. Spezi

] 6 Jan 2014, Nuclear Medicine Seminars, Bristol Royal Infirmary, "Validation and
comparison of PET auto-segmentation tools for H&N RT planning”, B. Berthon, C.
Marshall, M. Evans, E. Spezi

" 16 Nov 2013, Postgraduate Research Day Cardiff University Heath Park,
“Performance of 18F-FDG automated segmentation methods for non-spherical objects”,
B. Berthon, C. Marshall, M. Evans, A. Edwards, E. Spezi

" 22 Oct 2013, European Association of Nuclear Medicine (EANM) meeting 2013,

Lyon, “Performance of 18F-FDG PET automated segmentation methods for non-
spherical objects”, B. Berthon, C. Marshall, M. Evans, A. Edwards, E. Spezi
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] 22 Oct 2013, EANM 2013, Lyon, “Evaluation of several automatic PET-
segmentation algorithms for radiotherapy treatment planning in H&N using a printed
subresolution sandwich phantom”, B. Berthon, R. B. Holmes, C. Marshall, S.
Jayaprakasam, M. Evans, E. Spezi

= 19 Feb 2013, University College London Hospital, Institute of Nuclear Medicine
Seminar, London, “Optimised automatic target volume delineation of 18F-FDG PET
images”, B. Berthon

" "Optimizing PET auto-segmentation for H&N radiotherapy treatment planning”,
presented as part of the IPEM Travel award trip:

o 26 Sept 2013, Velocity Medical Solutions, Atlanta, USA

o 10ct 2014, John Hopkins University, Baltimore, USA

o 4 0ct 2013, Wisconsin Institutes for Medical Reseasch Madison, USA

o 12 0Oct 2013, Memorial Sloane Kettering Cancer Center, New York, USA

] 27-31 Oct 2012, EANM 2012, Milan, “Design of a Benchmark Platform for
Evaluating PET-based Contouring Accuracy in Oncology Applications”, On behalf of the
AAPM TG211

] 27-31 Oct 2012, EANM 2012, Milan, “Comparison of automatic segmentation
methods of 18F-FDG PET images for radiation therapy planning in H&N: a phantom
study”, B. Berthon, C. Marshall, M. Evans, E. Spezi

" 11 Sept 2012, Institute of Physics and Engineering in Medicine, Biennial
Radiotherapy Conference, Oxford, “Influence of cold walls on commonly used PET
volume segmentation algorithms: a phantom study”, B. Berthon, C. Marshall, M. Evans,
E. Spezi

" 15 June 2012, All Wales Medical Physics and Clinical Engineering Meeting,
Cardiff VCC, “ A phantom validation of automatic segmentation methods of 18F-FDG
PET H&N scans”, B. Berthon, C. Marshall, M. Evans, E. Spezi

Posters

" 4-8 Apr 2014, ESTRO 33, Vienna: “Development of a software platform for
evaluating automatic PET segmentation methods: the PETASset ”, On behalf of the
AAPM TG211

" 20-21 Oct 2013, EANM 2013, Lyon, “Implementation and optimisation of
automatic 18F-FDG PET segmentation methods”, B. Berthon, C. Marshall, M. Evans, E.
Spezi

" 6 Nov 2013, Postgraduate Research Day, Cardiff University Heath Park,
“Evaluation of automatic PET segmentation algorithms for radiotherapy treatment
planning in H&N using a printed subresolution sandwich phantom”, B. Berthon, R. B.
Holmes, C. Marshall, E. Spezi

" 23 Sept 2013, International Conference on Medical Physics 2013, Brighton,

“Validating 18F-FDG PET automated segmentation methods for clinical use in H&N”, B.
Berthon, R. B. Holmes, C. Marshall, M. Evans, A. Edwards, E. Spezi
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] 27-31 Oct 2012, EANM 2012, Milan, “Use of a printed subresolution sandwich
phantom for simulation of FDG PET images”, B. Berthon, R. B. Holmes, C. Marshall, E.
Spezi. The Alzheimer’s Disease Neuroimaging Initiative

] 27-31 Oct 2012, EANM 2012, Milan, “Quantitative effect of cold plastic walls on
18F-FDG PET images”, B. Berthon, C. Marshall, A. Edwards, E. Spezi

" 25 Oct 2012, Velindre NHS Trust 6th Annual Research and Development
Conference, Cardiff, “Comparison of automatic segmentation methods of 18F-FDG PET
images for radiation therapy planning in H&N: a research study”, B. Berthon, C.
Marshall, M.Evans, E.Spezi
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