69,873 research outputs found
Median inverse problem and approximating the number of -median inverses of a permutation
We introduce the "Median Inverse Problem" for metric spaces. In particular,
having a permutation in the symmetric group (endowed with the
breakpoint distance), we study the set of all -subsets
for which is a breakpoint median. The set of
all -tuples with this property is called the -median
inverse of . Finding an upper bound for the cardinality of this set, we
provide an asymptotic upper bound for the probability that is a
breakpoint median of permutations chosen
uniformly and independently at random from
Genome reorganization in different cancer types: detection of cancer specific breakpoint regions
Background: Tumorigenesis is a multi-step process which is accompanied by substantial changes in genome organization. The development of these changes is not only a random process, but rather comprise specific DNA regions that are prone to the reorganization process.
Results: We have analyzed previously published SNP arrays from three different cancer types (pancreatic adenocarcinoma, breast cancer and metastatic melanoma) and from non-malignant control samples. We calculated segmental copy number variations as well as breakpoint regions. Some of these regions were not randomly involved in genome reorganization since we detected fifteen of them in at least 20% of all tumor samples and one region on chromosome 9 where 43% of tumors have a breakpoint. Further, the top-15 breakpoint regions show an association to known fragile sites. The relevance of these common breakpoint regions was further confirmed by analyzing SNP arrays from 917 cancer cell lines.
Conclusion: Our analyses suggest that genome reorganization is common in tumorigenesis and that some breakpoint regions can be found across all cancer types, while others exclusively occur in specific entities
Thermal stability of some aircraft turbine fuels derived from oil shale and coal
Thermal stability breakpoint temperatures are shown for 32 jet fuels prepared from oil shale and coal syncrudes by various degrees of hydrogenation. Low severity hydrotreated shale oils, with nitrogen contents of 0.1 to 0.24 weight percent, had breakpoint temperatures in the 477 to 505 K (400 to 450 F) range. Higher severity treatment, lowering nitrogen levels to 0.008 to 0.017 weight percent, resulted in breakpoint temperatures in the 505 to 533 K (450 to 500 F) range. Coal derived fuels showed generally increasing breakpoint temperatures with increasing weight percent hydrogen, fuels below 13 weight percent hydrogen having breakpoints below 533 K (500 F). Comparisons are shown with similar literature data
Structure of the breakpoint region in CVC of the intrinsic Josephson junctions
A fine structure of the breakpoint region in the current-voltage
characteristics of the coupled intrinsic Josephson junctions in the layered
superconductors is found. We establish a correspondence between the features in
the current-voltage characteristics and the character of the charge
oscillations in superconducting layers in the stack and explain the origin of
the breakpoint region structure.Comment: 5 pages, 5 figures. Accepted for Phys.Rev.
Experimental observation of the longitudinal plasma excitation in intrinsic Josephson junctions
We have investigated the current-voltage characteristics (IVCs) of intrinsic
Josephson junctions (IJJs). Recently, it is predicted that the longitudinal
plasma wave can be excited by the parametric resonance in IJJs. Such an
excitation induces a singularity called as breakpoint region around switch back
region in the IVC. We have succeeded in the observation of the breakpoint
region in the IVC of the mesa with 5 IJJs at 4.2 K. Furthermore, it is found
that the temperature dependence of the breakpoint current is in agreement with
the theoretical prediction. This suggests that the wave number of the excited
plasma wave varies with temperature.Comment: 7 pages, 7 figures. Dubna-Nano2008, Accepted for JPCS
Statistics of Solar Wind Electron Breakpoint Energies Using Machine Learning Techniques
Solar wind electron velocity distributions at 1 au consist of a thermal
"core" population and two suprathermal populations: "halo" and "strahl". The
core and halo are quasi-isotropic, whereas the strahl typically travels
radially outwards along the parallel and/or anti-parallel direction with
respect to the interplanetary magnetic field. With Cluster-PEACE data, we
analyse energy and pitch angle distributions and use machine learning
techniques to provide robust classifications of these solar wind populations.
Initially, we use unsupervised algorithms to classify halo and strahl
differential energy flux distributions to allow us to calculate relative number
densities, which are of the same order as previous results. Subsequently, we
apply unsupervised algorithms to phase space density distributions over ten
years to study the variation of halo and strahl breakpoint energies with solar
wind parameters. In our statistical study, we find both halo and strahl
suprathermal breakpoint energies display a significant increase with core
temperature, with the halo exhibiting a more positive correlation than the
strahl. We conclude low energy strahl electrons are scattering into the core at
perpendicular pitch angles. This increases the number of Coulomb collisions and
extends the perpendicular core population to higher energies, resulting in a
larger difference between halo and strahl breakpoint energies at higher core
temperatures. Statistically, the locations of both suprathermal breakpoint
energies decrease with increasing solar wind speed. In the case of halo
breakpoint energy, we observe two distinct profiles above and below 500 km/s.
We relate this to the difference in origin of fast and slow solar wind.Comment: Published in Astronomy & Astrophysics, 11 pages, 10 figure
Study of charge-phase diagrams for coupled system of Josephson junctions
Dynamics of stacked intrinsic Josephson junctions (IJJ) in the high-Tc
superconductors is theoretically investigated. We calculate the current-voltage
characteristics (CVC) of IJJ and study the breakpoint region on the outermost
branch of the CVC for the stacks with 9 IJJ. A method for investigation of the
fine structure in CVC of IJJ based on the recording the "phase-charge" diagrams
is suggested. It is demonstrated that this method reflects the main features of
the breakpoint region.Comment: Dubna-Nano2010 conference : http://theor.jinr.ru/~nano10/ will be
published online in Journal of Physics: Conference serie
- …
