NASA TM X-3551

NASA TECHNICAL MEMORANDUM

NASA TM X-3551

THERMAL STABILITY OF SOME AIRCRAFT TURBINE FUELS DERIVED FROM OIL SHALE AND COAL

Thaine W. Reynolds Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION · WASHINGTON, D. C. · JUNE 1977

1. Report No. NASA TM X-3551	2. Government Access	sion No.	3. Recipient's Catalog	3 No.							
4. Title and Subtitle	L	·	5. Report Date								
THERMAL STABILITY OF SO	ME AIRCRAFT 1	URBINE FUELS	June 1977								
DERIVED FROM OIL SHALE A	AND COAL		6. Performing Organia	zation Code							
7. Author(s)			8. Performing Organiz	ation Report No.							
Thaine W. Reynolds			E-9070								
			10. Work Unit No.								
9. Performing Organization Name and Address			505-04								
Lewis Research Center	. Administration	Γ	11. Contract or Grant	No.							
Claudand Obia 44125	e Auministration										
Cleveland, Onio 44133			13. Type of Report ar	nd Period Covered							
12. Sponsoring Agency Name and Address			Technical Me	emorandum							
National Aeronautics and Space	e Administration		14. Sponsoring Agency	/ Code							
Washington, D.C. 20546											
15. Supplementary Notes		·									
The average stability has almost t	ammanatura ana	channe for 22 ist fu	ald proposed fro	m oil sholo							
Thermal stability breakpoint t	emperatures are	shown for 52 jet fu	eis prepareu iro	tod shole oils							
and coal-syncrudes by various	aegrees of nyar	ogenation. Low set	erity nyurotrea	ted shale ons,							
with nitrogen contents of 0.1 t	o 0.24 weight per	rcent, had breakpor	nt temperatures	in the 477							
to 505 K (400° to 450° F) rang	e. Higher sever	ity treatment, lowe	ring nitrogen le	vers to 0.008							
to 0.017 weight percent, resul	ted in breakpoint	t temperatures in th	ie 505 to 533 K (450° to 500° F)							
range. Coal-derived fuels sho	creasing breakpoin	t temperatures v	with increasing								
weight percent hydrogen, fuels	percent hydrogen h	naving breakpoir	nts below								
533 K (500 ⁰ F). Comparisons	similar literature d	ata.									
•											
17. Key Words (Suggested by Author(s))		18. Distribution Statement									
17. Key Words (Suggested by Author(s)) Jet fuels; Synthetic fuels; Hyd	rogenation;	18. Distribution Statement Unclassified - 1	unlimited								
17. Key Words (Suggested by Author(s)) Jet fuels; Synthetic fuels; Hyd Thermal stability; Oil shale	rogenation;	18. Distribution Statement Unclassified - 1 STAR Category	unlimited								
17. Key Words (Suggested by Author(s)) Jet fuels; Synthetic fuels; Hyd Thermal stability; Oil shale	rogenation;	18. Distribution Statement Unclassified - 1 STAR Category	unlimited 7 28								
17. Key Words (Suggested by Author(s)) Jet fuels; Synthetic fuels; Hyd Thermal stability; Oil shale	rogenation;	18. Distribution Statement Unclassified - 1 STAR Category	unlimited 7 28								
 17. Key Words (Suggested by Author(s)) Jet fuels; Synthetic fuels; Hyd Thermal stability; Oil shale 19. Security Classif. (of this report) 	rogenation; 20. Security Classif. (c	18. Distribution Statement Unclassified - 1 STAR Category of this page)	unlimited 7 28 21. No. of Pages	22. Price*							
 17. Key Words (Suggested by Author(s)) Jet fuels; Synthetic fuels; Hyd Thermal stability; Oil shale 19. Security Classif. (of this report) Unclassified 	20. Security Classif. (c Unclass	 Distribution Statement Unclassified - 1 STAR Category of this page) ified 	unlimited 7 28 21. No. of Pages 32	22. Price* A03							

•

.

* For sale by the National Technical Information Service, Springfield, Virginia 22161

THERMAL STABILITY OF SOME AIRCRAFT TURBINE FUELS DERIVED FROM OIL SHALE AND COAL by Thaine W. Reynolds Lewis Research Center

SUMMARY

Thermal stability breakpoint temperatures are shown for 32 jet fuels prepared from oil-shale and coal-syncrudes by various degrees of hydrogenation. Low severity hydro-treated shale oils, with nitrogen contents of 0.1 to 0.24 weight percent, had breakpoint temperatures in the 477 to 505 K (400° to 450° F) range. Higher severity treatment, lowering nitrogen levels to 0.008 to 0.017 weight percent, resulted in breakpoint temperatures in the 505 to 533 K (450° to 500° F) range.

Coal-derived fuels showed generally increasing breakpoint temperatures with increasing weight percent hydrogen, fuels below 13 weight percent hydrogen having breakpoints below 533 K (500° F).

Comparisons are shown with similar literature data.

INTRODUCTION

This report presents thermal stability breakpoint temperatures data on a series of aircraft turbine type fuels prepared from oil shale and coal syncrudes.

Little information exists in the literature on the general properties and characteristics of fuels derived from synthetic crude oils. The Lewis Research Center of NASA is engaged in a program to study the possible impacts of obtaining and using aircraft turbine type fuels derived from oil shale and coal syncrudes. As part of this program a series of such fuels was prepared from TOSCO, H-Coal and COED syncrudes by the Atlantic-Richfield Company (ARCO) under a contract with NASA (ref. 1). The purpose of this ARCO preparation contract was to determine the processing steps and conditions necessary to meet certain yield and specification requirements for the final product fuels. The ARCO contract was to determine the processing conditions and the product quality at two yields (about 20 and 40 percent) and at two levels of hydrogenation severity for each yield, of TOSCO shale oil and for two levels of hydrogenation severity for the H-Coal and COED coal syncrudes. The yields from the TOSCO syncrude were varied by using hydrocracking to attain the higher yield. The two levels of hydrogenation severity for all three syncrudes were obtained by varying the pressures $(10.3 \times 10^6 \text{ to } 17.2 \times 10^6 \text{ N/m}^2)$, or 1500 to 2500 psi), temperatures (607 to 675 K or 634° to 755° F), and weight hourly space velocities (0.36 to 1.5). Each process stream was further split by distillation to give four distillation ranges. The product specifications that were required to be met were the levels of hydrogen, nitrogen, and sulfur content. All the physical and chemical tests required for aircraft turbine fuels were reported by ARCO for the 32 fuels.

Thermal stability data for such fuels are especially scarce. The evaluation of the thermal stability of a fuel should reveal any tendency of that fuel toward instabilities which could affect its performance in an aircraft fuel system. For example, there could be the tendency toward gum or deposit formation on heated surfaces or the tendency to form particulates which might plug small passageways in the fuel system.

The purpose of the work presented herein was to determine the thermal stability breakpoint temperatures on the fuels prepared by ARCO and to see if any correlations of breakpoint temperatures with fuel properties or processing would be evident. The breakpoint temperature data determined at NASA are compared with the single temperature (260° C) determinations made by ARCO on these same fuels.

The data cover 32 fuels. Sixteen of these fuels were from a TOSCO shale oil syncrude, 8 from an H-Coal syncrude, and 8 from a COED (coal-derived) syncrude. The breakpoint temperature range investigated was 477 to 589 K (400° to 600° F).

EXPERIMENTAL PROCEDURE

Apparatus

The thermal stability data were obtained using the Alcor jet fuel thermal oxidation tester (JFTOT) apparatus and procedure which are described in detail in ASTM D 3241 (ref. 2). A cross-sectional sketch of the test section is shown in figure 1.

Filtered, aerated fuel flows upward through an annulus formed between an outer housing and an inner heated tube and then out through a test filter. The aluminum heater tube is heated electrically. Figure 2 shows a typical longitudinal temperature profile which was obtained by a traversing thermocouple located inside the heater tube. The maximum temperature, at a position index of 39 (39 mm from the fuel inlet position), is the temperature recorded as the JFTOT temperature. Some measurements and calculated values of flow velocity and residence time relating to the test section are also noted in figure 1. At the design flow rate of 3 cubic centimeters per minute the flow velocity through the annulus is about 0.5 centimeter per second and the residence time in the annulus is approximately 12 seconds.

The fuel is pressurized with nitrogen (N_2) to 3.4×10⁶ newtons per square meter (500 psig) to prevent fuel vaporization at the test temperature (ref. 3). The test lasts for $2\frac{1}{2}$ hours and requires at least 450 cubic centimeters of fuel for a test run.

Two types of fuel instabilities that may affect performance of a jet fuel in an aircraft fuel system are expected to be in evidence in this type of test. First, the tendency to form gum or deposits on heat exchanger tubes or other heated surfaces would show up as deposits on the test heater surface; second, the tendency of the fuel to form particulates which might clog fuel orifices or filters would show up as an increasing pressure drop with time across the test filter.

The test filter pressure drop is recorded during the test procedure. The heater tube deposit is checked at the end of the run. The tube deposit can be rated visually (by comparison with a color standard) and given a numerical rating of 0 (clean tube) to 4 (heavy deposit) or it can be rated with an Alcor Mark 8A tube deposit rater (TDR). All the tube deposits cited in this report have been made with the TDR.

The TDR is a light reflectance measurement device in which the heater tube can be spun on its axis to give an average circumferential reading. While the tube is being spun, it can be scanned axially. The TDR scale is so calibrated that a zero reading indicates a clean tube and a 50 reading (the maximum) indicates a very heavy deposit.

For the results reported herein, it has arbitrarily been assumed that a maximum TDR spun rating of 13 or below is a pass condition for the test. Some rationale for using this value can be noted from figure 3 (ref. 4), which indicates that a TDR spun rating of 13 would have received a visual pass rating of 2 or less on all the tests used for this particular comparison. Since the value of 13 is also in agreement with the pass value used by Exxon Research and Engineering (ref. 5), the results of both sets of experiments are more readily comparable.

The standard procedure in ASTM D 3241 calls for a test at 533 K (500° F). If the fuel does not pass the stability criteria at this temperature, a second test at 519 K (475° F) is made, and the results at both temperatures are reported. In the tests herein it was attempted to select test temperatures that would bracket the spun TDR value of 13 and to label the temperature at which a maximum value of 13 was indicated as the ''break point temperature''. Where the break point temperature was indicated to be above the highest temperature used, it was simply labelled ''above T''. No runs were made above 589 K (600° F).

Fuels

The fuels used in this study were prepared under a contract study by Atlantic Richfield Company (ARCO). The details of preparation and properties of the finished samples are reported in reference 1. The preparations are now described briefly.

The flow system schematics of figures 4(a) to (c) show the principal details of the processing that was carried out on the three syncrudes. It can be noted in figure 4(a) that the low yield TOSCO samples were obtained by hydrotreating only the 361 to 616 K $(190^{\circ} \text{ to } 650^{\circ} \text{ F})$ cut from the crude. The high yield samples, however, also contain material from the 616 to 783 K (650° to 950° F) cut of the crude which has been hydrocracked. The H-Coal samples (fig. 4(b)) received only a single stage hydrotreatment but at more severe conditions than the comparable range for TOSCO processing. The COED samples (fig. 4(c)) contain hydrotreated IBP to 561 K (IBP to 550° F) crude material and hydrocracked 561 to 700 K (550° to 800° F) crude products, similar to the high-yield TOSCO samples.

Each of the streams labelled "Final sample blends" in figure 4 actually consisted of two separate hydrotreatment severity runs. And, each of these separate run streams was fractionated into the group of four different boiling range final products.

The properties of the final sample blends as determined by ARCO (ref. 6) are shown in table I. It should be emphasized that the objective in processing these fuels was not to produce finished fuels that would necessarily meet all aircraft turbine fuel specifications. Rather, the objective was to meet (1) the yield, (2) the processing severity to meet the H, N, and S levels, and (3) the boiling point range conditions. The full range of aircraft turbine fuel specification tests was then carried out on these blends.

A recently completed similar study by Exxon Research and Engineering (ref. 5) produced a series of aircraft turbine fuels of the JP-4 and Jet A type from five syncrudes: Paraho, TOSCO, and Garrett shale syncrudes and H-Coal and Synthoil coal syncrudes. In this study, also, the effect of varying the severity of processing on the final product properties was investigated. The flow system schematics of figures 5(a) to (3) show the principal details of the processing that was carried out on these five syncrudes. The thermal stability data (JFTOT) obtained by Exxon on these fuels and included in reference 5 will be used in some of the later comparisons of results.

RESULTS AND DISCUSSION

The spun TDR values measured on the 32 ARCO samples are shown in figure 6. The ARCO fuel sample designations are used on the figures for identification. Scans were

made from tube position index values of 20 through 54 (see fig. 2).

The TOSCO shale sample TDR values show a general symmetry around the maximum axial temperature location (position index, 39) as do the low-severity H-Coal spun TDR values. The high-severity H-Coal TDR values are comparatively more random; however, they are also all fairly low (max. value shown is \leq 7.0). Most of the COED sample TDR values show no axial symmetry either. No significance is attached to this observation at the present time, it is simply noted.

The maximum values of spun TDR are plotted against test temperature in figure 7. In most cases no pressure drop buildup across the test filter was observed during the $2\frac{1}{2}$ -hour runs. In those few cases where filter ΔP buildup did occur, the data are shown in figure 8. In only one case, with fuel number 33430, did the fuel fail to pass the ΔP test while still not showing much tube deposit.

The breakpoint temperatures, defined as the temperatures at which a maximum spun TDR value of 13 is expected, were determined from the plots of figure 7 (where maximum spun TDR was the criterion), or they were estimated from figure 8 where ΔP was the criterion (i.e., where ΔP exceeds 25 mm Hg before the end of the test).

These breakpoint temperature data are summarized in table II along with some of the fuel properties for which comparisons are subsequently made. Also shown in this table are the visual tube ratings taken by ARCO of JFTOT tests on these same materials at 533 K (500° F). A similar table made from the Exxon data (ref. 5) is presented herein as table III for comparison purposes.

A comparison of the breakpoint temperature data taken at Lewis with the visual ratings obtained on the same sample materials at ARCO is shown in figure 9. In the visual rating method, a value of less than 3 at a test temperature of 533 K (500° F) is required for a pass condition. It can be seen that for all but four fuels the pass or fail criterion was in agreement by either rating procedure. Three of the four not in agreement were very close, probably within the range of repeatability of the tests. Only one fuel sample seemed to be in marked disagreement, sample 33318. This is a high nitrogen content fuel, and the visual rating reported seems to be out of line with the other samples in the TOSCO low yield - low severity treatment group.

Figure 10 shows the breakpoint temperatures for the shale fuels plotted against weight percent nitrogen. The low-severity treated shale fuels, with nitrogen levels of 0.1 to 0.24 weight percent, had thermal breakpoint temperatures in the 477 to 505 K $(400^{\circ} \text{ to } 450^{\circ} \text{ F})$ range. The higher severity treated fuels, with nitrogen levels of 0.008 to 0.17 weight percent, had breakpoint temperatures in the 505 to 533 K $(450^{\circ} \text{ to } 500^{\circ} \text{ F})$ range. The fuels with nitrogen levels below 0.008 weight percent generally had breakpoint temperatures in excess of 533 K (500° F) . There was little variation in the weight percent hydrogen in the shale fuels, and the sulfur levels were all below 0.0044 weight percent.

The coal-derived fuel samples all have very low nitrogen levels. The ARCO samples were less than or equal to 6 ppm, the Exxon samples were less than or equal to 67 ppm. Figure 11 shows the variation of thermal breakpoint temperature with hydrogen content for the low-nitrogen content fuels. In figure 11(a), which shows the coal fuels only, the samples show an increasing level for the breakpoint temperature with increasing weight percent hydrogen. Except for the synthoil, fuels with the hydrogen content below 13.0 weight percent had breakpoint temperatures below 533 K (500^o F); only two of the coal-derived fuels with $H \ge 13.5$ weight percent had breakpoint temperature below 533 K (500^o F). One of these two was the sample that had the breakpoint temperature determined by the ΔP across the test filter rather than by tube deposit rating. The synthoil-derived fuels have a significantly higher level of breakpoint temperature for the same hydrogen content. Synthoil fuel samples with hydrogen levels of 12 to 12.3 weight percent had breakpoint temperatures equal to or greater than 533 K (500^o F).

Figure 11(b) shows the breakpoint temperature data for the few shale-derived fuels which had nitrogen contents less than or equal to 67 ppm superimposed on the coal fuels plot. Of the five shale fuels that met this low nitrogen criterion, only one (a lowseverity treated fuel) had a breakpoint temperature significantly below the general level of the coal fuel data.

CONCLUDING REMARKS

This report has presented thermal stability breakpoint temperature data, obtained on the ALCOR JFTOT apparatus, for 32 aircraft turbine type fuels prepared from shale and coal syncrudes. These fuels were the result of specifying the yield and severity of hydroprocessing. The final fuel samples represented four different distillation ranges for each processing sequence, nominally 366 to 561 K (200° to 550° F), 366 to 616 K (200° to 650° F), 422 to 561 K (300° to 550° F), and 422 to 616 K (300° to 650° F).

The shale-derived fuels showed a variation in breakpoint temperature with nitrogen content. The higher nitrogen level fuels, 0.1 to 0.24 weight percent nitrogen, had breakpoint temperatures in the 477 to 505 K (400° to 450° F) range. The lower nitrogen level fuels, 0.008 to 0.017 weight percent, had breakpoint temperatures in the 505 to 533 K (450° to 500° F) range. With the shale-derived fuels of nitrogen content less than about 0.008 weight percent nitrogen, there appeared to be no general trend of breakpoint temperature with nitrogen content.

The improved thermal stability with reduced nitrogen content does not prove that nitrogen containing compounds are the sole, or even major, contributors to thermal instability. The increased hydrogenation severity that is required to reduce the nitrogen content should also reduce the concentrations of other unstable species such as oxygen containing organics or olefinic hydrocarbons.

The nitrogen levels of the coal-derived fuels were all fairly low, less than 70 ppm. The breakpoint temperatures of the coal-derived fuels showed generally increasing breakpoint temperature with increasing weight percent hydrogen, although the correlation is not a very strong one. None of the ARCO fuels below 13.0 weight percent hydrogen had breakpoints equal to or greater than 533 K (500° F), and only two of the coal fuels with hydrogen content greater than or equal to 13.5 weight percent hydrogen had breakpoint temperatures below 533 K (500° F). There appears to be a significantly higher level of breakpoint temperature for the Exxon Synthoil derived fuels than for the other coal-derived fuels for the same hydrogen content. The Synthoil fuels with hydrogen levels of 12 to 12.3 weight percent had breakpoint temperatures equal to or greater than 533 K (500° F).

Again, the improved thermal stability with increased hydrogen content is not necessarily the result of hydrogen concentration alone, but more probably it results from the saturation or removal of trace amounts of unstable species by more drastic hydrogenation.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, March 17, 1977, 505-04.

REFERENCES

- 1. Gallagher, J. P.; et al.: Synthesis and Analysis of Jet Fuel from Shale Oil and Coal Syncrudes. (M1.76-1, Atlantic Richfield Co.; NAS 3-19747) NASA CR-135112, 1976.
- Thermal Oxidation Stability of Turbine Fuels (JFTOT Procedure). ASTM D 3241 -74T. 1975 Annual Book of ASTM Standards, 1975, pp. 138-160.
- Bradley, Royce P.; and Martel, Charles R.: Effect of Test Pressure on Fuel Thermal Stability Test Methods. AFAPL - TR-74-81, Air Force Aero-Propulsion Lab. (AD-A012245), 1975.
- 4. Investigation of Techniques for Evaluation Oxidation Stability Deposits of Aviation Turbine Fuels. CRC-475, Coordinating Research Council, 1974.

- 5. Kalfadelis, Charles D.: Evaluation of Methods to Produce Aviation Turbine Fuels from Synthetic Crude Oils Phase 2. AFAPL - TR-75-10-Vol. II, May 1976.
- 6. Antoine, Albert C.; and Gallagher, James P.: Synthesis and Analysis of Jet Fuels from Shale Oil and Coal Syncrudes. NASA TM X-73399, 1976.

TABLE I. - FINAL PRODUCT INSPECTIONS

Data from ref. 1.

(a) Low yield shale products

Property		Low s	everity	1		High se	everity	
				Boiling ran	ge, K (^o F)			
	IBP-616 (IBP-560)	394 to 616 (250 to 650)	394 to 561 (250 to 550)	IBP-561 (IBP-550)	IBP-616 (IBP-650)	394 to 615 (250 to 650)	394 to 561 (250 to 550)	IBP-561 (IBP-550)
				Fuel n	umber			
	33315	33316	33317	33318	33340	33341	33342	33343
Specific gravity	0.8040	0.8170	0.8068	0. 7945	0.7977	0.8081	0.8022	0.7914
Reid vapor pressure, kN/m ² (psi)	1.1 (0.15)			0.34 (0.05)	2.8 (0.40)			1.1 (0.15)
Flash point, K (^o F)	1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	315 (108)	311 (100)			312 (102)	312 (102)	
Freezing point, K (⁰ F)	255 (0)	258 (5)	229 (-47)	225 (-54)	255 (1)	258 (5)	231 (-44)	229 (-47)
Viscosity at 239 K (-30 ^o F), m^2/sec	(a)	(a)	6.781×10 ⁻⁶	4. 736×10 ⁻⁶	(a)	(a)	6.990×10 ⁻⁶	. 059×10 ⁻⁶
Net heat of combustion, J/g	43 836	43 652	44 120	43 631	44 120	43 857	43 190	43 928
Existing gum, mg	16.2	51.4	40.2	32.2	0.8	19.2	8.6	9.0
Smoke point	21	20	21	22	26	26	24	26
Aromatics, percent	21.9	25.9	22.2	19.0	13.7	17.4	17.1	13.5
Olefins, percent	1.1	0.8	1.1	1.0	0.8	1.0	1.2	0.9
Naphthalenes, percent	1.0	1.2	0.5	0.5	0.4	0.4	0.2	0.2
Hydrogen, percent	13.64	13.66	13.68	13.73	13.82	13.86	13.95	13.76
Nitrogen, percent	0.1954	0.2233	0.2011	0.1750	0.0161	0.0168	0.0152	0.0132
Total sulfur, percent	0.0010	0.0044	0.0006	0.0006	0.0009	0.0003	0.0001	0.0002
Mercaptans, percent	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002		
Oxygen, percent	0.03	0.05	0.06	0.04	0.03	0.05	0.09	0.09

^aSolid.

•

TABLE I. - Continued.

(b) High yield shale products

			d among search	00000				
Property		Low Se	everity			High se	verity	
				Boiling ran	ge, K (⁰ F)			
· · · · · · · · · · · · · · · · · · ·	IBP-616 (IBP-650)	394 to 616 (250 to 650)	394 to 561 (250 to 550)	IBP-561 (IBP-550)	IBP-616 (IBP-650)	394 to 616 (250 to 650)	394 to 561 (250 to 550)	IBP-561 (IBP-550)
				Fuel n	umber			
	33365	33366	33367	33368	33408	33409	33410	33411
Specific gravity	0. 7972	0.8146	0.8054	0.7874	0.7936	0.8100	0.8035	0.7874
Reid vapor pressure, kN/m ² (psi)	7.6 (1.10)			6.9 (1.00)	8.6 (1.25)	 	 	7.6 (1.10)
Flash point, K (^{0}F)		314 (106)	312 (102)			312 (102)	309 (96)	
Freezing point, K (⁰ F)	251 (-8)	255 (-1)	227 (-50)	222 (-59)	250 (-9)	254 (-3)	226 (-52)	223 (-58)
Viscosity at 239 K (-30 ⁰ F), m^2/sec	(a)	(a)	6.918×10 ⁻⁶	4.093×10 ⁻⁶		8 8 1 1 1 1 1	7.060×10 ⁻⁶	4. 326×10 ⁻⁶
Net heat of combustion, J/g	44 204	44 062	1 	44 442	44 329	43 882	44 066	44 371
Existing gum, mg	26.8	61.8	23.4	17.0	9.2	32.8	16.0	16.6
Smoke point	23	20	22	25	26	25	25	27
Aromatics, percent	15.7	20.3	17.9	13.7	12.1	15.4	13.2	11.4
Olefins, percent	0.8	0.9	1.3	0.8	0.6	1.0	1.0	0.8
Naphthalenes, percent	0.75	0.93	0.42	0.33	0.3	0.35	0.21	0.17
Hydrogen, percent	13.82	13.37	13.80	13.70	13.98	13.95	13.95	13.98
Nitrogen, percent	0.1305	0.1581	0.1397	0.1138	0.0101	0.0144	0.0076	0.0088
Total sulfur, percent	0.0014	0.0012	0.0006	0.0005	0.0011	0.0002	0.0002	0.0002
Mercaptans, percent	0.0001				<0.0001			
Oxygen, percent	0.08	0.14	0.14	0.13	0.11	0.10	0.07	0.10

^aSolid.

į

.

.

TABLE I. - Continued.

•

(c) Low yield H-Coal products

Property		Low se	everity			High se	everity	
				Boiling ran	ge, K (⁰ F)			
	IBP-616 (IBP-650)	394 to 616 (250 to 653)	394 to 561 (250 to 550)	IBP-561 (IBP-550)	IBP-616 (IBP-650)	394 to 616 (250 to 650)	394 to 561 (250 to 550)	IBP-561 (IBP-550)
				Fuel n	umber			
	33416	33417	33418	33419	33430	, 33431	33432	33433
Specific gravity	0.8493	0.8654	0.8565	0.8413	0.8338	0.8488	0.8468	0.8314
Reid vapor pressure, kN/m ² (psi)	1.4 (0.20)		 	1.1 (0.15)	1.7 (0.25)			3.1 (0.45)
Flash point, K (^O F)	1	312 (102)	309 (96)			312 (102)	314 (106)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Freezing point, K (^o F)	251 (-8)	237 (-32)	217 (-68)	211 (-79)	255 (0)	246 (-17)	225 (-54)	207 (-86)
Viscosity at 239 K (-30 ⁰ F), m^2/sec		16.99×10 ⁻⁶	6. 785×10 ^{-6,}	5. 162×10 ⁻⁶	9. 757×10 ⁻⁶	15.91×10 ⁻⁶	9.102×10 ⁻⁶	6.264×10 ⁻⁶
Net heat of combustion, J/g	43 359	42 878	43 108	43 263	43 723	43 273	43 273	43 601
Existing gum, mg	6.0	74.0	92.0	10.2	4.8	110.8	11.2	9.8
Smoke point	14	15	15	16	24	21	24	25
Aromatics, percent	-29.7	. 33.8	30.9	26.3	. 5.9	6.7	5.8	5.5
Olefins, percent	1.2	1.8	1.4	1.2	1.3	1.4	1.0	0.9
Naphthalenes, percent	0.54	0.66	0.31	0.27	0.064	0.077	0.065	0.055
Hydrogen, percent	12.73	12.47	12.64	12.79	13.56	13.26	13.31	13.73
Nitrogen, percent	0.0005	0.0006	0.0006	0.0001	<0.0001	< 0.0001	<0.0001	0.0001
Total sulfur, percent	0.0004	0.0004	0.0001	0.0001	0.0005	0.0005	<0.0001	0.0001
Mercaptans, percent	1		•		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Oxygen, percent	0.11	0.09	0.06	0.10	0.04	0.06	0.03	0.04

... • • .

12

TABLE I. - Concluded.

۰,

(d) High yield COED products

	r		r																	
		IBP-561 (IBP-550)		33519	0.8270	7.2 (1.05)		217 (-70)	5. 586×10 ⁻⁶	43 873	3.2	19	20.1	0.5	0.31	13.24	0.0002	0.0001		0.03
verity		394 to 561 (250 to 550)		33518	0.8493		313 (104)	221 (-62)	9.851×10^{-6}	43 518	2.4	16	25.2	0.8	0.38	12.96	0.0002	0.0001		0.03
Low se		394 to 616 (250 to 650)		33517	0.8586		319 (114)	256 (2)	(a)	43 627	21.2	14	28.5	1.2	0.86	12.88	0.0002	0.0001		0.03
	nge, K (^O F)	IBP-616 (IBP-650)	numbers	33516	0.8358	5. (0.85)		256 (-23)	(a)	43 212	1.6	16	22.4	0.6	0.68	13.07	0.0003	0.0003		0.03
	Boiling ra	IBP-561 (IBP-550)	Fuel n	33505	0.8165	5.8 (0.85)	* * * * * * * *	215 (-72)	5.565×10 ⁻⁶	44 129	7.6	27	5.4	0.5	0.11	13.69	0.0002	0.0001	555	0.03
everity		394 to 561 (250 to 550)		33504	0.8368		314 (106)	220 (-64)	9.676×10 ⁻⁶	43 865	6.6	24	7.2	0.9	0.13	13.63	0.0002	0.0001		0.05
High s		394 to 616 (250 to 650)		33503	0.8458	3 1 1 1 4 4 4 1	313 (104)	239 (-30)	19.25×10 ⁻⁶	44 074	23.0	20	11.6	1.1	0.62	13.44	0.0002	0.0003		0.05
		IBP-616 (IBP-650)		33502	0.8255	5.8 (0.85)		242 (-23)	(a)	43 865	0.8	20	9.3	0.7	0.49	13.6	0.0002	0.0003		0.05
Property					Specific gravity	Reid vapor pressure, kN/m 2 (psi)	Flash point, K (⁰ F)	Freezing point, K (^O F)	Viscosity at 239 K (-30 ⁰ F), m^2/sec	Net heat of combustion, J/g	Existing gum, mg	Smoke point	Aromatics, percent	Olefins, percent	Naphthalenes, percent	Hydrogen, percent	Nitrogen, percent	Total sulfur, percent	Mercaptans, percent	Oxvgen. percent

.

^aSolid.

ł

TABLE II. - ARCO FUEL SAMPLES

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ARCO	Crude	Yield	Severity	ASTM boil	ing range	We	ight perce	ant	Jet fuel th	hermal	Jet fuel		ļ	Process col	nditions		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	umber		level	level	×	oF	н	z	s l	oxidation preakpoint ter	tester mperature	thermal oxidation tester visual	Pressur		Tempe	rature	Space	T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										K	oF	rating at 533 K (500 ⁰ F)	N/m ²	psi	м	Чo	vefocffy, WHSV, hr ⁻¹	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13315 13316 13317 13318	TOBCC	TOW	Low	372 to 594 425 to 596 425 to 543 374 to 545	211 to 610 305 to 613 305 to 518 213 to 521	13. 64 13. 66 13. 68 13. 73	0.195 .2233 .2011 .175	0.001 .0044 .0006 .0006	491 495 501 495	424 431 442 431	4444	}10.3×10 ⁶	1500	625	6655	1.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33340 33341 33342 33342	TOSCO	- Fow	High	377 to 594 424 to 596 424 to 550 380 to 554	219 to 610 303 to 613 304 to 531 224 to 537	13.82 13.86 13.95 13.76	0.016 .0168 .0152 .0152	0.0009 .0003 .0001 .0002	515 514 535 516	467 466 504 469	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8) 10. 3×10 ⁶	1500	652	715	1.5	
3300TOSCOHigh35205513.50.011524433444334443544435 10^{10} 0^{10}	33365 33366 33367 33368	TOSCO	High	Low	349 to 591 422 to 593 423 to 550 350 to 549	168 to 605 301 to 608 302 to 530 170 to 528	13.82 13.37 13.80 13.70	0.131 .1581 .1397 .114	0.0014 0012 .0006 .0005	485 480 509 502	414 405 444	रा रा रा रा	13.8×10 ⁶	2000	$\begin{cases} b \left(666 \text{ to } 675 \right) \\ 622 \end{cases}$	$\begin{cases} b \left(740 \text{ to } 755\right) \\ 660 \end{cases}$	$\begin{cases} b \left(0.36 \text{ to } 0.43 \\ 0.75 \end{cases} \right)$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33408 33409 33410 33411	TOSCO	High	High	352 to 592 424 to 594 425 to 552 369 to 552	175 to 607 304 to 609 306 to 535 204 to 534	13.98 13.95 13.95 13.98	0.010 .0144 .0076 .0088	0.0011 .0002 .0002 .0002	524 521 506 514	483 478 452 465	ৰ ৰ ৰ ৰ	13.8×10 ⁶	2000	$\begin{cases} b \left(666 \text{ to } 675 \right) \\ 622 \end{cases}$	$\begin{cases} b \left(740 \text{ to } 755 \right) \\ 660 \end{cases}$	$\begin{cases} b \left(0.36 \text{ to } 0.43 \\ 0.75 \end{cases} \right)$	
3330H-Coalimage339.0 615230 to 64813.56<0001 0.001 525 435 00334311424 to rai304 to rai13.26<0001	33416 33417 33418 33418 33419	H-Coal	Tow	Low	376 to 624 na 416 to 550 380 to 557	218 to 663 na 290 to 531 225 to 543	12.73 12.47 12.64 12.79	0.0005 .0006 .0006 .0006	0.0004 0004 .0001 .0001	510 509 516	458 456 455 470	ৰা ৰা বা তে) 13. 8×10 ⁶	2000	611	640	0.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33430 33431 33432 33432 33433	H-Coal	ð	High	383 to 615 424 to na 424 to 545 380 to 558	230 to 648 304 to na 304 to 522 224 to 545	13.56 13.26 13.31 13.73	<pre><0.0001</pre> <pre><0.0001</pre> <pre><0.0001</pre> <pre><0.0001</pre> <pre>.0005</pre>	0.0001 .0005 <.0001 .0001	525 >561 >561 >583	485 550 590	0 1 0 1	}17.2×10 ⁶	2500	630 to 636	675 to 685	0.5 to 0.45	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33502 33503 33504 33505	COED	High	High	360 to 592 425 to 593 427 to 551 360 to 557	188 to 606 305 to 608 309 to 533 189 to 544	13.6 13.44 13.63 13.69	0.0002 .0002 .0002 .0002	0.0003 .0003 .0001 .0001	541 517 553 589	515 471 536 600	0 8 8 7	13.8×10 ⁶	2000	$\begin{cases} c_{(641 to 647)} \\ d_{(658 to 675)} \\ e_{(609 to 631)} \end{cases}$	$\begin{cases} c(695 to 705) \\ d(725 to 755) \\ e(636 to 676) \end{cases}$	60.5 60.7 e1.0	
	33516 33517 33518 33519	COED	High		362 to 591 425 to na 424 to 551 360 to 553	192 to 605 305 to na 304 to 532 189 to 536	13.07 12.88 12.96 13.24	0.0003 .0002 .0002 .0002	0.0003 .0001 .0001 .0001	536 512 541 548	506 506 514 527	0 % 4 0	13.8×10 ⁶	2000	$\begin{cases} c(616 \text{ to } 622) \\ d(658 \text{ to } 664) \\ e(607 \text{ to } 631) \end{cases}$	$\begin{cases} c(650 to 660) \\ d(725 to 735) \\ e(634 to 676) \end{cases}$	$\begin{cases} c_{0.65} to 0.8 \\ d_{0.7} \\ e_{1.0} \end{cases}$	

^aNot available, na. ^bHydrofreatment and hydrocracking conditions. Final sample blends also contain low-yield material. ^cHydrofreatment of IBP to 561 K (HDP to 550⁰ F) fraction. ^dHydrofreatment of 561 to 700 K (550⁰ to 800⁰ F) fraction. ^eHydrofreatment of 561 to 700 K (550⁰ to 800⁰ F) fraction.

.

13

TABLE III. - EXXON FUEL SAMPLES

[Data from ref. 5.]

<u> </u>														_														
	Space	velocity, LHSV, hr ⁻¹	1.2	1.2	. 93	. 93	.56	. 56	1.08	.93	^a (0.35 to 0.50)	0.91	66.	. 48	. 48	. 42	0.88	.81	.95	69.	a.54	0.99	66.	.95	.95	. 49 ^a		
onditions	rature	0 _F	200					٨	002	700	700	700				٢	004				۲	700				Y .		
cess co	Tempe	К	644					-	644	644	644	644				4	644				-	644			_	1		
Pro	e	psi	800	800	1500	1500	2200	2200	800	1500	2200	800	1500	2200	2200	2200	800	1500	1500	1500	2200	800	800	1500	1500	2200		
	Pressu	N/m ²	5.5×10 ⁶	5.5	10.3	10.3	15.1	15.1	5.5×10 ⁶	10.3	15.1	5. 5×10 ⁶	10.3	15.1	15.1	15.1	5.5×10 ⁶	10.3	10.3	10.3	15.1	5.5×10 ⁶	5.5	10.3	10.3	15.1		
hermal	t tester mperature	oF	534	482	580	688	>515	>575	400	570	>590	445	585	^b >500	>615	>625	418	540	520	500	>560	475	382	535	505	>515		
Jet fuel t	oxidation breakpoint te	K	552	523	577	637	>541	>575	477	572	>583	502	586	^b >533	>597	>602	487	555	544	533	>566	519	467	552	536	541	ly.	
It	S	L	0.0005	. 0012	. 0003	6000 .	.0011	. 0008		0.0004	<. 0001	0.0019	.0004	.0056	.0036	. 0009	0.0005	. 0022	. 0005	. 0029	.0004	0.0003	.0006	. 0001	. 0016	<. 0001	: stage on	
ght perce	z		0.0093	.017	. 0062	. 0063	.0019	. 0034	0.24	.0036	. 0032	0.0052	.0030	.0027	.0026	.0015	0.0067	. 0030	. 0057	.0016	. 0029	0.0026	.0027	.0024	.0047	. 0026	re for last	
Wei	Н		13.05	13.41	14.3	13.87	1	1	13.02	13.45		13.41	13.58				11.08	12.17	11.96	12.33		12.61	11.7	14.29	12.66		d here a	upparatus
ing range	oF		231 to 471	338 to 511	231 to 478	342 to 512	252 to 469	329 to 501	328 to 505	374 to 490	352 to 482	321 to 517	345 to 502	246 to 500	358 to 495	366 to 488	340 to 524	331 to 509	322 to 505	337 to 514	254 to 489	205 to 422	347 to 480	190 to 427	340 to 476	354 to 474	onditions cite	tion in test a
ASTM boil	Ж	•	384 to 517	443 to 539	384 to 521	445 to 540	395 to 516	438 to 534	437 to 536	463 to 527	451 to 523	434 to 542	447 to 534	392 to 533	454 to 530	459 to 526	444 to 546	439 to 538	434 to 536	442 to 541	396 to 527	369 to 490	448 to 522	361 to 492	444 to 520	452 to 519	atments. Co	sive vaporiza
Severity	level		Low	Low	Medium	Medium	High	High	Low	Medium	High	Low	Medium	High	High	High	Low	Medium	Medium	Medium	High	Low	Low	Medium	Medium	High	ltistage tre	ie to excess
Fuel type			JP-4	Jet A	JP-4	Jet A	JP-4	Jet A	Jet A	Jet A	Jet A	Jet A	Jet A	JP-4	Jet A	Jet A	Jet A				*	JP-4	Jet A	JP-4	Jet A	Jet A	ult from mu	erminate du
Crude			TOSCO					-	Paraho	Paraho	Paraho	Garrett				-	Synthoil					H-Coal				-	blends res	lered indet
EXXON	number		113	113	17-B	17-B	410	410	111	11-B	414	115	103	404	404	405	203	105	107	202	416	304	304	209	209	419	^a Final l	^b Consic

14

.

/

Figure 2. - Typical temperature profile in JFTOT tubes.

Figure 4. - Schematic diagram of ARCO product treatments.

.

(b) Paraho shale oil.

.

Figure 5. - Schematic diagram of Exxon product treatments.

•

Figure 5. - Continued.

-

.

Figure 5. - Concluded.

,

(b) TOSCO - high yield.

Figure 6. - Axial scan of Mark 8A spun tube deposit ratings.

Figure 7. - Variation of maximum Mark 8A spun TDR with temperature.

(b) TOSCO high yield.

Figure 7. ~ Continued.

Figure 7. - Concluded.

-

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 451

POSTMASTER :

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546