5,573 research outputs found

    CloudJet4BigData: Streamlining Big Data via an Accelerated Socket Interface

    Get PDF
    Big data needs to feed users with fresh processing results and cloud platforms can be used to speed up big data applications. This paper describes a new data communication protocol (CloudJet) for long distance and large volume big data accessing operations to alleviate the large latencies encountered in sharing big data resources in the clouds. It encapsulates a dynamic multi-stream/multi-path engine at the socket level, which conforms to Portable Operating System Interface (POSIX) and thereby can accelerate any POSIX-compatible applications across IP based networks. It was demonstrated that CloudJet accelerates typical big data applications such as very large database (VLDB), data mining, media streaming and office applications by up to tenfold in real-world tests

    Massively Parallel Video Networks

    Full text link
    We introduce a class of causal video understanding models that aims to improve efficiency of video processing by maximising throughput, minimising latency, and reducing the number of clock cycles. Leveraging operation pipelining and multi-rate clocks, these models perform a minimal amount of computation (e.g. as few as four convolutional layers) for each frame per timestep to produce an output. The models are still very deep, with dozens of such operations being performed but in a pipelined fashion that enables depth-parallel computation. We illustrate the proposed principles by applying them to existing image architectures and analyse their behaviour on two video tasks: action recognition and human keypoint localisation. The results show that a significant degree of parallelism, and implicitly speedup, can be achieved with little loss in performance.Comment: Fixed typos in densenet model definition in appendi

    Accelerated hot-carrier cooling in MAPbI3 perovskite by pressure-induced lattice compression

    Get PDF
    Hot-carrier cooling (HCC) in metal halide perovskites in the high-density regime is significantly slower compared to conventional semiconductors. This effect is commonly attributed to a hot-phonon bottleneck but the influence of the lattice properties on the HCC behaviour is poorly understood. Using pressure-dependent transient absorption spectroscopy (fs-TAS) we find that at an excitation density below Mott transition, pressure does not affect the HCC. On the contrary, above Mott transition, HCC in methylammonium lead iodide (MAPbI3) is around two times as fast at 0.3 GPa compared to ambient pressure. Our electron-phonon coupling calculations reveal about two times stronger electron-phonon coupling for the inorganic cage mode at 0.3 GPa. However, our experiments reveal that pressure promotes faster HCC only above Mott transition. Altogether, these findings suggest a change in the nature of excited carriers in the high-density regime, providing insights on the electronic behavior of devices operating at such high charge-carrier density
    • …
    corecore