155 research outputs found

    Reconfigurable elliptic curve cryptography

    Get PDF
    Elliptic Curve Cryptosystems (ECC) have been proposed as an alternative to other established public key cryptosystems such as RSA (Rivest Shamir Adleman). ECC provide more security per bit than other known public key schemes based on the discrete logarithm problem. Smaller key sizes result in faster computations, lower power consumption and memory and bandwidth savings, thus making ECC a fast, flexible and cost-effective solution for providing security in constrained environments. Implementing ECC on reconfigurable platform combines the speed, security and concurrency of hardware along with the flexibility of the software approach. This work proposes a generic architecture for elliptic curve cryptosystem on a Field Programmable Gate Array (FPGA) that performs an elliptic curve scalar multiplication in 1.16milliseconds for GF (2163), which is considerably faster than most other documented implementations. One of the benefits of the proposed processor architecture is that it is easily reprogrammable to use different algorithms and is adaptable to any field order. Also through reconfiguration the arithmetic unit can be optimized for different area/speed requirements. The mathematics involved uses binary extension field of the form GF (2n) as the underlying field and polynomial basis for the representation of the elements in the field. A significant gain in performance is obtained by using projective coordinates for the points on the curve during the computation process

    Reconfigurable Architecture for Elliptic Curve Cryptography Using FPGA

    Get PDF
    The high performance of an elliptic curve (EC) crypto system depends efficiently on the arithmetic in the underlying finite field. We have to propose and compare three levels of Galois Field , , and . The proposed architecture is based on Lopez-Dahab elliptic curve point multiplication algorithm, which uses Gaussian normal basis for field arithmetic. The proposed is based on an efficient Montgomery add and double algorithm, also the Karatsuba-Ofman multiplier and Itoh-Tsujii algorithm are used as the inverse component. The hardware design is based on optimized finite state machine (FSM), with a single cycle 193 bits multiplier, field adder, and field squarer. The another proposed architecture is based on applications for which compactness is more important than speed. The FPGA’s dedicated multipliers and carry-chain logic are used to obtain the small data path. The different optimization at the hardware level improves the acceleration of the ECC scalar multiplication, increases frequency and the speed of operation such as key generation, encryption, and decryption. Finally, we have to implement our design using Xilinx XC4VLX200 FPGA device

    A hardware-accelerated ecdlp with highperformance modular multiplication

    Get PDF
    Elliptic curve cryptography (ECC) has become a popular public key cryptography standard. The security of ECC is due to the difficulty of solving the elliptic curve discrete logarithm problem (ECDLP). In this paper, we demonstrate a successful attack on ECC over prime field using the Pollard rho algorithm implemented on a hardware-software cointegrated platform. We propose a high-performance architecture for multiplication over prime field using specialized DSP blocks in the FPGA. We characterize this architecture by exploring the design space to determine the optimal integer basis for polynomial representation and we demonstrate an efficient mapping of this design to multiple standard prime field elliptic curves. We use the resulting modular multiplier to demonstrate low-latency multiplications for curves secp112r1 and P-192. We apply our modular multiplier to implement a complete attack on secp112r1 using a Nallatech FSB-Compute platform with Virtex-5 FPGA. The measured performance of the resulting design is 114 cycles per Pollard rho step at 100 MHz, which gives 878 K iterations per second per ECC core. We extend this design to a multicore ECDLP implementation that achieves 14.05 M iterations per second with 16 parallel point addition cores

    Zero-configuration identity-based IP network encryptor

    Get PDF
    For corporations or individuals who wish to protect the confidentiality of their data across computer networks, network-layer encryption offers an efficient and proven method for preserving data privacy. Network layer encryption such as IPSec is more flexible than higher layer solutions since it is not application-dependent and can protect all end-to-end traffics that go between two hosts. Using IPSec, two hosts must first establish a session key through message exchanges before they can communicate. In this paper, we present an Identity Based Encryption (IBE) scheme that allows a host to calculate the per-packet encryption key based on the IP address of the destination host, without going through the expensive key exchange process as in IPSec. Our mechanism is compatible with the current IP protocol and we tested our scheme with live HTTP and ICMP traffic. Our results show that our protocol provides a zero-configuration network layer encryption solution for end-to-end secure communications that is ideal for consumer electronics applications. © 2006 IEEE.published_or_final_versio

    Virtualized Reconfigurable Resources and Their Secured Provision in an Untrusted Cloud Environment

    Get PDF
    The cloud computing business grows year after year. To keep up with increasing demand and to offer more services, data center providers are always searching for novel architectures. One of them are FPGAs, reconfigurable hardware with high compute power and energy efficiency. But some clients cannot make use of the remote processing capabilities. Not every involved party is trustworthy and the complex management software has potential security flaws. Hence, clients’ sensitive data or algorithms cannot be sufficiently protected. In this thesis state-of-the-art hardware, cloud and security concepts are analyzed and com- bined. On one side are reconfigurable virtual FPGAs. They are a flexible resource and fulfill the cloud characteristics at the price of security. But on the other side is a strong requirement for said security. To provide it, an immutable controller is embedded enabling a direct, confidential and secure transfer of clients’ configurations. This establishes a trustworthy compute space inside an untrusted cloud environment. Clients can securely transfer their sensitive data and algorithms without involving vulnerable software or a data center provider. This concept is implemented as a prototype. Based on it, necessary changes to current FPGAs are analyzed. To fully enable reconfigurable yet secure hardware in the cloud, a new hybrid architecture is required.Das Geschäft mit dem Cloud Computing wächst Jahr für Jahr. Um mit der steigenden Nachfrage mitzuhalten und neue Angebote zu bieten, sind Betreiber von Rechenzentren immer auf der Suche nach neuen Architekturen. Eine davon sind FPGAs, rekonfigurierbare Hardware mit hoher Rechenleistung und Energieeffizienz. Aber manche Kunden können die ausgelagerten Rechenkapazitäten nicht nutzen. Nicht alle Beteiligten sind vertrauenswürdig und die komplexe Verwaltungssoftware ist anfällig für Sicherheitslücken. Daher können die sensiblen Daten dieser Kunden nicht ausreichend geschützt werden. In dieser Arbeit werden modernste Hardware, Cloud und Sicherheitskonzept analysiert und kombiniert. Auf der einen Seite sind virtuelle FPGAs. Sie sind eine flexible Ressource und haben Cloud Charakteristiken zum Preis der Sicherheit. Aber auf der anderen Seite steht ein hohes Sicherheitsbedürfnis. Um dieses zu bieten ist ein unveränderlicher Controller eingebettet und ermöglicht eine direkte, vertrauliche und sichere Übertragung der Konfigurationen der Kunden. Das etabliert eine vertrauenswürdige Rechenumgebung in einer nicht vertrauenswürdigen Cloud Umgebung. Kunden können sicher ihre sensiblen Daten und Algorithmen übertragen ohne verwundbare Software zu nutzen oder den Betreiber des Rechenzentrums einzubeziehen. Dieses Konzept ist als Prototyp implementiert. Darauf basierend werden nötige Änderungen von modernen FPGAs analysiert. Um in vollem Umfang eine rekonfigurierbare aber dennoch sichere Hardware in der Cloud zu ermöglichen, wird eine neue hybride Architektur benötigt

    Studies on high-speed hardware implementation of cryptographic algorithms

    Get PDF
    Cryptographic algorithms are ubiquitous in modern communication systems where they have a central role in ensuring information security. This thesis studies efficient implementation of certain widely-used cryptographic algorithms. Cryptographic algorithms are computationally demanding and software-based implementations are often too slow or power consuming which yields a need for hardware implementation. Field Programmable Gate Arrays (FPGAs) are programmable logic devices which have proven to be highly feasible implementation platforms for cryptographic algorithms because they provide both speed and programmability. Hence, the use of FPGAs for cryptography has been intensively studied in the research community and FPGAs are also the primary implementation platforms in this thesis. This thesis presents techniques allowing faster implementations than existing ones. Such techniques are necessary in order to use high-security cryptographic algorithms in applications requiring high data rates, for example, in heavily loaded network servers. The focus is on Advanced Encryption Standard (AES), the most commonly used secret-key cryptographic algorithm, and Elliptic Curve Cryptography (ECC), public-key cryptographic algorithms which have gained popularity in the recent years and are replacing traditional public-key cryptosystems, such as RSA. Because these algorithms are well-defined and widely-used, the results of this thesis can be directly applied in practice. The contributions of this thesis include improvements to both algorithms and techniques for implementing them. Algorithms are modified in order to make them more suitable for hardware implementation, especially, focusing on increasing parallelism. Several FPGA implementations exploiting these modifications are presented in the thesis including some of the fastest implementations available in the literature. The most important contributions of this thesis relate to ECC and, specifically, to a family of elliptic curves providing faster computations called Koblitz curves. The results of this thesis can, in their part, enable increasing use of cryptographic algorithms in various practical applications where high computation speed is an issue

    Low-cost, low-power FPGA implementation of ED25519 and CURVE25519 point multiplication

    Get PDF
    Twisted Edwards curves have been at the center of attention since their introduction by Bernstein et al. in 2007. The curve ED25519, used for Edwards-curve Digital Signature Algorithm (EdDSA), provides faster digital signatures than existing schemes without sacrificing security. The CURVE25519 is a Montgomery curve that is closely related to ED25519. It provides a simple, constant time, and fast point multiplication, which is used by the key exchange protocol X25519. Software implementations of EdDSA and X25519 are used in many web-based PC and Mobile applications. In this paper, we introduce a low-power, low-area FPGA implementation of the ED25519 and CURVE25519 scalar multiplication that is particularly relevant for Internet of Things (IoT) applications. The efficiency of the arithmetic modulo the prime number 2 255 − 19, in particular the modular reduction and modular multiplication, are key to the efficiency of both EdDSA and X25519. To reduce the complexity of the hardware implementation, we propose a high-radix interleaved modular multiplication algorithm. One benefit of this architecture is to avoid the use of large-integer multipliers relying on FPGA DSP modules

    HLS-Based Methodology for Fast Iterative Development Applied to Elliptic Curve Arithmetic

    No full text
    International audienceHigh-Level Synthesis (HLS) is used by hardware developers to achieve higher abstraction in circuit descriptions. In order to shorten the hardware development time via HLS, we present an adjustment of the Iterative and Incremental Design (IID) methodology, frequently used in software development. In particular, our methodology is relevant for the development of applications with unusual complexity: the method was applied here to the development of large modular arithmetic, commonly used for cryptography applications (e.g., Elliptic Curves). Rapid feedback on circuit characteristics is used to evaluate deep architectural changes in short time, greatly reducing the time-to-market with respect to hand-made designs. In addition, our approach is highly flexible, since the same generic high-level description can be used to produce an entire set of circuits, each with different area/performance trade-offs. Thanks to the proposed approach, any change to the initial specification (e.g., the curve used) is also very fast, while it may require a large effort in the case of hand-made designs
    corecore