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Abstract: Twisted Edwards curves have been at the center of attention since their introduction by
Bernstein et al. in 2007. The curve ED25519, used for Edwards-curve Digital Signature Algorithm
(EdDSA), provides faster digital signatures than existing schemes without sacrificing security.
The CURVE25519 is a Montgomery curve that is closely related to ED25519. It provides a simple,
constant time, and fast point multiplication, which is used by the key exchange protocol X25519.
Software implementations of EdDSA and X25519 are used in many web-based PC and Mobile
applications. In this paper, we introduce a low-power, low-area FPGA implementation of the ED25519
and CURVE25519 scalar multiplication that is particularly relevant for Internet of Things (IoT)
applications. The efficiency of the arithmetic modulo the prime number 2255 − 19, in particular the
modular reduction and modular multiplication, are key to the efficiency of both EdDSA and X25519.
To reduce the complexity of the hardware implementation, we propose a high-radix interleaved
modular multiplication algorithm. One benefit of this architecture is to avoid the use of large-integer
multipliers relying on FPGA DSP modules.

Keywords: interleaved modular reduction; elliptic curve cryptography (ECC); twisted Edwards
curves; Montgomery curve; Montgomery ladder algorithm;Edwards-curve Digital Signature
Algorithm (EdDSA); ED25519; CURVE25519; X25519

1. Introduction

Based on Euler and Gauss works, Edwards introduced a normal form of elliptic curves in 2007 [1].
He generalized the curve as:

y2 + x2 = a2(1 + x2y2) (1)

over the field K, where a ∈ K, such that: a5 6= a.
As Edwards stated in his paper, every curve of the form given in (1) is birationally equivalent to an

elliptic curve in Weierstrass form. Bernstein et al. [2] generalized Edwards’ original curves. For a fixed
field K of odd characteristic and arbitrary integers c, d ∈ K such that cd(1− dc4) 6= 0, they introduced
the curves:

y2 + x2 = c2(1 + dx2y2). (2)

This definition covers “more than 1/4 of all isomorphism classes of elliptic curves over a finite
field”. They showed that every elliptic curve over a non-binary field is birationally equivalent to a
curve in Edwards form over an extension of the field and in many cases over the original field [2].
In [3], Bernstein et al. introduced a generalization of Edwards curves named twisted Edwards curves.
These include more curves, including Edwards curves and every elliptic curve in Montgomery form [4].
As explained in [3], the curve name comes from the fact that the set of twisted Edwards curves is
invariant under quadratic twists while a quadratic twist of an Edwards curve is not necessarily
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an Edwards curve. A quadratic twist of a curve is an isomorphic curve over a field extension of
degree two.

For a field K of odd characteristic, and nonzero elements a, d ∈ K , the twisted Edwards curve
ET,a,d(K) is defined as:

ET,a,d(K) : ax2 + y2 = 1 + dx2y2. (3)

If a = 1, then ET,a,d is an Edwards curve with c = 1. Moreover, ET,a,d is a quadratic twist of the
Edwards curve EO,1,d/a with the map: (x, y)→ (x, y) = ( x√

a , y) over the field extension K(
√

a):

x2 + y2 = 1 + (d/a)x2y2 (4)

Twisted Edwards curves and Montgomery curves are closely related. As shown in [3], every
twisted Edwards curve ET,a,d on the Field K with char(K) 6= 2, is birationally equivalent to a
Montgomery curve EM,A,B : Bv2 = u3 + Au2 + u using the map:

(x, y)→ (u, v) =
(

(1 + y)
(1− y)

,
(1 + y)

(1− y)x

)
(5)

where A =
2(a + d)
(a− d)

, and B =
4

(a− d)
.

If a is a square in K, then these curves are isomorphic over K itself. From the operation counts of
the point arithmetic given in [5], it is easy to see that twisted Edwards curves outperform curves in
Weierstrass form in terms of speed (despite the binary form of Edwards curve that is a bit slower than
its Weierstrass counterpart [6]). However twisted Edwards curves are appealing for another reason.
Their group laws are unified and complete; that leads to safer implementations against certain types of
attacks [3].

The Edwards-curve Digital Signature Algorithm (EdDSA) is the most significant application
of twisted Edwards curves. The ED25519 is a twisted Edwards curve used for EdDSA, where its
parameters are defined as [7]:

a = −1,
d = − 121665

121666 ,
p = 2255 − 19.

The corresponding Montgomery curve of ED25519 is CURVE25519 that is defined as [8]:

y2 = x3 + 486662x2 + x (6)

Point multiplication is fast and efficient on Montgomery curves. It efficiently uses differential
point addition and point doubling [5] and uniform Montgomery ladder algorithm to perform a point
multiplication [9]. The uniform Montgomery ladder algorithm is performed in constant time that
makes its implementations robust to timing attacks. The CURVE25519 has been used in many software
implementations since its introduction by Bernstein in 2006 [8]. It has also become a promising
candidate for Internet of Things (IoT) applications due to its 128-bit security level and efficient
arithmetic. Recently, a number of hardware implementations have been introduced [10–13] with a
focus on IoT applications. All these works use FPGA DSP slices to implement modular multipliers.
High-performance cryptographic processors that can be implemented on low-cost FPGAs or ASICs
are in demand for mobile applications such as the Internet of Things (IoT) and Intelligent Transport
Systems (ITS) [14]. Low-cost FPGAs (including anti-fused-based FPGAs) are namely restricted in
the number of hardware resources. A portable low-power design that uses minimum hardware
resources without losing its performance is then the most appealing. In the following, we propose
an area-efficient, low-power hardware implementation of the CURVE25519 and ED25519 on FPGA.
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Our design is not using multipliers and DSP units of FPGA resources. We introduce a high speed
interleaved modular multiplier tailored for this application. Section 2 provides a background on Elliptic
Curve Discrete Logarithm Problem (ECDLP) and the arithmetic of curves ED25519 and CURVE25519,
used in this work. Section 3 introduces hardware design of the point multiplication core and Section 4
shows implementation results and comparisons with previous work.

2. Background

Like any elliptic curve cryptosystem, the security of ED25519 and CURVE25519 is based on
the elliptic curve discrete logarithm problem (ECDLP). Let E be an elliptic curve defined over the
prime field Fp and let the group of rational points on the curve E denoted by E(Fp). Now, consider
a point P ∈ E(Fp) of order n and the cyclic subgroup of E(Fp) generated by point P, i.e., 〈P〉 =
{O, P, 2P, . . . , (n− 1)P}. Take a random integer k ∈ [1, n− 1] and let Q = k · P. The point Q is defined
by adding point P to itself k− 1 times.

Q = k · P = P + P + · · · + P︸ ︷︷ ︸
k times

. (7)

Given the domain parameters and Q, the problem of determining the integer k is called
ECDLP [15]. The point Q can be easily computed with a given k using the one-way function Q = k · P
(called elliptic curve point multiplication or scalar multiplication). However, it is computationally
difficult to calculate k from known points Q and P.

Optimized explicit point addition and point doubling formulae for twisted Edwards curves and
Montgomery curves are presented in [5]. Projective coordinates are used in this work. The input
Z-coordinate for the point P is set to Z = 1. So, transformation from affine to projective coordinates
can be done at no cost.

P(x, y)→ P(X, Y, Z),

x =
X
Z

, y =
Y
Z

.

P(x, y)→ P(x, y, 1)

(8)

We did minor modifications in the Elliptic Curve Point Doubling (ECPD) formulae (9) and Elliptic
Curve Point Addition (ECPA) (10) to minimize the number of holding registers and optimize hardware
implementation. Data flow diagram of ECPD and ECPA are shown in Figures 1 and 2, respectively.
At each level one modular multiplication is performed. Modular addition and/or modular subtraction
is performed in parallel with modular multiplication whenever possible.

A = 2 · Z1
2 B = X1 + Y1

C = X1
2 D = Y1

2

E = p− (C + D) F = (C− D)

J = F− A K = B2 + E

X2 = J · K
Y2 = F · E
Z2 = F · J

(9)



Information 2019, 10, 285 4 of 16

B = Z2
2 C = X1 · X2

D = Y1 ·Y2 E = d · C · D
F = B− E G = B + E

H = (X1 + Y1) · (X2 + Y2) I = H − (C + D)

J = F · Z2 K = G · Z2

X3 = J · I
Y3 = K · (C + D)

Z3 = F · G

(10)

Figure 1. ED25519 Point doubling flow diagram.



Information 2019, 10, 285 5 of 16

Figure 2. ED25519 Point addition flow diagram.

Point multiplication on the Montgomery curve CURVE25519 can be done by using efficient
uniform differential point addition and doubling for X and Z in projective coordinates. This allows
low latency, low-power hardware implementations. Explicit formulae can be found in [5]. We have
rearranged these formulae as in (11) for hardware optimized implementation. Similar to ED25519,
at every level one modular multiplication in parallel to possible modular addition and/or modular
subtraction is performed. Data flow diagram of differential point addition and doubling on
CURVE25519 is shown in Figure 3.
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Figure 3. CURVE25519 differential point addition and point doubling flow diagram.

The legend of Figures 1–3 is given separately in Figure 4.

Figure 4. Legend for Figures 1–3.
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3. Hardware Design

3.1. Interleaved Modular Multiplication Algorithm

Modular multiplication is a basic operation of crucial importance in elliptic curve cryptography.
The interleaved modular multiplication algorithm, unlike other modular multiplication methods,
does not employ actual multipliers. The basic interleaved modular multiplication algorithm [16]
is shown in Algorithm 1. The idea of this algorithm is to interleave the accumulation steps of the
multiplication with the steps of a division operation. An operand is multiplied by a bit of the other
operand in a loop and followed by a division by the modulus to control the size of the intermediate
values. A multiple of the modulus is then subtracted from the value of the accumulator and a new
partial product is added. It is essential to start with the most significant bit to avoid gradually increasing
digits when adding the shifted version of the multiplicand. Direct implementation of this algorithm is
not efficient due to the carry propagation delay of the long bit adder and the sequential steps that add
delay to the circuit and increase the clock period. Bunimov et al. [17] proposed an architecture to solve
these problems. A carry save adder (CSA) is used to eliminate carry propagation delay.

A = X2 + Z2 B = X2 − Z2

AA = A2 BB = B2

C = X3 + Z3 D = X3 − Z3

E = AA− BB F = 121665 · E
DA = D · A CB = C · B

G = DA + CB H = DA− CB

X2 = AA · BB Z2 = E · (BB− F)

X3 = G2 Z3 = H2 · X1

(11)

Instead of comparing with the modulus, they compared intermediate values with 2n and
precomputed and saved the difference in a look-up table. This precomputed difference is added
to the intermediate value at the next iteration. Figure 5 shows their proposed hardware architecture.
To reduce the number of cycles the High-Radix technique has been proposed [18–21].

Algorithm 1: Basic interleaved modular multiplication algorithm [16]
input : X, Y, p
output : X ·Y mod p

1 n = dlog2 pe;
2 Z ← 0;
3 for i = n− 1 to 0 do
4 Z ← 2Z ;
5 I ← xi ·Y ;
6 Z ← Z + I ;
7 if (Z ≥ p) then
8 Z ← Z− p;
9 if (Z ≥ p) then

10 Z ← Z− p;

11 return Z
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Figure 5. Basic Interleaved modular multiplication unit proposed by [17].

Algorithm 2 presents our proposed radix-8 interleaved modular multiplier. The values {2Y
mod p, . . . , 7Y mod p} are precomputed before the start of shift cycles and stored in a look-up table
(LUT1). To complete the for loop in the algorithm, 85 clock cycles are required. Three bits of the
multiplicand X are read at every clock cycle and decide the output of LUT1. At the end of the loop,
the accumulator value is not greater than 12p. The algorithm is proofed with 10,000 random 255-bit
integers using MAPLE. The MAPLE implementation of Algorithm 2 is suggested in Appendix A.
The hardware implementation is very efficient. Figure 6 depicts the hardware implementation of the
proposed Radix-8 algorithm 2. The loop logic has maximum net and logic delay of 1.8 ns. So maximum
clock frequency of 550 MHz is achievable. The weakness of this algorithm is the latency of calculating
LUT1 for every new run. However, taking this latency into account, the overall improvement is
notable compared to similar works. The first ten clock cycles are treated as waiting cycles to complete
LUT1 table. The modular multiplication is then completed in 95 clock cycles. In case of using 550 MHz
clock frequency, that is equivalent to 172.7 ns. A reducer logic is used to output a complete modulo
reduction at the end of last clock cycle that costs one comparison and one subtraction and imposes
7.2 ns delay to output. So, the complete reduction latency is 180 ns.

In this architecture, the high-frequency logic is very small (900 FPGA LUTs or 22% of total
area), hence the dynamic power consumption is very low. Table 1 compares our design performance
with some similar works in the literature. It must be noted that the circuit area/latency reported
in [19,21] are related to partial reduction and the final reduction logic is not taken into account.
We estimated the power consumption of the designs presented in [19,21] with Xilinx power estimator
tool. These estimates are based on the reported used FPGA resources, clock frequency, average signal
toggle rate, and default average fan-out.
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Table 1. Comparing our Radix-8 256-bit interleaved modular multiplication design performance with
other works.

Design Platform Area Latency @Clk Freq Clock Cycles Power
Slices ns @ MHz (Static/Dynamic) mW

Ours VIRTEX 7 983 180 @ 550 95 178/57
Ours ZYNQ7000 983 180 @ 550 95 101/51
[21] VIRTEX 5 1042 303 @ 422 128 1808/503 1

[19] EIMM VIRTEX 4 2559 1171.66 @ 437.12 512 1828/728 1

[20] R4 MIM VIRTEX 6 4630 1487 @ 86.6 129 1990/419 1

[20] R8 MIM VIRTEX 6 5657 930 @ 71 66 1996/450 1

1 Our estimation using Xilinx Power Estimator tool.

Algorithm 2: New Radix-8 Interleaved Modular multiplication algorithm
input : n-bit integers X, Y, and modulus p
output : X ·Y mod p

1 Pre-compute:
2 LUT1 = {0, Y, 2Y mod p, . . . , 7Y mod p};
3 LUT2 = {0, 8 · 2255 mod p, 2 · 8 · 2255 mod p, . . . , 11 · 8 · 2255 mod p} ;
4 n = dlog2 pe;
5 S← 0;
6 C ← 0;
7 N ← 0;

8 for i =
n
3

to 1 do

9 M← LUT2
(⌊

X
23i−3

⌋)
;

10 X ← X mod 23i−3 ;
11 S1 ← 8 · (S mod 2255);
12 C1 ← 8 · (C mod 2255);
13 S2 ← S1 ⊕ C1 ⊕M;
14 C2 ← (S1 · C1)∨ (S1 ·M)∨ (C1 ·M);
15 S← S2 ⊕ C2 ⊕ N;
16 C ← (S2 · C2)∨ (S2 · N)∨ (C2 · N);

17 N ← LUT1
(⌊

S
2255

⌋
+
⌊

C
2255

⌋)
;

18 return S + C;



Information 2019, 10, 285 10 of 16

Figure 6. Radix-8 Interleaved modular multiplication unit.

3.2. Modular Addition and Subtraction

Figures 7 and 8 show the proposed fast and area-efficient modular addition and subtraction
units, respectively. The Carry Propagate Adders (CPA) and a Carry Save Adder(CSA) resources are
shared and the implementation is fast and very area-efficient. (B̄ and p̄ denotes bitwise not(B) and
not(p) respectively.)

Figure 7. Hardware implementation of modular addition (A + B mod p).
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Figure 8. Hardware implementation of modular subtraction (A− B mod p).

3.3. ED25519 and CURVE25519 Point Multiplication Core

Point multiplication unit uses an Arithmetic Logic Unit (ALU) that consists of a point addition
and a point doubling state machine. As shown in Figure 9, the state machines share the modular
multiplication and modular add/subtract arithmetic units as well as register bank resources.

Figure 9. ALU unit configuration.

Figure 10 shows the point multiplication core configuration. Projective coordinates are used to
avoid modular inversions. Finally, one modular inversion is required at the end of the computation to
convert projective coordinates back to affine.
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Figure 10. Point multiplication core.

3.4. Modular Inversion

There are basically two methods to calculate the modular inverse of an integer in the field Fp.
Euclidean algorithm and Fermat’s little theorem [15]. The Euclidean algorithm is a recursive method
that needs multiplications, additions/subtractions and maintaining intermediate results at every
iteration. Implementation of the Euclidean algorithm requires a new hardware that contrasts with
our low-area design approach. Based on Fermat’s little theorem, 〈a−1〉p = 〈ap−2〉p. The modular
field inversion unit can be implemented by sharing the interleaved modular multiplication with the
point multiplication unit. As mentioned in [8], 254 squaring and 11 multiplications are required to
complete a field inversion for p = 2255− 19. However, the actual sequence of operations is not provided.
Our design uses the chain in (12) to return a modular inversion using 265 modular multiplications.

a2

(a2)22

a8 · a
a9 · a2

(a11)2 · a9

(a25−1)25 · a25−1

(a210−1)210 · a210−1

(a220−1)220 · a220−1

(a240−1)210 · a210−1

(a250−1)250 · a250−1

(a2100−1)2100 · a2100−1

(a2200−1)250 · a250−1

(a2250−1)25 · a211

(12)

4. Results and Comparison

Our design implementation results on ZYNQ 7000 series FPGAs are presented in Table 2. We used
minimum hardware resources to achieve low-area/low-power goals, which are very appealing for
IoT applications. Point multiplication of ED25519 uses Double and Add and NAF (Non-Adjacent
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Form) algorithms [15]. The average core latency is calculated using one thousand 255-bit random
scalars. Several implementations of CURVE25519 and ED25519 are presented in [10–13]. Table 3
summarizes the outcome of these works for comparison. The focus of all these works has been on the
speed of point multiplication operation by adding arithmetic resources to the hardware. Heuristic
methods presented in [12,13] to optimize the modular multiplication that is the critical arithmetic
unit. All known works employed FPGA DSP modules for implementation of modular multipliers.
However, in our design, no DSP module is used. We estimated the power consumption of these
works with the Xilinx power estimator tool. The power consumption shown in Table 3 is calculated
based on the FPGA resources used in each work. These include clock frequency, default average
fan-out, and considering 100% toggle rate for the DSP modules. We implemented multipliers using
LUT resources only, to provide a baseline comparison. In [10,13], fifteen 17-bit × 17-bit multipliers are
used to implement a 255-bit modular multiplier. This implementation requires 345 LUT resources for
each multiplier. As a comparison, a 64-bit × 64-bit multiplier needs 4256 LUT and a 127-bit × 127-bit
multiplier uses 24335 LUTs on a 7-Series Xilinx FPGA. Table 3 gives an estimate of cores area in [10–13]
assuming that no DSP slice is used.

Table 2. Implementation results of ED25519 and CURVE25519 point multiplication cores on ZYNQ
7000 Series.

Platform Area Latency @Clk Freq Power
KLUT/FF/DSP/BRAM ns @ MHz Static/Dynamic (mW)

ED25519 (Double and add Method) 8.68/3472/0/0 627985 @ 137.5 104/172
ED25519 (NAF Method) 8.77/3729/0/0 543874 @ 137.5 105/180
CURVE25519 7.38/3141/0/0 511780 @ 137.5 103/145
CURVE25519 (using 2 modular mult.) 12.95/4194/0/0 280640 @ 137.5 106/236

Table 3. Other works implementation results.

Reference Area Latency @Clk Freq Power Equivalent Area 2

KLUT/FF/DSP/BRAM µs @ MHz Static/Dynamic (mW) KLUT/FF/BRAM

[10] Single core 2.783/3592/20/2 397 @ 100 105/189 1 9.683/3592/2
[10] Multi core 34.009/43875/210/2 340 @ 200 185/1738 1 106.459/43875/2
[11] 21.107/26483/260/0 118 @ 115 150/789 45.442/26483/0
[12] 17.94/21107/175/0 97 @ 115 134/709 1 42.275/21107/0
[13] (CURVE25519) 2.707/962/15/0 608 @ 105 104/141 1 7.875/962/0
[13] (ED25519) 11.15/2656/16/0 1467 @ 82 107/298 1 16.670/2656/0

1 Our estimation using Xilinx Power Estimator tool. 2 Area estimation in case of using FPGA LUTs for
multiplier implementation.

5. Side-Channel Attacks Considerations

Resistance against side-channel attacks can be easily provided to ED25519 and CURVE25519 point
multiplication cores by different approaches. The Montgomery powering ladder algorithm [22] can be
employed for ED25519 point multiplication hardware to hide the power spectrum patterns of ECPD
and ECPA and provide resistance against SPA (Simple Power Analysis) attacks. At every single step,
both ECPD and ECPA operations are performed, then it must be decided which result should be used
for the next step. The latency of the Montgomery ladder algorithm is constant equal to the latency
of 255-point doublings and 254-point additions. The constant calculation time provides immunity to
timing attacks. The disadvantage of the Montgomery ladder algorithm is its larger latency compared
to other point multiplication methods. Curve25519, however, uses the uniform differential point
addition and point doubling method. To implement resistance to DPA (Differential Power Analysis)
attacks, a random factor λ is injected to the projective coordinates of the initial point P(x, y) [23]. Then
randomized projective coordinated point P(λX1, λY1, λZ1) is used. The algorithm starts with: X2 = λ,
Z2 = 0, X3 = X1, Z3 = λ. The formulae (11) and Figure 3 must be revised by replacing X3 = λ · G2.
The DPA attack cannot be successful as it is not possible to predict any specific bit of 4P (or other
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multiples of P in randomized projective coordinates [15]. The timing costs of this approach is 256 more
modular multiplications, two initial and 254 in loop modular multiplications.

6. Conclusions

Interleaved modular multipliers are very efficient in terms of area and power consumption and
work at high clock frequencies. We introduced a radix-8 interleaved modular multiplier algorithm to
reduce the number of clock cycles required to achieve one modular multiplication. We implemented
ED25519 and CURVE 25519-point multiplication cores using the interleaved modular multiplier as a
primitive arithmetic unit. Comparing our results to the most recent works listed in Table 3, reveals
that we achieved a low-power/area-efficient design. The modular multiplier is the critical arithmetic
unit that determines the overall performance of the hardware. Research on the improvement of the
modular multiplier performance is recommended as future works.
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preparation, M.A.M.; writing–review and editing, C.D.; supervision, C.D.; project administration, C.D.; funding
acquisition, M.A.M.

Funding: This research is funded by Department of computing, Macquarie university.
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Appendix A

MAPLE code for implementation of Algorithm 2:

with(Bits):
p := 2255 − 19 :
LUT1 := Array(
[0, modp(8 · 2255, p), modp((2 · 8) · 2255, p),
modp((3 · 8) · 2255, p), modp((4 · 8) · 2255, p), modp((5 · 8) · 2255, p),
modp((6 · 8) · 2255, p), modp((7 · 8) · 2255, p), modp((8 · 8) · 2255, p),
modp((9 · 8) · 2255, p), modp((10 · 8) · 2255, p), modp((11 · 8) · 2255, p)]
):
A := rand(2254..2255 − 1) :
B := rand(2254..2255 − 1) :
X := A() :
Y := B() :
S := 0 :
C := 0 :
N := 0 :
LUT2 := Array(
[0, Y, modp(2 ·Y, p), modp(3 ·Y, p), modp(4 ·Y, p),
modp(5 ·Y, p), modp(6 ·Y, p), modp(7 ·Y, p)]
):
for i from 85 by −1 to 1 do
Z := f loor(X/2(3·i−3)) :
X := modp(X, 2(3·i−3)) :
M := LUT2[Z + 1] :
S1 := 8 ·modp(S, 2255) :
C1 := 8 ·modp(C, 2255) :
S2 := Xor(Xor(S1, C1), M) :
C2 := 2 ·Or(Or(And(S1, C1), And(S1, M)), And(C1, M)) :
S := Xor(Xor(S2, C2), N) :
C := 2 ·Or(Or(And(S2, C2), And(S2, N)), And(C2, N)) :
N := LUT1( f loor(S/2255) + f loor(C/2255) + 1) :
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end do:
L := (S + C) :
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