177 research outputs found

    BSD-GAN: Branched Generative Adversarial Network for Scale-Disentangled Representation Learning and Image Synthesis

    Full text link
    We introduce BSD-GAN, a novel multi-branch and scale-disentangled training method which enables unconditional Generative Adversarial Networks (GANs) to learn image representations at multiple scales, benefiting a wide range of generation and editing tasks. The key feature of BSD-GAN is that it is trained in multiple branches, progressively covering both the breadth and depth of the network, as resolutions of the training images increase to reveal finer-scale features. Specifically, each noise vector, as input to the generator network of BSD-GAN, is deliberately split into several sub-vectors, each corresponding to, and is trained to learn, image representations at a particular scale. During training, we progressively "de-freeze" the sub-vectors, one at a time, as a new set of higher-resolution images is employed for training and more network layers are added. A consequence of such an explicit sub-vector designation is that we can directly manipulate and even combine latent (sub-vector) codes which model different feature scales.Extensive experiments demonstrate the effectiveness of our training method in scale-disentangled learning of image representations and synthesis of novel image contents, without any extra labels and without compromising quality of the synthesized high-resolution images. We further demonstrate several image generation and manipulation applications enabled or improved by BSD-GAN. Source codes are available at https://github.com/duxingren14/BSD-GAN.Comment: 12 pages, 20 figures, accepted to IEEE Transaction on Image Processin

    From rule-based to learning-based image-conditional image generation

    Get PDF
    Visual contents, such as movies, animations, computer games, videos and photos, are massively produced and consumed nowadays. Most of these contents are the combination of materials captured from real-world and contents synthesized by computers. Particularly, computer-generated visual contents are increasingly indispensable in modern entertainment and production. The generation of visual contents by computers is typically conditioned on real-world materials, driven by the imagination of designers and artists, or a combination of both. However, creating visual contents manually are both challenging and labor intensive. Therefore, enabling computers to automatically or semi-automatically synthesize needed visual contents becomes essential. Among all these efforts, a stream of research is to generate novel images based on given image priors, e.g., photos and sketches. This research direction is known as image-conditional image generation, which covers a wide range of topics such as image stylization, image completion, image fusion, sketch-to-image generation, and extracting image label maps. In this thesis, a set of novel approaches for image-conditional image generation are presented. The thesis starts with an exemplar-based method for facial image stylization in Chapter 2. This method involves a unified framework for facial image stylization based on a single style exemplar. A two-phase procedure is employed, where the first phase searches a dense and semantic-aware correspondence between the input and the exemplar images, and the second phase conducts edge-preserving texture transfer. While this algorithm has the merit of requiring only a single exemplar, it is constrained to face photos. To perform generalized image-to-image translation, Chapter 3 presents a data-driven and learning-based method. Inspired by the dual learning paradigm designed for natural language translation [115], a novel dual Generative Adversarial Network (DualGAN) mechanism is developed, which enables image translators to be trained from two sets of unlabeled images from two domains. This is followed by another data-driven method in Chapter 4, which learns multiscale manifolds from a set of images and then enables synthesizing novel images that mimic the appearance of the target image dataset. The method is named as Branched Generative Adversarial Network (BranchGAN) and employs a novel training method that enables unconditioned generative adversarial networks (GANs) to learn image manifolds at multiple scales. As a result, we can directly manipulate and even combine latent manifold codes that are associated with specific feature scales. Finally, to provide users more control over image generation results, Chapter 5 discusses an upgraded version of iGAN [126] (iGANHD) that significantly improves the art of manipulating high-resolution images through utilizing the multi-scale manifold learned with BranchGAN
    • …
    corecore