
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2021

3D Shape Understanding and Generation 3D Shape Understanding and Generation

Matheus Gadelha
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons, and the Graphics and Human Computer

Interfaces Commons

Recommended Citation Recommended Citation
Gadelha, Matheus, "3D Shape Understanding and Generation" (2021). Doctoral Dissertations. 2318.
https://doi.org/10.7275/24419869 https://scholarworks.umass.edu/dissertations_2/2318

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/24419869
https://scholarworks.umass.edu/dissertations_2/2318?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2318&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

3D SHAPE UNDERSTANDING AND GENERATION

A Dissertation Presented

by

MATHEUS GADELHA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2021

College of Information and Computer Sciences

c© Copyright by Matheus Gadelha 2021

All Rights Reserved

3D SHAPE UNDERSTANDING AND GENERATION

A Dissertation Presented

by

MATHEUS GADELHA

Approved as to style and content by:

Rui Wang, Co-chair

Subhransu Maji, Co-chair

Evangelos Kalogerakis, Member

Duygu Ceylan, Member

James Allan, Chair
College of Information and Computer Sciences

DEDICATION

Para o Persistente...

ACKNOWLEDGMENTS

Being a Ph.D. student was, by far, the best job I have ever had. This happened not

only due to being able to work on problems that I found interesting and challenging,

but mainly to interacting with great people. There are many people that I am thankful

for in that regard.

My collaborators in industry: Tamy Boubekeur, Nathan Carr, Radomir Mech,

Giorgio Gori and, specially, my internship manager and committee member, Duygu

Ceylan. Thanks Adobe for allowing me to work with all these amazing people and for

generously funding part of my research. Thanks UMass Amherst and NSF for funding

my research too. I am also thankful to Tal Hassner and Stefano Soatto for making my

first interaction with industry research so pleasant at Amazon. Also, to the people at

Google: Abhijit Kundu, Andrea Tagliasacchi, Kyle Genova, Tom Funkhouser, Alireza

Fathi and Caroline Pantofaru – thank you for navigating a remote collaboration

during a weird pandemic year. Hopefully we will actually meet someday!

My amazing lab mates: Tsung-Yu Lin, Aruni RoyChowdhury, Huaizu Jiang,

Gopal Sharma, Hang Su, Pia Bideau, SouYoung Jin, Chenyun Wu, Zezhou Cheng,

Jong-Chyi Su, Ashish Singh, Li Yang and Archan Ray – thank you for the conver-

sations, meetings, ideas, dinners and companionship during all these years. I feel

incredibly lucky to have had the chance to meet you and go through this journey

together.

Great professors at UMass: Thanks Erik Learned-Miller for his joyful and insight-

ful advice, collaboration and, for promoting fun and lively paper discussions during

lab meetings; thank you Vangelis Kalogerakis for being a great collaborator and for a

v

great 3D Modelling and Simulation class that got me irreversibly hooked on the topic,

and; finally, I am forever grateful to my advisors Subhransu Maji and Rui Wang. I

will dearly miss our Wednesday morning meetings and will fondly remember them as

one of best parts of my Ph.D. Thank you, Rui, for teaching me the importance of

attending to every single detail and for diligently helping me polish my early paper

submissions – I learned a lot from those sessions and I will always try to match your

aesthetic sense. Thank you, Subhransu, for all the ideas, discussions, in-promptu

meetings and debugging sessions. Your fearless confidence in tackling hard problems

will always be an inspiration. Thank you both for being great advisors!

Even though being a Ph.D. student was a fantastic experience, many things hap-

pen outside work that made life quite hard sometimes. In all those crucial moments,

friends and family were paramount for keeping me (reasonably) sane. Thanks to

Haniel Barbosa and Hugo Melo for sharing all the hardships of being brazilian aca-

demics in computer science. Our life is a bit harder than it should be and just a

little bit of that is our fault. Thanks to Filipe Nascimento, Ana Terra, Marcelino

Góes, Luiz Rogério and José Neto for just being great friends through all these years.

Thank you, Clarinha. You will forever be missed.

Finally, I am thankful to my family for all their support. Mom, dad and Luiza: I

am sorry that I’ve put myself in a path that led me so far away and I am sorry we

had to go through such hard times while being apart. I love you and I miss you.

To my wife, Amanda, thank you for always being there for me. Your kindness and

wit are guiding lights in the darkest hours. Thank you for sharing your life with me.

You are my best friend, greatest teacher and most beloved adventure companion. I

love you dearly, darling. Thank you!

vi

ABSTRACT

3D SHAPE UNDERSTANDING AND GENERATION

SEPTEMBER 2021

MATHEUS GADELHA

B.Sc., UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

M.Sc., UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Rui Wang and Professor Subhransu Maji

In recent years, Machine Learning techniques have revolutionized solutions to

longstanding image-based problems, like image classification, generation, semantic

segmentation, object detection and many others. However, if we want to be able to

build agents that can successfully interact with the real world, those techniques need

to be capable of reasoning about the world as it truly is: a tridimensional space. There

are two main challenges while handling 3D information in machine learning models.

First, it is not clear what is the best 3D representation. For images, convolutional

neural networks (CNNs) operating on raster images yield the best results in virtually

all image-based benchmarks. For 3D data, the best combination of model and repre-

sentation is still an open question. Second, 3D data is not available on the same scale

as images – taking pictures is a common procedure in our daily lives, whereas cap-

turing 3D content is an activity usually restricted to specialized professionals. This

vii

thesis is focused on addressing both of these issues. Which model and representation

should we use for generating and recognizing 3D data? What are efficient ways of

learning 3D representations from a few examples? Is it possible to leverage image

data to build models capable of reasoning about the world in 3D?

Our research findings show that it is possible to build models that efficiently

generate 3D shapes as irregularly structured representations. Those models require

significantly less memory while generating higher quality shapes than the ones based

on voxels and multi-view representations. We start by developing techniques to gen-

erate shapes represented as point clouds. This class of models leads to high qual-

ity reconstructions and better unsupervised feature learning. However, since point

clouds are not amenable to editing and human manipulation, we also present mod-

els capable of generating shapes as sets of shape handles – simpler primitives that

summarize complex 3D shapes and were specifically designed for high-level tasks and

user interaction. Despite their effectiveness, those approaches require some form of

3D supervision, which is scarce. We present multiple alternatives to this problem.

First, we investigate how approximate convex decomposition techniques can be used

as self-supervision to improve recognition models when only a limited number of la-

bels are available. Second, we study how neural network architectures induce shape

priors that can be used in multiple reconstruction tasks – using both volumetric and

manifold representations. In this regime, reconstruction is performed from a single

example – either a sparse point cloud or multiple silhouettes. Finally, we demonstrate

how to train generative models of 3D shapes without using any 3D supervision by

combining differentiable rendering techniques and Generative Adversarial Networks.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES .xiii

LIST OF FIGURES . xvi

CHAPTER

INTRODUCTION . 1

1. SHAPE GENERATION USING SPATIALLY PARTITIONED
POINT CLOUDS . 9

1.1 Related Work . 11
1.2 Method . 12
1.3 Experiments . 17
1.4 Conclusion . 23

2. MULTIRESOLUTION TREE NETWORKS FOR 3D POINT
CLOUD PROCESSING . 24

2.1 Related Work . 26
2.2 Method . 29
2.3 Experimental Results and Discussions . 34

2.3.1 Shape classification . 35
2.3.2 Single-image shape inference . 36
2.3.3 Unsupervised Learning of Point Clouds . 40
2.3.4 Discussions . 44

2.4 Conclusion . 45

ix

3. LEARNING GENERATIVE MODELS OF SHAPE
HANDLES . 46

3.1 Related work . 48
3.2 Method . 49

3.2.1 Similarity between shape handles . 51
3.2.2 Generating sets with varying cardinality . 54

3.3 Experiments . 57

3.3.1 Datasets . 57
3.3.2 Shape Parsing . 58
3.3.3 Ablation studies . 61
3.3.4 Applications . 62

3.4 Conclusion . 66

4. LABEL-EFFICIENT LEARNING ON POINT CLOUDS USING
APPROXIMATE CONVEX DECOMPOSITIONS 67

4.1 Related Work . 69
4.2 Method . 73

4.2.1 Approximate Convex Decomposition . 73
4.2.2 Self-supervision with ACD . 75

4.3 Experiments . 77

4.3.1 Shape classification on ModelNet . 77
4.3.2 Few-shot segmentation on ShapeNet . 79
4.3.3 Analysis of ACD . 82

4.4 Conclusions . 85

5. DEEP MANIFOLD PRIOR . 87

5.1 Related Work . 89
5.2 Method . 91
5.3 Limiting GP for the Deep Manifold Prior . 94

5.3.1 Discussion and Analysis . 97

5.4 Experiments . 99

5.4.1 Denoising and Interpolation . 100
5.4.2 Learning from data . 104

x

5.5 Conclusion . 105

6. SHAPE RECONSTRUCTION USING DIFFERENTIABLE
PROJECTIONS AND DEEP PRIORS . 107

6.1 Related work . 109
6.2 Method . 111

6.2.1 Radon Projection (TR) . 112
6.2.2 Silhouette Projection (TS) . 113
6.2.3 Depth Image Projection (TD) . 114

6.3 Experiments . 115

6.3.1 Tomography Reconstruction . 117
6.3.2 Shape-from-Silhouette 3D Reconstruction . 119
6.3.3 Shape-from-Depth Images 3D Reconstruction 122

6.4 Conclusion . 123

7. INFERRING 3D SHAPES FROM IMAGE COLLECTIONS
USING ADVERSARIAL NETWORKS . 126

7.1 Related work . 128
7.2 Method . 132
7.3 Experiments . 135

7.3.1 Results . 136

7.3.1.1 Varying the number of views per model 139
7.3.1.2 Shape interpolation. 140
7.3.1.3 Unsupervised shape and viewpoint prediction 140
7.3.1.4 Visualizations across categories . 141

7.3.2 Failure cases . 145

7.4 Improving PrGAN with richer supervision . 145

7.4.1 Higher-resolution models . 145
7.4.2 Using multiple cues for shape reasoning . 146
7.4.3 Experiments . 149

7.5 Conclusion and Future Work . 150

CONCLUSION AND FUTURE WORK . 152

xi

APPENDICES

A. MULTIRESOLUTION TREE NETWORKS - ADDITIONAL
EXPERIMENTS . 156

B. LEARNING GENERATIVE MODELS OF SHAPE HANDLES -
EXTRA RESULTS . 163

C. DEEP MANIFOLD PRIOR - CONVOLUTIONAL
PARAMETRIZATIONS AND ADDITIONAL
ANALYSIS . 165

BIBLIOGRAPHY . 173

xii

LIST OF TABLES

Table Page

1.1 Distance (Eq.1.4) between the generated samples and training samples for

different generative models. The numbers in parentheses indicate the

number of PCA coefficients used for each column. SGAN is the GAN

trained using the sorted data. The GAN approach outperforms the

PPCA baseline by a considerable margin even without thesorting

procedure. 19

2.1 Comparisons with classification models. Among point-based
methods that use xyz data only, ours is the best in the 1K points
group; and our 4K result is comparable with KDNet at 32K
points. 35

2.2 MRTNet ablation studies on shape classification. Filters/4
reduces the number of filters in each layer by 4. The last three
rows are the single resolution model. 36

2.3 Single-image shape inference results. The training data consists of 13

categories of shapes provided by [35]. The numbers shown are

[pred→GT / GT→pred] errors, scaled by 100. The mean is computed

across all 13 categories. Our MRTNet produces 4K points for each

shape. 37

2.4 Ablation studies for the image to shape decoder. The numbers

shown are [pred→GT / GT→pred] errors, scaled by 100. The values

are the mean computed across all 13 categories. 37

2.5 Unsupervised representation learning. The MR-VAE model is
trained with all ShapeNet objects, and its features are used to
classify ModelNet40 [206] objects. This protocol is the same used
by the other competing methods. Our classifier is a single linear
layer, where the input is a set of features gathered from the first
three layers of the MR-VAE encoder. 43

3.1 Quantitative results for shape parsing. Intersection over union
computed on the reconstructed shapes. The best self-supervised
results are shown in bold font. 61

xiii

3.2 Quantitative results of ablation studies comparing our full model with two

variations that lack our handle similarity metric and alternate training

procedure respectively. 62

4.1 Unsupervised shape classification on the ModelNet40 dataset. The

representations learned in the intermediate layers by a network trained

for the ACD task on ShapeNet data are general enough to be useful for

discriminating between shape categories on ModelNet40. 79

4.2 Few-shot segmentation on the ShapeNet dataset (class avg. IoU over 5

rounds). K denotes the number of shots or samples per class for each

of the 16 ShapeNet categories used for supervised training. Jointly

training with the ACD task reduces overfitting when labeled data is

scarce, leading to significantly better performance over a purely

supervised baseline. 80

4.3 Comparison with state-of-the-art semi-supervised part segmentation

methods on ShapeNet. Performance is evaluated using

instance-averaged IoU. 81

4.4 Comparing embeddings from PointNet++ [141] and DGCNN [198]

backbones: shape classification accuracy on ModelNet40

(Class./MN40) and few-shot part segmentation performance in terms

of class-averaged IoU on ShapeNet (Part Seg./ShapeNet). 83

5.1 Quantitative results for point cloud denoising. Surface, Contour

and Implicit represent different deep manifold priors based on a

2-manifold, 1-manifold and level-set paramertization. 99

5.2 Ablation studies. Comparison between different variations of our

approach. Naming follows the following convention: S corresponds to a

2-manifold parameterization (surface), whereas C corresponds to a

1-manifold (contour). The following number (1 or 8) corresponds to

the number of parameterizations. A R letter is added if stretch

regularization was used (λ = 1.0). 99

5.3 Quantitative results for single-view image-to-shape

reconstruction. The table reports the mean Chamfer distance metric

(scaled by 103) computed per category and per instance. 105

xiv

6.1 3D reconstruction from silhouettes with uncertain
viewpoints. Intersection over union of the reconstructed
occupancy from 12 different shapes. We randomly sample
viewpoints to generate 8 binary images for each shape. Those
viewpoints are slightly perturbed before being used by the
methods, except for the last (Carving∗) which corresponds to
using space carving without noisy viewpoints. Our approach
significantly outperforms the space carving baseline in all
scenarios. 121

7.1 Quantitative comparison between models trained with different
projection operators. The Chamfer similarity under the
volumetric intersection over union (IoU) is shown for PrGAN
trained with varying amounts of supervision and a 3D-GAN
trained with volumetric supervision. The metric (higher the
better) indicates that PrGAN with richer supervision are better
and approaches the quality of 3D-GAN. PrGAN∗ is trained
using only 4 out of 8 views per object. PrGAN† is trained using
all 8 views but for half of the objects. 148

A.1 Shape segmentation results. Numbers reported here are the mean

intersection over union (mIoU) scores. The table shows comparisons

between methods that use 3D position information without normal

information. 157

A.2 Single-image shape inference. Full results of the ablation studies

covering all 13 categories. Note that MRTNet is consistently better

than both baselines. 159

C.1 Quantitative results for single-view image-to-shape

reconstruction. The table reports Chamfer distance metric (scaled

by 103) computed per category, and the mean of all categories. For

each method 4K points were used to compute the distance. 167

C.2 Architecture variations and evaluation results. The table reports

per-category mean and per-instance mean for MRTNet, and three

variations of our methods: single decoder with 4K output points, 16K

output points, and 32 decoders with 32 output points. For all cases,

the Chamfer distance is calculated using 4K sample points, and results

are scaled by 103. 168

C.3 Comparing the # of network parameters. 169

xv

LIST OF FIGURES

Figure Page

1 Point clouds sorted according to spatial partitioning structures induce

reasonable point correspondence (indicated by similar colors). The

same structure can also be used to compute multiple point cloud

resolutions. We build upon these observations to design

multi-resolution convolutional operators for point cloud data. 3

2 Single-view reconstruction using MRTNets. 4

3 PrGAN is capable of learning generative models of 3D data without using

any 3D supervision. The core of the approach is the utilization of

differentiable projection operators that turn 3D representation into

images of silhouettes and segmentation masks. 7

1.1 Our network architecture for generating 3D shapes using spatially

partitioned point clouds. We perform PCA analysis on the training

data to drive a shape basis and associated shape coefficients. We then

train a GAN to learn the multi-modal distribution over the

coefficients. The generated coefficients are combined with the shape

basis to produce the output point clouds. 10

1.2 Visualization of spatially partitioned points for six training shapes from

each category. Every point is colored by its index in the sorted order.

This shows that the kd-tree sorting leads to reasonably good

correspondences between points across all shapes. 13

1.3 A gallery showing results of using our method to generate points clouds for

three categories: airplane, chair, and car. We use our method to train

a GAN for each category separately. The training is generally very fast

and completes within a few minutes. The results shown here are

generated by randomly sampling the encoding z of the GAN. 16

1.4 Decay of PCA reconstruction error following I = 1000 iterations of the

point optimiation procedure. The vertical axis represents the PCA

reconstruction error and the horizontal axis represents the number of

iterations. 17

xvi

1.5 Results for a mixed category (chair + airplane) showing the ability of our

method to capture multi-modal distributions over mixed-category

shapes. 18

1.6 Chairs generated with normal. For visualization we shade each point as a

square patch centered at the point and oriented by the normal. This

shows the ability of our method to generate not only x, y, z coordinates

but also incorporate associated point attributes such as normal. 18

1.7 3D-GAN result for the chair category. The models are generated by

following [204]. 19

1.8 Sorting point clouds using x+ y + z values. Top row shows a visualization

of the training data using this sorting strategy. Bottom row shows the

generated shapes for the chair category. They are visually of poor

quality compared to kd-tree sorting. 20

1.9 Samples from an alternative GAN architecture using 1D convolutions.

Trained using the the point clouds directly. 20

1.10 Interpolation of the encodings z between a start shape and an end shape

for each of the three categories shown here: airplane, car, and chair. 22

2.1 Overview of MRTNet. On the left, the MRT-Encoder takes as input a 1D

ordered list of points and represents it at multiple resolutions. Points

are colored by their indices in the list. On the right, the MRT-Decoder

directly outputs a point cloud. Our network can be used for several

shape processing tasks, including classification (red), image-to-shape

inference (blue), and unsupervised shape learning (green). Refer to

Fig. 2.2 for details on the encoder and decoder. 26

2.2 Our multiresolution tree network (MRTNet) for processing 3D point

clouds. We represent a 3D shape as a 1D list of spatially sorted point

cloud. The network represents each layer at three scales (indicated by

yellow, red, and blue), the scale ratio is k between each two. The last

two convolution layers have kernel size 1 and stride 1. MR-CONV

refers to multi-resolution convolution (zoom-in to the inset for details);

and MR-CONV-T refers to MR-CONV with transposed convolution.

Our network is flexible and can be used for several shape processing

tasks. 29

2.3 Shapes generated by 1) the fully connected baseline; 2) the

single-resolution baseline; and 3) MRTNet. Colors in the first row

indicate the index of a point in the output point list. 38

xvii

2.4 Qualitative results for single-image shape inference. From top to bottom:

input images, ground truth 3D shapes, results of MRTNet, Fan et

al. [49], and Choy et al. [35]. 39

2.5 Shapes generated by applying MRTNet on Inernet photos of furnitures

and toys. MRTNet is trained on the 13 categories of ShapeNet

database (Table 2.3) . Note how the network is capable of generating

detailed shapes from real photos, even though it is trained only on

rendered images using simple shading models. For each output shape

we show two different views. 40

2.6 Qualitative comparisons of MR-VAE with a single-resolution baseline

model. Results are generated by randomly sampling the encoding z.

MR-VAE is able to preserve shape details much better than the

baseline model, and produces less noisy outputs. 41

2.7 Test set shapes reconstructed by MR-VAE trained on all categories of

ShapeNet (using 80%/20% training/test split). MR-VAE is able to

reconstruct high-quality diverse shapes. 41

2.8 Point correspondences among different shapes generated by MR-VAE. We

picked three index ranges (indicated by three colors) from one example

chair, and then color coded points in every shape that fall into these

three ranges. The images clearly show that the network learned to

generate shapes with consistent point ordering. 42

2.9 Shape interpolation results. For each example, we obtain the encodings z

of the starting shape and ending shape, then linearly interpolate the

encodings and use the decoder to generate output shapes from the

interpolated z. Results show plausible interpolated shapes. 43

3.1 Gallery of 3D shapes generated as sets of handles (zoom for

details). We propose a class of generative models for synthesizing sets

of handles – lightweight proxies that can be easily utilized for

high-level tasks such as shape editing, parsing, animation etc. Our

model can generate sets with different cardinality and is flexible to

work with various types of handles, such as sphere-mesh handles [178]

(first and third figures) and cuboids (middle figure). 46

3.2 Overview. We propose a method to train a generative model g for
sets of shape handles. Once trained, the latent representation z
can also be used in applications like shape editing and
interpolation. 50

xviii

3.3 Schematic representation of sphere-meshes. A sphere-mesh (middle) is

computed from a regular triangle mesh (left) as input, and it consists

of multiple sphere-triangles (right), each of which is a volumetric

representation . 53

3.4 Comparison of results after the first stage (top row) and second stage

(bottom row) of alternate training. While the first stage ensures

coverage, some extra, unnecessary handles are also generated. The

second stage trains the existence branch, which assigns a low

probability of existence to the inaccurate handles. 56

3.5 Shape parsing on the chairs dataset. From top to bottom, we show

ground-truth shapes, results by Tulsiani et al. [186], results by our

method using sphere-mesh handles, and our method using cuboids

handles. Note how our results (last two rows) are able to generate

handles with much better details such as the stripes on the back of the

chair (first column), legs on wheel chairs (second column) and armrests

in several other columns. 59

3.6 Shape parsing on the airplanes and animals datasets. From top to

bottom, we show ground-truth shapes, results by Tulsiani et al. [186],

results by Paschalidou et al. [136], and results by our model trained

using sphere-mesh handles. Our results contain accurate geometric

details, such as the engines on the airplanes and animal legs that are

clearly separated. 60

3.7 Ablation studies. Shapes generated from a model trained without our

proposed handle similarity metric (first row), model trained without

the two-stage training procedure (second row), and our full model (last

row). Note that comparing handles using just `2-norm (first row)

yields poor results. Training gp and ge at the same time (instead of

alternating) yields reasonable results, but some parts are missing

and/or poorly oriented. 61

3.8 Latent space interpolation Sets of handles can be interpolated by

linearly interpolating the latent representation z. Transitions are

smooth and generate plausible intermediate shapes. Notice that the

interpolation not only changes handle parameters, but also adds new

handles / removes existing handles as necessary. 63

3.9 Results of handle completion. Recovering full shape from incomplete

set of handles. Using γ to control the complexity of the completed

shape (left). Predicting a complete chair from a single handle (right).

. 65

xix

3.10 Editing chairs. Given an initial set of handles, a user can modify any

handle (yellow). Our model then updates the entire set of handles,

resulting in a modified shape which observes the user edits while

preserving the overall structure. 65

4.1 Overview of our method v.s. a fully-supervised approach. Top:

Approximate Convex Decomposition (ACD) can be applied on a large

repository of unlabeled point clouds, yielding a self-supervised training

signal for the neural network without involving any human annotators.

Bottom: the usual fully-supervised setting, where human annotators

label the semantic parts of point clouds, which are then used as

supervision for the neural network. The unsupervised ACD task results

in the neural network learning useful representations from unlabeled

data, significantly improving performance in shape classification and

semantic segmentation when labeled data is scarce or unavailable. 68

4.2 Input point clouds (first row), convex components automatically

computed by ACD (second row) and human-labeled point clouds (last

row) from the ShapeNet [24] part segmentation benchmark. Note – (i)

different colors for the ACD components only signify different parts–

no semantic meaning or inter-shape correspondence is inferred by this

procedure; (ii) for the human labels, colors do convey semantic

meaning: e.g.the backs of chairs are always orange; (iii) while the

ACD decompositions tend to oversegment the shapes, they contain

most of the boundaries present in the human annotations, suggesting

that the model has similar criteria for decomposing objects into

subparts; e.g.chair’s legs are separated from the seat, wings and

engines are separated from the airplane boundary, pistol trigger is

separated from the rest, etc . 73

4.3 Qualitative comparison on 5-shot ShapeNet [24] part segmentation. The

baseline method in the first row corresponds to training using only 5

examples per class, whereas the ACD results in the second row were

computed by performing joint training (cross-entropy from 5 examples

+ contrastive loss over ACD components from ShapeNetCore). The

network backbone architecture is the same for both approaches –

PointNet++ [141]. The baseline method merges parts that should be

separated, e.g.engines of the airplane, details of the rocket, top of the

table, seat of the motorcycle, etc. 82

4.4 Classification accuracy of a linear SVM on the ModelNet40 validation set

v.s. the ACD validation loss over training epochs. 83

xx

4.5 Correspondence between human part labels and shape decompositions:

comparing ACD with basic clustering algorithms – K-means, spectral

clustering and hierarchical agglomerative clustering (HAC). Row-1:

histogram of normalized mutual information (NMI) between human

labels and clustering – ACD is closer to the ground-truth parts than

others (y-axes clipped at 100 for clarity). Row-2: plotting precision

v.s. recall for each input shape, ACD has high precision and moderate

recall (tendency to over-segment parts), while other methods are

usually lower in both metrics. 84

5.1 Deep manifold prior. Points interpolated by using deep networks to

map points in a 2D grid (top) and 1D grid (bottom) to the target

shape (a 3D surface and a 2D curve respectively). The networks are

randomly initialized and trained to minimize the Chamfer distance to

the target. 88

5.2 Manifold reconstruction pipeline. Manifold parametrizations are

encoded by neural networks (fθi) and trained to minimize the

reconstruction error with respect to the noisy target (left). Prior

induced by the neural networks makes the generated surface much

closer to the ground-truth (right), without ever seeing any additional

training data. 89

5.3 Characterizing the deep manifold prior. (left) a plot demonstrating

the relationship between the network depth and the covariance

function for the limiting GP. (middle) Random curves generated by

the coordinate (top rows) and arc-length (bottom rows)

parametrizations using deep networks with varying depths. (right)

Random surfaces generated by deep networks of varying depths. 94

5.4 Effect of the regularization weight on the reconstructed

manifold. For this experiment, we use our method to reconstruct a

sphere using an atlas with 8 charts and render each one with a

different color. Without any regularization, there is a significant

amount of deformation applied to each surface (hence the space

between the points) and a considerable amount of overlap between

different parts. As the regularization weight increases, those aspects

are noticeably reduced. 100

5.5 Interpolation results on the top. Stretch regularization (λ = 1.0) helps

generate smoother surfaces. On the bottom, denoising using one vs.

multiple parametrizations. Shapes on the left were reconstructed using

a single parameterization, whereas shapes on the right used 8

parameterizations. Using multiple parameterizations helps reconstruct

complex shapes. 103

xxi

5.6 Comparison to the deep image prior [188]. Image-based prior

(middle) is not able to connect the dots in the input image (left). On

the other hand, the manifold prior is able to reasonably interpolate the

dotted drawing. 103

5.7 Qualitative comparison between different denoising methods.

Rows display different methods, whereas columns display different

shapes. Baseline methods do not perform as well as the deep manifold

prior, even for closed surfaces like the bunny (first column) and the

dragon (fifth column). As we can see, 2-manifold parameterizations are

better for reconstructing surfaces, whereas 1-manifold counterparts

reconstruct the curves (last two columns) more acurattely. 104

5.8 Autoencoder results. Results on using AtlasNet [68] trained w/o (top)

and w/ (bottom) stretch regularization. The latter results in meshes

with reduced deformation and overlap, and removes artifacts where the

chair’s back is incorrectly filled. 105

6.1 Shape reconstruction from binary images with uncertain

viewpoints. We propose to use deep networks together with

differentiable projection operators for shape reconstruction. Our

approach leverages the shape prior induced by neural networks to

reconstruct shapes from projections without any learning procedure.

Additionally, our approach can use differentiable operators to

reconstruct shapes under noisy projection measurements, like

perturbed viewpoint information. 108

6.2 A example 2D shape to depth projection. On the left is a 2D shape

visualized as a binary occupancy (white is occupied). The visibility

map for each pixel from the top and right views are shown next – a

pixel is white (value=1) if it is visible. The depth maps are obtained

by summing the visibility maps along the vertical and horizontal

directions for the top and right views receptively. 115

6.3 Tomographic reconstruction results from sinograms (radon
transforms) sampled with n = 30 angles and noise (σ = 1). The
sinogram is rescaled to the image size with nearest neighbor
interpolation for visibility. From left to right in each row is the
noise free image, the noisy sinogram, reconstruction with the
filtered backprojection (FBP), TV prior, BM3D, and deep image
prior. The SSIM and PSNR are shown for each approach on top
of the corresponding figure. Our approach outperforms the other
learning free baselines by a significant margin. Zoom in for
details. 116

xxii

6.4 Effect of the number of views in the reconstruction from

silhouettes. 3D shape reconstructed from silhouette images of the

same object. Even without having access to enough 3D information,

our method is still capable of generating plausible shapes. 117

6.5 Reconstruction from silhouettes without viewpoint noise. 3D

shapes reconstructed from 8 silhouette images of the same object.

Viewing angles were sampled uniformly at random. Top row using

space carving baseline, middle row using the deep image prior, bottom

row is ground-truth. 119

6.6 Shape-from-silhouette reconstruction using captured images. For

this glass object, we photographed 4 views, with 45◦ angle apart,

against a uniform background color. We then applied background-color

removal and converted each image to binary silhouette image. The

first reconstructed model is the result using our deep prior, whereas

the second is the result using the space carving baseline. 121

6.7 Shape-from-silhouette reconstruction with perturbed viewpoints.

Results for the space carving baseline in the first row, our method in

the second row, ground-truth shapes in the third row. Our results are

computed minimizing Equation 6.11 through 500 gradient descent

steps. Our method is capable of updating the initial viewpoint

parameters and is capable to recover from imprecise viewpoint

assignment. The space carving baseline is not robust to viewpoint

perturbations which means it ends up carving the wrong regions of the

volume, leading to poor reconstructions and eliminating thin object

structures. 123

6.8 Effect of noise in the reconstruction. 3D shape reconstructed from 4

noisy depth images of the same object. The variance of the Gaussian

noise increases from left to right. Shape prior can reconstruct high

quality shapes even with considerable amount of noise. 124

6.9 Effect of the number of views in the reconstruction from depth

images. 3D shape reconstructed from very noisy (σ = 0.1) depth

images of the same object. On the left, example of the input depth

images. If provided enough views, our method is able to reconstruct

high quality shapes even from highly noisy inputs. 124

7.1 Our algorithm infers a generative model of the underlying 3D shapes
given a collection of unlabeled images rendered as silhouettes,
semantic segmentations or depth maps. To the left, images
representing the input dataset. To the right, shapes generated by
the generative model trained with those images. 127

xxiii

7.2 The PrGAN architecture for generating 2D silhouettes of shapes factorized

into a 3D shape generator and viewpoint generator and projection

module. A 3D voxel representation (C×N3) and viewpoint are

independently generated from the input z (201-d vector). The

projection module renders the voxel shape from a given viewpoint

(θ, φ) to create an image. The discriminator consists of 2D

convolutional and pooling layers and aims to classify if the generated

image is “real” or “fake”. The number of channels C in the generated

shape is equal to one for an occupancy-based representation and is

equal to the number of parts for a part-based representation. 131

7.3 The input to our model consists of multiple renderings of different
objects taken from different viewpoints. Those image are not
annotated with identification or viewpoint information. Our
model is able to handle images from objects rendered as
silhouettes (left), semantic segmentation maps (middle) or depth
maps (right). 132

7.4 Comparison between 2D-GAN [63] and our PrGAN model for image
generation on the chairs dataset. Refer to Figure 7.9 third row,
left column for samples of the input data. 136

7.5 Comparison between 3D-GAN [204] and our PrGAN for 3D shape
generation. The 3D-GAN is trained on 3D voxel representation of
the chair models, and the PrGAN is trained on images of the
chair models (refer to Figure 7.9 third row). 137

7.6 Shapes generated from PrGAN by varying the number of views per
object in the training data. From the top row to the bottom row,
the number of views per object in the training set are 1, 2, 4, and
8 respectively. 138

7.7 Shape interpolation by linearly interpolating the encodings of the
starting shape and ending shape. 140

7.8 At top 3 rows, the four images are different views of the same chair, with

predicted viewpoint on the top. Shapes are different but plausible

given the single view. In the bottom row, shape inferred (right) by a

single view image (left) using the encoding network. Input images were

segmented, binarized and resized to match the network input. 142

xxiv

7.9 Results for 3D shape induction using PrGANs. From top to bottom we

show results for airplane, car, chair, vase, motorbike, and a ’mixed’

category obtained by combining training images from airplane, car,

and motorbike. In each row, we show on the left 64 randomly sampled

images from the input data to the algorithm, on the right 128 sampled

3D shapes from PrGAN, and in the middle 64 sampled images after

the projection module is applied to the generated 3D shapes. The

model is able to induce a rich 3D shape distribution for each category.

The mixed-category produces reasonable 3D shapes across all three

combined categories. Zoom in to see details. 143

7.10 A variety of 3D shapes generated by PrGAN trained on 2D views of
(from the top row to the bottom row) airplanes, cars, vases, and
bikes. These examples are chosen from the gallery in Figure 7.9
and demonstrate the quality and diversity of the generated
shapes. 144

7.11 Our method is unable to capture the concave interior structures in
this chair shape. The pink shapes show the original shape used to
generate the projected training data, shown by the three binary
images on the top (in high resolution). The blue voxel
representation is the inferred shape by our model. Notice the lack
of internal structure. 144

7.12 Shapes generated using new part segmentations and depth maps.
From top to bottom, results using depth images, images with part
segmentation, silhouettes and silhouettes annotated with
viewpoints. Models trained with images containing additional
visual cues are able to generated more accurate shapes. Similarly,
viewpoint annotation also helps. Notice that shapes generated
from images with part annotation are able to generate
part-annotated 3D shapes, highlighted by different colors. 151

A.1 Qualitative results for the shape segmentation task. Each different

segmentation part is shown in a different color. 158

A.2 Reconsturcted meshes from point clouds generated by applying MRTNet

on Inernet photos of furnitures and toys. From top-down, the first

image in each example is the input photo, the second is the point cloud

(each 4K points) generated by MRTNet, the third is a rendering of the

reconstructed mesh. We rendered each mesh in wireframe mode to

reveal the underlying triangles. Zoom in for details. 160

xxv

A.3 Chairs generated by randomly sampling the encoding. Top: results from

our MR-VAE; Bottom: results by using a fully connected (FC)

baseline. 161

A.4 ShapeNet shapes arranged according to their encodings learned

by MR-VAE. 1000 samples from our model trained in the ShapeNet

data. The position of the models in the plane is computed after

running t-SNE on the latent representation of the shapes. Zoom in for

details. 162

B.1 Additional completion examples. Given an incomplete set of
handles (orange cuboids), we solve the optimization problem
described in Equation 8 (main paper) using gradient descent.
Using different starting points for z∗, our model is capable of
computing multiple plausible results that represent a complete
shape and closely approximates the incomplete set of handles.
. 164

C.1 Comparison of Conv and MLP networks for denoising. Average error

across shapes to the right. Both models use 8 parametrizations and

stretch regularization. Zoom for details. 166

C.2 Image-to-shape reconstruction results from the test set. The

images shown are the input (black background), our results (32K

points, rendered blue), and ground truth (rendered in light green).

Qualitatively, our method is able to generate high-resolution point

clouds faithfully capturing fine geometric details such as the chair legs,

arms, airplane engines, monitor stands etc. 167

C.3 Image-to-shape reconstruction results on Internet photos. We test

our method on real photos downloaded from the Internet and the

results are rendered in blue. The test images here are considerably

different from the training set. Our method achieves reasonable results

with accurate geometric details. The last image (computer) represents

a category that has not been seen during training. 170

C.4 Visualizing Shape Correspondences. Our network learns approximate

shape correspondences even though the training is not supervised with

such information. The shapes shown here are generated by 32

decoders. 170

xxvi

INTRODUCTION

The ability of reasoning in a tridimensional space is of utmost importance for any

agent in our physical world. Very early in the evolutionary process, living beings

developed mechanisms for sensing the world in 3D. Birds, mammals, reptiles and

even insects: they all developed some type of stereopsis – the ability to perceive

3D from multiple views. Since evolution showed us that living beings benefit from

3D reasoning, it makes sense that man-made agents should be endowed with similar

capabilities. If we want to build machines that can interact with the world around us,

grasp objects, avoid obstacles and reason about the space in general, we need to be

able build models that allow those machines to analyze and generate 3D data. This

thesis is focused on developing techniques that allow us to build those models in a

variety of scenarios, with a specific focus on deep learning techniques.

We are mainly concerned about two important issues: representation and data.

Regarding representations, differently from images, it is not clear what is the best

way to represent 3D data in deep learning models. The first part of this thesis (Chap-

ters 1, 2 and 3) focuses on irregularly structured representations. We show how we

can build models capable of generating 3D data represented as sets of point clouds

(Chapters 1 and 2) and shape handles (Chapter 3). Point cloud models have a smaller

memory footprint than volumetric and multiview counterparts while reconstructing

more accurate shapes; models based on sets of shape handles have a different goal

– they are designed be amenable to shape manipulation tasks, like editing and com-

pletion. The second part of this thesis concerns dealing with the lack of 3D data

as supervision and understanding what is the role that neural network architectures

1

play in inducing shape priors. Chapter 4 describes how to utilize approximate con-

vex decomposition (ACD) as self-supervised learning task to improve discriminative

models of point clouds trained with limited amount of labels. We show that features

learned by computing ACD yield significant improvement in few-shot segmentation

and unsupervised shape classification benchmarks. Chapters 5 and 6 explore the

prior induced by neural networks when generating 3D data. Chapter 5 studies the

case where networks are used to represent manifolds. We analytically characterize

this prior by analyzing the networks’ limiting behavior as a Gaussian Process and

show that it yields impressive results in surface reconstruction tasks. On the other

hand, Chapter 6 is focused on reconstructing shapes using volumetric representations

while learning directly from images. We introduce a series of differentiable projection

operators and show applications to shape reconstruction from silhouettes, depth im-

ages and computational tomography. Chapter 7 builds upon some of these operators

to tackle a more challenging problems: learn generative models of 3D data when no

3D or viewpoint information is available. More precisely, we present a class of gener-

ative adversarial networks, named PrGANs, that is capable of generating 3D shapes

from a collection of unlabeled images.

Learning from Irregularly Structured Data

Tridimensional occupancy grids are a natural choice for representing 3D data in

deep neural networks. They are a straightforward extension to raster images and

convolutional layers can be seamlessly applied to this type of data. Another way to

represent 3D data is by simply utilizing multiple 2D images of a 3D object. We refer

to this as multi-view representation. This type of representation can also be easily

integrated with convolutional layers and even offers the extra advantage of being able

to leverage image features pre-trained from massive image datasets.

However, generating 3D shapes poses a more challenging situation. While gen-

erating 3D data, we are primarily concerned about generating surfaces, which are

2

Figure 1: Point clouds sorted according to spatial partitioning structures induce reasonable
point correspondence (indicated by similar colors). The same structure can also be used
to compute multiple point cloud resolutions. We build upon these observations to design
multi-resolution convolutional operators for point cloud data.

inherently sparse in the 3D space. This leads to a big drawback for occupancy grids:

models using them require huge amounts of memory, being prohibitively large when

generating high-resolution shapes. For multi-view representations, there are two main

issues: first, these representations are restricted to representing only the visible por-

tion of the surface – interior parts are not represented. Second, it is not clear how to

enforce consistency between different views, which leads to a reduced quality in the

generated shapes. Nevertheless, these models are still very memory intensive and the

literature has generating multiple categories of objects.

A reasonable alternative to those 3D representations is utilizing point clouds.

Point clouds are a very compact surface representation – every point in the point

must be part of the surface. They also naturally support extra surface attributes, like

color and normals, and are directly captured by a variety of 3D sensors. The biggest

challenge while using point clouds in deep networks lies in its unstructured nature.

Since they are sets of points, point cloud representations need to be invariant to

permutations. Moreover, differently form multi-view representations and occupancy

grids, it is not clear what is the best way to use convolutional layers in point cloud

data.

3

Figure 2: Single-view reconstruction using MRTNets.

Our attempt in creating generative models for point clouds was bootstrapped by

using spatial-partitioning data-structures to assign an approximate correspondence

between points of different point clouds [51]. The motivation is simple: if one can

induce such correspondence, point clouds can be treated as structured data. In prac-

tical terms, we compute a kd-tree for every point cloud and sort the points according

to a level-order traversal in the leaves of the tree. This sorting induces a reasonable

correspondence between points, as shown in Figure 1. Using this correspondence, we

compute a linear low-dimensional shape representation that were used to train the first

Generative Adversarial Networks (GANs) for point cloud generation [51] (Chapter

1). Later, we noticed that the spatial partitioning induces a local neighborhood that

can be successfully used to define convolutional operations and to represent multiple

point cloud resolutions [55] (Chapter 2). We called these models Multi-Resolution

Tree Networks (MRTNets) and applied them to a variety of discriminative and gen-

erative tasks, like shape classification, part segmentation, single-view reconstruction

and VAEs. Some of the results are presented in Figure 2. The models have a small

memory footprint when compared against multi-view and occupancy grids counter-

parts while yielding state-of-the-art results for point cloud classification, single-view

reconstruction and unsupervised feature learning benchmarks.

However, manipulating shapes represented as point clouds is a complicated task.

Suppose one wants to edit the wings of an airplane and make them a bit larger. If the

airplane is represented as a set of points that means manually selecting and displacing

a big number of elements, which is a very laborious, borderline unfeasible task. To

this end, multiple techniques have been developed to summarize 3D shapes a set of

4

simpler proxy shapes that are amenable to manipulations. We refer to those as shape

handles. Thus, we build upon our previous point cloud work and develop generative

models capable of creating shapes represented as sets of shape handles [50] (Chapter

3). We then show how those models can be trained an utilized in applications like

shape editing, creation, parsing and interpolation.

Learning with Limited 3D Supervision and Shape Priors

Gathering 3D data is a laborious task. Popular 3D shape benchmarks are orders

of magnitude smaller than their image counterparts. In this context, building models

and training strategies that rely in less training data is specially important. In this

thesis, we tackle this problem in multiple manners.

We start by investigating discriminative models for 3D data trained with a limited

amount of labels. Simply gathering 3D data is by itself a problem, but labeling such

data is equally problematic. While many methods have been developed to improve

the efficiency of labeling tasks for 3D shapes, it is still highly desirable to develop

label-efficient models that can leverage data from vast unlabelled shape repositories.

To this end, we propose to utilize Approximate Convex Decomposition (ACD) as a

self-supervised task for training neural networks [54] (Chapter 4). We show how

point cloud architectures can learn ACD by posing it as a metric learning problem

trained using automatically computed labels from raw shape representations (meshes,

volumes or point clouds). Our experiments indicate that multiple neural networks

architectures trained in this fashion achieve state of the art results in few shot part

segmentation and unsupervised shape classification benchmarks.

Another way to tackle the lack of 3D data available is to investigate the role

of neural network architectures as priors for shape generation. For images, recent

work [188] has showed that convolutional architectures induce natural image priors

that allow them to be used for multiple reconstruction tasks without requiring any

5

training data. We investigate an analogous behavior for two types of 3D representa-

tions in different contexts. We start by describing how some popular neural network

architectures for shape generation can be posed as manifold parametrizations and in-

duce useful priors for manifold reconstruction (Chapter 5). We further analyze the

limiting behavior of those models as Gaussian Processes (GPs) and analytically char-

acterize such prior by deriving its kernel. We also develop regularization techniques

that further improve shape reconstructions in setups with and without training data.

In the following chapter, we use convolutional architectures to generate volumetric

shape representations coupled with differentiable projection operators to reconstruct

shapes from a set of images [56] (Chapter 6). We show how volumetric priors in-

duced by those convolutional architectures can be used in applications like shape

reconstruction from silhouettes, depth maps, and computational tomography.

Finally, we investigate how to utilize image supervision to train 3D generative

models. As mentioned before, image data is considerably more prevalent than 3D.

For example, the most used shape classification benchmark, ModelNet40, contains

about 10 thousand shapes, whereas the most popular image classification benchmark,

ImageNet, contains about 14 million images. Nevertheless, images usually contain

real world entities which are inherently 3D. In other words, a lot of 3D information

is encoded in images and being able to leverage that information to learn to generate

3D shapes is key to build models that can overcome the lack of 3D training data. We

study this issue within a very challenging problem setup. Consider a set of silhouette

images like the ones in Figure 3. Those images represent silhouettes of various objects

from the same category. If we have viewpoint annotation and object identification

(i.e. which images correspond to the same object) this problem can be easily solved

using visual hull, which corresponds to the setup analyzed in Chapter 6. We can

make the problem harder by assuming that no viewpoint annotation is available. In

that case, we can probably achieve a reasonable result by relying in Structure from

6

Figure 3: PrGAN is capable of learning generative models of 3D data without using
any 3D supervision. The core of the approach is the utilization of differentiable projection
operators that turn 3D representation into images of silhouettes and segmentation masks.

Motion (SfM) techniques. The most difficult setup occurs when we neither have

object identification nor viewpoint annotation. In this scenario, one can only rely on

non-rigid SfM, which require a strong prior over the generated shapes. What happens

when we have no information regarding 3D shapes? Can we still do something about

it?

Our solution consists of utilizing deep generative models coupled with some of the

differentiable projection operators described in Chapter 4. The intuition is simple:

given a dataset with images, we want to generate 3D shapes that, when projected into

the image plane, will look like they came from the dataset. More precisely, we want

to match the distribution of images in the dataset to the images created by projecting

the generated 3D shapes. Fortunately, there is a class of deep learning models which

is remarkably good in mimicking target image distributions: generative adversarial

networks (GANs). Thus, we augment the GAN generator with a differentiable shape

projection module which turns 3D shapes into silhouette images. The result is a 3D

generative model that is trained without ever seeing any 3D data, only silhouettes of

7

3D objects (Chapter 7). We name this model Projective GAN (PrGAN) [52, 53].

Additionally, we extended the projection operators from Chapter 6 to enable learn-

ing from extra image annotations allowing training PrGANs from part-segmented

images [53].

8

CHAPTER 1

SHAPE GENERATION USING SPATIALLY
PARTITIONED POINT CLOUDS

The choice of representation is a critical for learning a good generative model of

3D shapes. Voxel-based representations that discretize the geometric occupancy into

a fixed resolution 3D grid offers compelling advantages since convolutional operations

can be applied. However, they scale poorly with the resolution of the grid and are

also wasteful since the geometry of most 3D shapes lies on their surfaces, resulting in

a voxel grid that’s mostly empty, especially at high resolutions. Surface-based repre-

sentations such as triangle meshes and point clouds are more efficient for capturing

surface geometry, but these representations are inherently unstructured – because

there is no natural ordering of the points, they are better expressed as an unordered

set. Consequently, unlike ordered representations, they are cannot be easily generated

using existing deep convolutional architectures. The exception is when the points are

in perfect correspondence across shapes, in which case a linear shape basis can be

effective (e.g., for faces or human bodies). However estimating accurate global corre-

spondences is difficult and even poorly defined for categories such as chairs that have

complex and varying geometry. Thus generating 3D shapes as point clouds remains

a challenge.

We propose a new method for learning a generative model for 3D shapes repre-

sented as point clouds. Figure 1.1 illustrates our network architecture. The key idea

is to use a space-partitioning data structure, such as a kd-tree, to approximately order

the points. Unlike a voxel-grid occupancy representation, the kd-tree representation

9

Figure 1.1: Our network architecture for generating 3D shapes using spatially partitioned
point clouds. We perform PCA analysis on the training data to drive a shape basis and
associated shape coefficients. We then train a GAN to learn the multi-modal distribution
over the coefficients. The generated coefficients are combined with the shape basis to
produce the output point clouds.

scales linearly with the number of points on the surface and can adapt to the geom-

etry of the model. Moreover one can easily incorporate other point attributes such

as surface normal, color, and texture coordinates into this representation, making it

possible to generate new shapes that automatically include these information. We

learn a shape basis over the ordered point clouds using low-rank factorization of the

shape coordinates. If the alignments induced by the kd-tree sorting was perfect, the

distribution of the coefficients would be simple. Indeed this is the assumption behind

generative models such as Probabilistic PCA [180] that models the distributions of

coefficients using independent Gaussians. However, imperfect alignment can lead to

a multi-modal and heavy-tailed distribution over the coefficients. To address this

issue, we propose to leverage the expressive power of neural networks and employ a

Generative Adversarial Network (GAN) [63] to learn the distribution over the shape

coefficients. Unlike other non-parametric distributions such as a mixture of Gaus-

sians, the GAN linearizes the distribution of shapes and allows interpolation between

them using arithmetic operations. At the same time our method remains light-weight

and scalable, since most shape categories can be well represented with a hundred basis

coefficients.

10

We compare the proposed generative model to a 3D-GAN approach of Wu et

al. [204] that learns a convolutional architecture over a voxel-representation of 3D

shapes. In addition we compare to a Probabilistic PCA (PPCA) baseline using the

same point-cloud representation. Experiments on several categories in the ShapeNet

dataset show that the proposed approach outperforms PPCA and 3D-GAN, quanti-

tatively and qualitatively. Compared to the 3D-GANs our models are an order-of-

magnitude faster and smaller. We then present several experiments evaluating the

role of the kd-tree on the quality of the generated shapes. We also show that a 1D-

convolutional GAN trained on the ordered list of point coordinates produces samples

of reasonable quality, suggesting that the kd-tree ordering plays a key role.

1.1 Related Work

Generative models for 3D shapes. Wu et al.in [204] proposed a generative model

of 3D shapes represented by voxels, using a variant of GAN adapted to 3D con-

volutions. Two other works are also related. Rezende et al. [145] show results for

3D shape completion for simple shapes when views are provided, but require the

viewpoints to be known and the generative models are trained on 3D data. Yan et

al.in [211] learn a mapping from an image to 3D using multiple projections of the

3D shape from known viewpoints (similar to a visual-hull technique). However, these

models operate on a voxel representation of 3D shape, which is difficult to scale up

to higher resolution. The network also contains a large number of parameters, which

are difficult and take a long time to train. Our method uses spatially partitioned

point cloud to represent each shape. It is considerably more lightweight and easy to

scale up. In addition, by using a linear shape basis, our network is small hence much

easier and faster to train. Through experiments we show that the benefits of this

lightweight approach come with no loss of quality compared to previous work. Sev-

eral recent techniques [147, 174] have explored multi-resolution voxel representations

such as octrees [117] to improve their memory footprint at the expense of additional

11

book keeping. But it remains unclear if 3D-GANs can generate high-resolution sparse

outputs.

Learning a 3D shape bases using point-to-point correspondence. Another

line of work aims to learn a shape basis from data assuming a global alignment of

point clouds across models. Blanz and Vetter in [13] popularized the 3D morphable

models for faces which are learned by a PCA analysis of the point clouds across a set

of faces with known correspondences. The same idea has also been applied to human

bodies [4], and other deformable categories [88]. However, establishing the point-

to-point correspondence between 3D shapes is a challenging problem. Techniques

are based on global rigid or non-rigid pairwise alignment (e.g., [12, 18, 29]), learning

feature descriptors for matching (e.g., techniques in this survey [189]), or fitting a

parametric model to each instance (e.g., [23,139]). Some techniques improve pairwise

correspondence by enforcing cycle-consistency across instances [80]. However, none

of these techniques provide consistent global correspondences for shapes with varying

and complex structures (e.g., chairs and airplanes). Our method uses spatial sorting

based on a kd-tree structure. It is a fast and lightweight approximation to the cor-

respondence problem. However, unlike alignment-based approaches, one drawback of

the kd-tree sorting is that it’s not robust to rotations of the model instances. This

is also a drawback of the voxel-based representations. The ShapeNet dataset [24]

used in our experiments already contains objects that are consistently oriented, but

otherwise one can apply automatic techniques (e.g., [170]) for viewpoint estimation

to achieve this.

1.2 Method

This section explains our method. To begin, we sample each training 3D shape

using Poisson Disk sampling [15] to generate a consistent number of evenly distributed

points per shape. We typically sample each shape with 1K points, and this can

12

Figure 1.2: Visualization of spatially partitioned points for six training shapes from each
category. Every point is colored by its index in the sorted order. This shows that the
kd-tree sorting leads to reasonably good correspondences between points across all shapes.

be easily increased or decreased based on actual need. We then build a kd-tree

data structure for each point cloud to spatially partition the points and order them

consistently across all shapes. Next, we compute the PCA bases using all the point

data. Finally, we train a GAN on the shape coefficients to learn the multi-modal

distribution of these coefficients and use it to generate new shapes.

Spatially partitioned point cloud. We use {P s
i } to represent a point cloud where

i is the point index and s is the shape index. By default the point data P includes

the x, y, z coordinates of a point, but can include additional attributes such as normal

and color etc. We assume each point cloud is centered at the origin and the bounding

box is normalized so that the longest dimension spans [-0.5, 0.5]. For each point

cloud we build a kd-tree by the following procedure: we start by sorting the entire

point cloud along the x-axis, and split it in half, resulting in a left subset and a

right subset; we then recursively split each of the two subsets, but this time along

the y-axis; then along z-axis, and so on. Basically it’s a recursive splitting process

where the splitting axis alternates between x, y, and z. The splitting axes can also be

chosen in other ways (such as using the longest dimension at each split) to optimize

the kd-tree building, but it needs to be consistent across all point clouds.

13

The kd-tree building naturally sorts the point cloud spatially, and is consistent

across all shapes. For example, if we pick the first point from each sorted point cloud,

they all have the same spatial relationship to the rest of the points. As a result,

this establishes reasonably good correspondences among the point clouds. Figure 1.2

shows an illustration.

Computing PCA bases. We use PCA analysis to derive a linear shape basis on the

spatially partitioned point clouds. To begin, we construct a matrix P that consists

of the concatenated x, y, z coordinates of each point cloud and all shapes in a given

category. The dimensionality of the matrix is 3N × S where N is the number of

points in each shape, and S is the number of shapes. We then perform a PCA on the

matrix: P = UΣV , resulting in a linear shape basis U . Thanks to point sorting using

kd-tree, a small basis set is sufficient to well represent all shapes in a category. We use

B to represent the size of the shape basis, and by default choose B = 100, which has

worked well for all ShapeNet categories we experimented with. The choice of B can

be observed from the rapid dropping of singular values Σ following the PCA analysis.

Without a good spatial sorting method, it would require a significantly larger basis

set to accurately represent all shapes.

To include other point attributes, such as normal, we can concatenate these at-

tributes with the x, y, z coordinates. For example, a matrix that consists of both

point and normal data would be 6N × S in size. We suitable increase the basis size

(e.g. by choosing B = 200) to accommodate the additional data. The rest of the

PCA analysis is performed the same way.

Learning shape coefficients using GAN. Our method employs a GAN to learn the

distribution over the shape coefficients. Following the PCA analysis step, the matrix

V captures the coefficients for all training shapes, i.e. the projections of each point

cloud onto the PCA basis. It provides a compact and yet accurate approximation of

the 3D shapes. Therefore our generative model only needs to learn to generate the

14

shape coefficients. Since the dimensionality of the shape basis (B = 100) is much

smaller (than the number of points on each shape), we can train a GAN to learn the

distribution of coeffcients using a simple and lightweight architecture. In our setup,

the random encoding z is a 100-D vector. The generator and discriminator are both

fully connected neural networks consisting of 4 layers each, with 100 nodes in each

layer. Each layer is followed by a batch normalization step. Following the guidelines

of previous architectures [204], our discriminator uses a LeakyReLU activation while

our generator uses regular ReLU.

The discriminator is trained by minimizing the vanilla GAN loss described as

follows:

Ld = Ex∼T [log (D(x))] + Ez∼U [log (1−D(G(z)))]. (1.1)

where x represents the shape coefficients, D is the discriminator, G is the generator,

U represents an uniform distribution of real numbers in (−1, 1), and T is the training

data. In our experiments, we noticed that using the traditional loss for the generator

leads to a highly unstable training where the generated data converges to a single

mode (which loses diversity). To overcome this issue, we employ an approach similar

to the one proposed in [151]. Specifically, let f(x) be the intermediate activations of

the discriminator given an input x. Our generator will try to generate samples that

match some statistics of the activations of the real data, namely mean and covariance.

Thus, the generator loss is defined as follows:

Lg = ‖Ex∼T [f(x)]− Ez∼U [f(G(z))]‖2
2 + ‖covx∼T [f(x)]− covz∼U [f(G(z))]‖2

2 (1.2)

where cov is the vectorized covariance matrix of the activations. Using this loss results

in a much more stable learning procedure. During all our experiments the single mode

problem never occurred, even when training the GAN for thousands of epochs. We

use the Adam optimizer [93] with a learning rate of 10−4 for the discriminator and

15

Figure 1.3: A gallery showing results of using our method to generate points clouds
for three categories: airplane, chair, and car. We use our method to train a GAN for each
category separately. The training is generally very fast and completes within a few minutes.
The results shown here are generated by randomly sampling the encoding z of the GAN.

0.0025 for the generator. Similarly to [204], we only train the discriminator if its

accuracy is below 80%.

Optimizing point ordering. While sorting using the kd-tree creates good initial

correspondences between points, the point ordering can be further optimized by iter-

atively reducing the PCA reconstruction error through the following procedure. For

shape’s point cloud {P s
i } (where s is the shape index and i is the point index), we

perform random swapping K times. Specifically, we first randomly select a pair of

16

Figure 1.4: Decay of PCA reconstruction error following I = 1000 iterations of the point
optimiation procedure. The vertical axis represents the PCA reconstruction error and the
horizontal axis represents the number of iterations.

points 〈P s
i , P

s
j 〉 and make them candidates for swapping. If the resutling PCA recon-

struction error is reduced, we swap the two points. This is repeated K times. The

reconstruction error of a vectorized point cloud P s using a basis U is computed as

follows:

Lrec(P s, U) =
∥∥(P s − µ)TUTU + µ− P s

∥∥2

2
, (1.3)

where µ = 1
|D|
∑

s∈D P
s. After every shape is processed, we then re-compute a new

PCA basis using the optimized point ordering. Finally, the whole procedure is re-

peated I iterations. In our experiments, we have chosen to use K = 104, I = 103.

Figure 1.4 shows the decay of reconstruction error during the optimization procedure.

The shapes used in this figure are chair models from the ShapeNet dataset. Experi-

ments show that the point optimization improves the results both qualitatively and

quantitatively.

1.3 Experiments

Training data. To generate training data, we use several shape categories from the

ShapeNet dataset [24], including chairs, airplanes, cars etc. We sample each shape

with 1K Poisson disk sample points using the algorithm described in [15]. Poisson

17

Figure 1.5: Results for a mixed category (chair + airplane) showing the ability of our
method to capture multi-modal distributions over mixed-category shapes.

Figure 1.6: Chairs generated with normal. For visualization we shade each point as a
square patch centered at the point and oriented by the normal. This shows the ability of
our method to generate not only x, y, z coordinates but also incorporate associated point
attributes such as normal.

disk samples evenly disperse the points over the surface, which turns out to work

better at preserving geometric details than using white noise samples. We can easily

increase the number of sample points to 4K or 8K and beyond. Unlike voxel-based

representations, our method is lightweight, and increasing the sample size only leads

to moderate increases in computation resources and time.

Qualitative evaluation. Figure 1.3 shows a gallery of results generated using our

method for each of the three categories: airplane, chair, and car. The results are

generated by randomly sampling the encoding z and demonstrate a variety of shapes

within each category. The training is very fast and generally completes within a few

minutes. This is an order of magnitude faster than training deep neural networks built

18

Dataset GAN(10) GAN(50) GAN(100) SGAN (100) PPCA (100)
Chairs 2.57 2.53 2.37 2.19 2.88

Airplanes 1.96 1.93 1.94 1.48 2.29
Cars 1.45 1.42 1.44 1.25 1.59

Tables 2.88 2.68 2.66 2.34 3.18

Table 1.1: Distance (Eq.1.4) between the generated samples and training samples for
different generative models. The numbers in parentheses indicate the number of PCA
coefficients used for each column. SGAN is the GAN trained using the sorted data. The
GAN approach outperforms the PPCA baseline by a considerable margin even without
thesorting procedure.

Figure 1.7: 3D-GAN result for the chair category. The models are generated by follow-
ing [204].

upon voxel representations. Figure 1.5 shows additional results for a mixed category

that combines shapes from the chair and airplane datasets. For this mixed category

we used B = 300 basis. The results show the ability of our method to capture the

multi-modal distributions over mixed-category shapes.

Generating multiple point attributes. Our method can generate points with

multiple attributes, such as surface normal, color, by simply appending these at-

tributes to the (x, y, z) coordinates. The overall procedure remains the same except

the shape basis is learned over the joint space of positions and normals etc. Figure 1.6

shows chair results generated with normal. The ability to incorporate point attributes

is an additional advantage over voxel-based representations (which do not explicitly

represent surface information of shapes).

Quantitative evaluation. We compare variations of our model to a PPCA base-

line [180]. The PPCA model performs a linear factor analysis of the data using:

y ∼ Wx + µ + σ. The matrix W is a basis, the latent variables x ∼ N(0, I), noise

19

Figure 1.8: Sorting point clouds using x+ y+ z values. Top row shows a visualization of
the training data using this sorting strategy. Bottom row shows the generated shapes for
the chair category. They are visually of poor quality compared to kd-tree sorting.

Figure 1.9: Samples from an alternative GAN architecture using 1D convolutions. Trained
using the the point clouds directly.

σ ∼ N(0, σ2I) and the µ is the data mean. In other words, PPCA learns an inde-

pendent Gaussian distribution over the coefficients x, whereas our approach employs

a GAN. We compare PPCA results with variations of our model by changing the

number of basis and examining its influence on the quality of the results. The met-

ric used in the evaluation is defined as follows. Let T and S be the set of training

and generated samples, respectively. We define our distance measure d(T ,S) using a

variant of the Chamfer distance, as follows:

d(T ,S) =
1

|T |
∑
t∈T

min
s∈S
‖t− s‖2 +

1

|S|
∑
s∈S

min
t∈T
‖t− s‖2 (1.4)

The results can be seen in Table 1.1. Our approach that uses a GAN to model the

distribution of coefficients consistently outperforms the PPCA baseline, which models

the distribution as a Gaussian. For the chairs and tables categories the difference be-

tween the PPCA and GAN is large, suggesting that the distribution of the coefficients

is highly multi-modal. The results by varying the number of bases are also shown in

20

the Table 1.1. Increasing the number of basis beyond a hundred did not improve our

results further.

Visual comparison to 3D-GAN. To compare our results with the 3D-GAN model [204],

we followed their description to implement our own version of the algorithm as there

is no publicly available implementation that can be trained from scratch. Figure 1.7

shows the 3D-GAN results for the chair category. As in [204], the training data

is generated by voxelizing each shape to 643 resolution, and we employ the same

hyper-parameters for our GAN model as theirs. Our results, which can be found in

Figure 1.3, compare favorably to 3D-GAN. In addition, our network is significantly

smaller and faster to train.

The role of the kd-tree. The kd-tree induces a shape-dependent but consistent

ordering of points across shapes. Moreover the ordering is locality preserving, i.e., two

points that are close in the underlying 3D shape are also likely to be close in the list

after kd-tree ordering. We believe that this property is critical for the estimating a

good basis for the shape representation. In order to verify this hypothesis we consider

an alternative scheme where the points are ordered according to their x+y+ z value.

Although consistent across shapes this ordering does not preserve locality of the points

and indeed yields poor results as seen in Figure 1.8. However, other data structures

that preserve locality such as locality-sensitive hashing [61] and random-projection

trees [40] are possible alternatives to kd-trees.

We also experimented an scheme for generating shapes where 1D convolutions on

the ordered points are used for both the generative and discriminative models in a

GAN framework. Instead of learning a linear shape basis with has wide support over

all the points, the 1D-GAN architecture only has local support. Since the ordering

is locality sensitive, one might expect that convolutional filters with small support

are sufficient for generation and discrimination. This approach can also be robust to

21

a partial reordering of the list due to variations in the shape structures. Moreover,

the 1D-GAN can be directly learned on the ordered point list without having to first

learn a bases, and is even more compact than the GAN+PCA basis approach. The

architecture used for this experiments has the same number of layers with our stan-

dard approach. The major difference is in the fact that we use 1D convolutional layers

instead of fully connected ones. The generator layers have a filter size of 25 and the

first one has 32 filters. The following layers double the number filters of the previous

layer. The discriminator is the mirrored version of the generator. Figure 1.9 shows

the results obtained using the 1D-GAN for the chair category. Remarkably, the gen-

erated shapes are plausible, but are ultimately of worse quality than our GAN+PCA

approach. Both these experiments suggest that the kd-tree plays a important role for

our method.

Shape interpolation. Similar to image-based GAN and 3D-GAN, we can perform

shape interpolation by linearly interpolating in the encoding space z. Specifically,

we can pick two encodings z1, z2, linearly interpolate them, and use our generative

model to compute the resulting point cloud. The interpolation results are shown

in Figure 1.10. As observed, the interpolated shapes are plausible and exhibit non-

linearity that cannot be achieved by directly interpolating the shape coefficients.

Figure 1.10: Interpolation of the encodings z between a start shape and an end shape
for each of the three categories shown here: airplane, car, and chair.

22

1.4 Conclusion

We showed that conventional CNN architectures can be used to generate 3D

shapes as point clouds once they are ordered using kd-trees. We found that a hun-

dred linear basis are generally sufficient to model a category of diverse shapes such

as chairs. By employing GANs to model the multi-modal distribution of the basis

coefficients we showed that our method outperforms the PPCA baseline approach.

The ordering of points produced by the kd-tree also allows reasonable shape genera-

tion using 1D-GANs. Our approach is of comparable quality but considerably more

lightweight than 3D voxel-based shape generators. Moreover it allows the incorpora-

tion of multiple point attributes such normals and color in a seamless manner. In the

next chapter, we further investigate the role of space-partitioning data structures on

3D shape classification and segmentation tasks. We also explore incorporating permu-

tation invariant losses in conjunction with multi-grid architectures for unconditional

shape generation and reconstruction from single RGB images.

23

CHAPTER 2

MULTIRESOLUTION TREE NETWORKS FOR 3D
POINT CLOUD PROCESSING

One of the challenges in 3D shape processing concerns the question of representa-

tion. Shapes are typically represented as triangle meshes or point clouds in computer

graphics applications due to their simplicity and light-weight nature. At the same

time an increasing number of robotic and remote-sensing applications are deploying

sensors that directly collect point-cloud representations of the environment. Hence

architectures that efficiently operate on point clouds are becoming increasingly desir-

able.

On the other hand the vast majority of computer vision techniques rely on grid-

based representation of 3D shapes for analyzing and generating them. These include

multiview representations that render a shape from a collection of views [142,166,168]

or voxel-based representations [17, 79, 116, 204, 206] that discretize point occupancy

onto a 3D grid. Such representations allow the use of convolution and pooling op-

erations for efficient processing. However, voxel-representations scale poorly with

resolution and are inefficient for modeling surface details. Even multiscale or sparse

variants [70, 106, 147] incur relatively high processing cost. Image-based representa-

tions, while more efficient, are not effective at modeling shapes with concave or filled

interiors due to self occlusions. Moreover, generating shapes as a collection of views

requires subsequent reasoning about geometric consistency to infer the 3D shape,

which can be challenging.

The main contribution of our work is a multiresolution tree network capable of

both recognizing and generating 3D shapes directly as point clouds. An overview

24

of the network and how it can be applied to different applications are shown in

Figure 2.1. Our approach represents a 3D shape as a set of locality-preserving 1D

ordered list of points at multiple resolution levels. We can obtain such a ordering by

using space-partitioning trees such as kd-tree or rp-tree. Feed-forward processing on

the underlying tree can be implemented as 1D convolutions and pooling on the list.

However, as our experiments show, processing the list alone is not sufficient since the

1D ordering distorts the underlying 3D structure of the shape. To ameliorate this

problem we employ a multi-grid network architecture [92] where the representation

at a particular resolution influences feed-forward processing at adjacent resolutions.

This preserves the locality of point in the underlying 3D shape, improves information

flow across scales, enables the network to learn a coarse-to-fine representation, and

results in faster convergence during training. Our network outperforms existing point-

based networks [96, 141, 169] that operate on position (xyz) information of points.

Specifically, it obtains 91.7% accuracy on the ModelNet40 classification task, while

remaining efficient. It also outperforms similar graph networks that do not maintain

multiresolution representations.

Our multiresolution decoders can be used for directly generating point clouds.

This allows us to incorporate order-invariant loss functions, such as Chamfer distance,

over point clouds during training. Moreover it can can be plugged in with existing

image-based encoders for image-to-shape inference tasks. Our method is able to both

preserve the overall shape structure as well as fine details. On the task of single-image

shape inference using the ShapeNet dataset, our approach outperforms existing voxel-

based [35], view-based [108], and point-based [49] techniques.

Finally, the combined encoder-decoder network can be used for unsupervised

learning of shape representations in a variational autoencoder (VAE) framework. The

features extracted from the encoder of our VAE (trained on the unlabeled ShapeNet

25

VGG11

MRT-Encoder

 MRT-Decoder

Classification

VAE

Shape Inference

1024 pts 512 pts 256 pts

encoding z

Figure 2.1: Overview of MRTNet. On the left, the MRT-Encoder takes as input a 1D
ordered list of points and represents it at multiple resolutions. Points are colored by their
indices in the list. On the right, the MRT-Decoder directly outputs a point cloud. Our
network can be used for several shape processing tasks, including classification (red), image-
to-shape inference (blue), and unsupervised shape learning (green). Refer to Fig. 2.2 for
details on the encoder and decoder.

dataset) leads to better shape classification results (86.4% accuracy on ModelNet40)

compared to those extracted from other unsupervised networks [204].

2.1 Related Work

A number of approaches have studied 3D shape recognition and generation using

uniform 3D voxel grids [17, 35, 79, 116, 204, 206]. However, uniform grids have poor

scalability and require large memory footprint, hence existing networks built upon

them often operate on a relatively low-resolution grid. Several recent works address

this issue through multiscale and sparse representations [66,70,147,167,174,194] at the

expense of additional book keeping. Still, voxel-based methods generally incur high

processing cost, and are not well suited for modeling fine surface details. Moreover,

it’s not clear how to incorporate certain geometric attributes, like surface normals,

into voxel representation, since these attributes do not exist in the interior of the

shape.

Multiview methods [86,111,142,166,168] represent a 3D shape as images rendered

from different viewpoints. These methods use efficient convolutional and pooling op-

erations and leverage deep networks pretrained on large labeled image datasets. How-

ever, they are not optimal for general shapes with complex interior structures due

26

to self occlusions. Nonetheless since most models on existing shape repositories are

described well by their exterior surface, view-based approaches have been adapted for

shape classification and segmentation tasks. Recently they have also been used for

generation where a set of depth and normal maps from different viewpoints are in-

ferred using image-based networks, and have been successfully used for image to shape

generation tasks [108,111]. However such approaches requires subsequent processing

to resolve view inconsistencies and outliers which is a challenging task.

Previous work has also studied extensions of ConvNets to mesh surfaces such as

spectral CNNs [19, 217], geodesic CNNs [115], or anisotropic CNNs [14]. They have

shown success for local correspondence and matching tasks. However, some of these

methods are constrained on manifold surfaces, and generally it’s unclear how well they

perform on shape generation tasks. A recent work in [162] generalized the convolution

operator from regular grid to arbitrary graphs while avoiding the spectral domain,

allowing graphs of varying size and connectivity.

Another branch of recent works focused on processing shapes represented as point

clouds. One example is PointNet [141, 169], that directly consumes point clouds as

input. The main idea is to first process each point identically and independently,

then leverage a symmetric function (max pooling) to aggregate information from all

points. The use of max pooling preserves the permutation invariance of a point set,

and the approach is quite effective for shape classification and segmentation tasks.

Similarly, KD-net [96] operates directly on point cloud shapes. It spatially partitions

a point cloud using a kd-tree, and imposes a feed-forward network on top of the

tree structure. This approach is scalable, memory efficient, achieves competitive

performance on shape recognition tasks. While successful as encoders, it hasn’t been

shown how these networks can be employed as decoders for shape generation tasks.

Generating shapes as a collection of points without intermediate modeling of view-

based depth maps has been relatively unexplored in the literature. The difficulty

27

stems from the lack of scalable approaches for generating sets. Two recent works

are in this direction. Fan et al. [49] train a neural network to generate point clouds

from a single image by minimizing Earth Mover’s Distance (EMD) or Chamfer dis-

tance (CD) between the generated points and the model points. These distances are

order invariant and hence can operate directly on point sets. This approach uses a

two-branched decoder, one branch is built with 2D transposed convolutions and the

other one is composed by fully connected layers. On the other hand, our approach

uses a simpler and shallower decoder built as a composition of 1D deconvolutions

that operate at multiple scales. This representation improves information flow across

scales, which leads to higher quality generated shapes. Moreover, we use permuta-

tion invariant losses along with regularization of latent variables to build a model

similar to a variational autoencoder [94] that can be used to sample shapes from

gaussian noise. Another work in [51] learns a distribution over shape coefficients us-

ing a learned basis for a given category using a generative adversarial network [63].

However, in this approach, the underlying generative model assumes a linear shape

basis, which produces less detailed surfaces. The improved scalability of our method

allows generating shapes with more points and more accurate geometric details in

comparison to previous work.

Our tree network builds on the ideas of multiscale [73, 109], mutligrid [92] and

dilated [218] or atrous filters [28,46] effective for a number of image recognition tasks.

They allow larger receptive fields during convolutions with a modest increase in the

number of parameters. In particular Ke et al. [92] showed that communication across

multiresolutions of an image throughout the network leads to improved convergence

and better accuracy on a variety of tasks. Our approach provides an efficient way of

building multigrid-like representations for 3D point clouds.

28

k2

k2

x y z

n

n

n/k

n/k2

M
R

-C
O

N
V

n/2

n/2k

n/2k2

n/4

n/4k

n/4k2

...
k2

k

1

M
R

-C
O

N
V

M
R

-C
O

N
V

reshape

concat &

L
in

ea
r

z

L
in

ea
r

k2

k2

1

k

k2

M
R

-C
O

N
V

-T

2

2k

2k2

M
R

-C
O

N
V

-T

...

n

n/k

n/k2

n

n

n

n

C
O

N
V

-1
D

 +
 R

E
L

U
 +

 B
N

C
O

N
V

-1
D

x/k2

x/k

x

C
O
N
V
-1
D

C
O
N
V
-1
D

C
O
N
V
-1
D

x/2k2

x/2k

x/2B
N

B
N

B
N

R
eL

U
R
eL

U
R
eL

U

MR-CONV

Legend

Connection
Average pooling

NN upsampling … ...

Encoder Decoder

en
co

d
in

g

Figure 2.2: Our multiresolution tree network (MRTNet) for processing 3D point clouds.
We represent a 3D shape as a 1D list of spatially sorted point cloud. The network represents
each layer at three scales (indicated by yellow, red, and blue), the scale ratio is k between
each two. The last two convolution layers have kernel size 1 and stride 1. MR-CONV refers
to multi-resolution convolution (zoom-in to the inset for details); and MR-CONV-T refers
to MR-CONV with transposed convolution. Our network is flexible and can be used for
several shape processing tasks.

2.2 Method

Figure 2.2 shows the complete architecture of our multiresolution tree network

(MRTNet) that includes both the encoder and decoder. We represent 3D shapes

as a point cloud of a fixed size N = 2D (e.g. N = 1K). We center the point

cloud at the origin and normalize its bounding box; then spatially sort it using a

space-partitioning tree. The input to the network are thus a 1D list (N × 3 tensor)

containing the xyz coordinates of the points. The network leverages 1D convolution

and represents each layer at three scales, with a ratio of k between each two. MR-

CONV refers to multi-resolution convolution, and MR-CONV-T refers to MR-CONV

with transposed convolution. The encoding z is a 512-D vector. Our network ar-

chitecture is flexible and can be used for several shape processing tasks. For shape

classification, we use only the multiresolution encoder but adding a fully connected

layer after the encoding z to output a 40-D vector representing the ModelNet40 shape

classes. For single-image shape inference, we employ a pretrained VGG-11 image

encoder [163], combined with our multiresolution decoder to directly an output point

29

cloud shape as a N × 3 tensor. For unsupervised learning of point clouds, we

use both the multiresolution encoder and decoder, forming a variational autoencoder.

Spatial sorting. As a point cloud is unordered to begin with, we use a space-

partitioning tree such as KD-tree to order the points. To start, we sort the entire

point set along the x-axis, then split it in half, resulting in equal-sized left and right

subsets; we then recursively split each subset, this time along the y-axis; then along

z-axis; then back along the x-axis and so on. Basically it’s a recursive process to

build a full tree where the splitting axes alternate between x, y, z at each level of

the tree. The order of leaf nodes naturally becomes the order of the points. There

are several variants on the splitting strategy. If at each split we choose an axis

among x, y, z with probability proportional to the span of the subset along that

axis, it builds a probabilistic KD-tree as described in [96]. If we choose axes from a

random set of directions, it builds an RP-tree [40]. Note that after the ordering is

obtained, the underlying details of the how the splits were taken are discarded. This

is fundamentally different from [96] where the network computations are conditioned

on the splitting directions.

The purpose of spatial sorting is to build a hierarchical and locality-preserving

order of the points. Thus functions computed based on the local 3D neighborhood

at a point can be approximated using convolutions and pooling operations on the 1D

structure. However, any ordering of points is distortion inducing and in particular

long-range relationships are not preserved well. Maintaining multiple resolutions of

the data allows us to preserve locality at different scales. Since the partitioning is

constructed hierarchically this can be efficiently implemented using pooling operations

described next.

Multiresolution convolution. With the spatially sorted point set, we can build a

network using 1D convolution and pooling operations. The convolution leverages the

30

spatial locality of points after sorting, and the pooling leverages the intrinsic binary

tree structure of the points.

With a conventional CNN, each convolutional operation has a restricted recep-

tive field and is not able to leverage both global and local information effectively.

We resolve this issue by maintaining three different resolutions of the same point

cloud using a mutligrid architecture [92]. Different resolutions are computed directly

through pooling and upsampling operations. Specifically, we use average pooling

with kernel size and stride of k, where k is a power of 2. This configuration allows

pooling/downsampling the point cloud while preserving its hierarchical tree structure.

Figure 2.1 (left) shows an example point cloud at three different resolutions computed

by pooling with k = 2. For upsampling, we use nearest neighbor (NN) upsampling

with a factor of k.

Once we can pool and upsample the point clouds, we are able to combine global

and local information in the convolutional operations by using the MR-CONV block

in the inset of Fig. 2.2. The multiresolution block operates in the following way.

We maintain the point cloud representations at three resolutions f(0), f(1), f(2), where

the scale ratio between each two is (as mentioned above) k. The MR-CONV block

receives all three as input, and each resolution will be upsampled and/or pooled and

concatenated with each other, creating three new representations f ′(0), f ′(1), f ′(2):

f ′(0) = f(0) ⊕ up(f(1)); f ′(1) = pool(f(0))⊕ f(1) ⊕ up(f(2)); f ′(2) = pool(f(1))⊕ f(2).

where ⊕ is the concatenation operation, up and pool are the upsampling and average

pooling operations. Each new representation f ′ then goes through a sequence of

operations: 1D convolution (kernel size=2 and stride=2), batch normalization and

ReLU activation. Note that due to the stride 2, each output is half the size of its

associated input. In our generative model and shape inference model we use k = 4,

while for classification we use k = 8.

31

Shape classification model. For classification, we use our multiresolution encoder

in Figure 2.2, and add a fully connected layer after encoding z that outputs a 40-D

vector representing the ModelNet40 classification. Specifically, we train the network

on the ModelNet40 [206] dataset, which contains 12,311 objects covering 40 different

categories. It is split into 9,843 shapes for training and 2,468 shapes for testing. For

each object, we sample 1K points on the surface using Poisson Disk sampling [15] to

evenly disperse the points. Each sampled point cloud is then spatially sorted using

the probabilistic kd-tree [96]. Specifically, at each split of the tree we choose a random

split axis according to the following PDF:

P (n = ei|x) =
exp{spani(x)}∑d
j=1 exp{spanj(x)}

where x is the subset of points to be split, n is the split axis chosen from the canonical

axes ei (i.e. x,y,z in 3D), and spani(x) returns the span of x along each axis ei.

The network parameters are as follows: the first MR-CONV layer has 16 filters

and the following layers double the amount of filter of the previous one, unless the

previous layer has 1024 filters. In that case, the next layer also has 1024 filters. The

network is trained by minimizing a cross-entropy loss using an Adam optimizer with

learning rate 10−3 and β = 0.9. The learning rate is decayed by dividing it by 2

every 5 training epochs. We employ scale augmentation at training and test time by

applying anisotropic scaling factors drawn from N (1, 0.25). At test time, for each

point cloud we apply the sampled scale factors and build the probabilistic kd-tree 16

times as described above, thus obtaining 16 different versions and orderings of the

point set. Our final classification is the mean output of those versions. The test-time

average has very little impact on the computation time (a discussion is included in

Sec. 2.3.4).

Single-image shape inference. Our multiresolution decoder can be used to per-

form image-to-shape inference. Specifically, we use a pretrained VGG-11 image en-

32

coder [163] combined with our decoder in Figure 2.2. Our decoder is set to generates

4K points. The entire network is trained using the dataset and splits provided by [35],

which contains 24 renderings from different views for 43783 shapes from ShapeNet

divided in 13 different categories. We sample each ShapeNet mesh at 4K points and

use them for supervision. Given a rendered image, the task is to predict the complete

point cloud (4K points) representing the object in the image. The decoder in Fig-

ure 2.2 has the following number of filters per layer: 512-512-256-256-128-64-64-64.

As in Figure 2.2, the two additional convolutional layers at the end have kernel size

1 and stride 1: the first one has 128 filters and the second one outputs the final 4K

point set.

There are many possible choices for the reconstruction loss function. One straight-

forward choice would be to use the ordering induced by the spatial partitioning and

compute the L2 loss between the output and ground-truth point clouds. However, L2

loss turns out to work very poorly. We chose to use the Chamfer distance between

two point clouds (x and y), defined as:

Ch(x,y) =
1

|x|
∑
x∈x

min
y∈y
‖x− y‖2 +

1

|y|
∑
y∈y

min
x∈x
‖x− y‖2

The Chamfer distance is invariant to permutations of points, making it suitable to

measure dissimilarities between unstructured point clouds. The model is trained using

an Adam optimizer with learning rate 10−3 and β = 0.9. Learning rate is divided by

two at each two epochs.

Unsupervised learning of point clouds. By combining the multiresolution en-

coder and decoder together, we can perform unsupervised learning of 3D shapes. The

entire network, called MR-VAE, builds upon a variational autoencoder (VAE) [94]

framework. The encoder Q receives as an input a point cloud x and outputs an encod-

ing z ∈ R512. The decoder D tries to replicate the point cloud x from z. Both encoder

33

and decoder are built using a sequence of MR-CONV blocks as in Fig. 2.2. Similar

to above, we use Chamfer distance as the reconstruction loss function. Besides this,

we also need a regularization term that forces the distribution of the encoding z to

be as close as possible to the Gaussian N (0, I). Differently from the original VAE

model, we found that we can get more stable training if we try to match the first two

moments (mean and variance) of z to N (0, I). Mathematically, this regularization

term is defined as:

Lreg = ‖cov(Q(x) + δ)− I‖2 + E[Q(x) + δ]

where cov is the covariance matrix, Q is the encoder, ‖·‖2 is the Frobenius norm and

E[·] is the expected value. δ is a random value sampled from N (0, cI) and c = 0.01.

Thus, our generative model is trained by minimizing the following loss function:

L = Ch(x, D(Q(x))) + λLreg

We set λ = 0.1. The model is trained using an Adam optimizer with learning rate

10−4 and β = 0.9. The encoder follows the classification model and the decoder

follows the one used in the shape inference model, both described previously.

Shape part segmentation. MRTNet can also be applied for shape part segmenta-

tion tasks. For details please refer to the supplemental material.

2.3 Experimental Results and Discussions

This section presents experimental results. We implemented MRTNet using Py-

Torch.

34

Method Accuracy

View-based methods
MVCNN [168] 90.1
MVCNN-MultiRes [142] 91.4

Point-based methods (w/o normals)
KDNet (1K pts) [96] 90.6
PointNet (1K pts) [169] 89.2
PointNet++ (1K pts) [141] 90.7
MRTNet (1K pts) 91.2
MRTNet (4K pts) 91.7
KDNet (32K pts) [96] 91.8

Point-based methods (with normals)
PointNet++ (5K pts) [141] 91.9

Voxel-based methods
OctNet [147] 86.5
O-CNN [194] 90.6

Table 2.1: Comparisons with classification models. Among point-based methods
that use xyz data only, ours is the best in the 1K points group; and our 4K result is
comparable with KDNet at 32K points.

2.3.1 Shape classification

To demonstrate the effectiveness of the multiresolution encoder, we trained a

baseline model that follows the same classification model but replacing multiresolution

convolutions with single-scale 1D convolutions. Also, we apply the same test-time

data augmentation and compute the test-time average as described in the Section 2.2.

Classification benchmark results are in Table 2.1. As shown in the table, MRTNet

achieves the best results among all point-based methods that use xyz data only. In

particular, ours is the best in the 1K points group. We also experimented with

sampling shapes using 4K points, and the result is comparable with KDNet at 32K

points – in this case, KDNet uses 8× more points (hence 8× more memory) than

ours, and is only 0.1% better. PointNet++ [141] with 5K points and normals is 0.2%

better than ours.

35

Method Accuracy

Full model (MRTNet, 4K pts) 91.7
Filters/4 91.7
Single res. 89.3
Single res., no aug. (rp-tree) 87.4
Single res., no aug. (kd-tree) 86.2

Table 2.2: MRTNet ablation studies on shape classification. Filters/4 reduces the
number of filters in each layer by 4. The last three rows are the single resolution model.

0 25000 50000 75000 100000 125000 150000 175000 200000

Iterations

10 1

100

L
o
s
s

Baseline

MRTNet

L
o
s
s

Iterations

Table 2.2 shows ablation study results with variants

of our approach. Particularly, the multiresolution ver-

sion is more than 2% better than the baseline model

(i.e. single resolution), while using the same number

of parameters (the Filters/4 version). Besides, MRT-

Net converges must faster than the baseline model, as

we can see in the cross entropy loss decay plots to the right. This shows that the

multiresolution architecture leads to higher quality/accuracy and is memory efficient.

Our single resolution baseline is akin to KDNet except it doesn’t condition the

convolutions on the splitting axes. It results in 1.3% less classification accuracy

compared to KDNet (1K pts). This suggests that conditioning on the splitting axes

during convolutions improves the accuracy. However, this comes at the cost of extra

book keeping and at least three times more parameters. MRTNet achieves greater

benefits with lesser overhead. Similar to the KDNet, our methods also benefit from

data augmentation and can be used with both kd-trees and rp-trees.

2.3.2 Single-image shape inference

We compare our single-image shape inference results with volumetric [35], view-

based [108] and point-based [49] approaches using the evaluation metric by [108].

Given a source point cloud x and a target point cloud y, we compute the average eu-

36

Category
3D-R2N2 [35] Fan et al. [49] Lin et al. [108] MRTNet

1 view 3 views 5 views (1 view) (1 view) (1 view)
airplane 3.207 / 2.879 2.521 / 2.468 2.399 / 2.391 1.301 / 1.488 1.294 / 1.541 0.976 / 0.920
bench 3.350 / 3.697 2.465 / 2.746 2.323 / 2.603 1.814 / 1.983 1.757 / 1.487 1.438 / 1.326

cabinet 1.636 / 2.817 1.445 / 2.626 1.420 / 2.619 2.463 / 2.444 1.814 / 1.072 1.774 / 1.602
car 1.808 / 3.238 1.685 / 3.151 1.664 / 3.146 1.800 / 2.053 1.446 / 1.061 1.395 / 1.303

chair 2.759 / 4.207 1.960 / 3.238 1.854 / 3.080 1.887 / 2.355 1.886 / 2.041 1.650 / 1.603
display 3.235 / 4.283 2.262 / 3.151 2.088 / 2.953 1.919 / 2.334 2.142 / 1.440 1.815 / 1.901
lamp 8.400 / 9.722 6.001 / 7.755 5.698 / 7.331 2.347 / 2.212 2.635 / 4.459 1.944 / 2.089

speaker 2.652 / 4.335 2.577 / 4.302 2.487 / 4.203 3.215 / 2.788 2.371 / 1.706 2.165 / 2.121
rifle 4.798 / 2.996 4.307 / 2.546 4.193 / 2.447 1.316 / 1.358 1.289 / 1.510 1.029 / 1.028
sofa 2.725 / 3.628 2.371 / 3.252 2.306 / 3.196 2.592 / 2.784 1.917 / 1.423 1.768 / 1.756
table 3.118 / 4.208 2.268 / 3.277 2.128 / 3.134 1.874 / 2.229 1.689 / 1.620 1.570 / 1.405

telephone 2.202 / 3.314 1.969 / 2.834 1.874 / 2.734 1.516 / 1.989 1.939 / 1.198 1.346 / 1.332
watercraft 3.592 / 4.007 3.299 / 3.698 3.210 / 3.614 1.715 / 1.877 1.813 / 1.550 1.394 / 1.490
mean 3.345 / 4.102 2.702 / 3.465 2.588 / 3.342 1.982 / 2.146 1.846 / 1.701 1.559 / 1.529

Table 2.3: Single-image shape inference results. The training data consists of
13 categories of shapes provided by [35]. The numbers shown are [pred→GT / GT→pred]
errors, scaled by 100. The mean is computed across all 13 categories. Our MRTNet produces
4K points for each shape.

Fully Connected Single Res. MRTNet
1.824 / 2.297 1.708 / 1.831 1.559 / 1.529

Table 2.4: Ablation studies for the image to shape decoder. The numbers shown
are [pred→GT / GT→pred] errors, scaled by 100. The values are the mean computed across
all 13 categories.

clidean distance from each point in x to its closest in y. We refer to this as pred→GT

(prediction to groundtruth) error. It indicates how dissimilar the predicted shape is

from the ground-truth. The GT→pred error is computed similarly by swapping x

and y, and it measures coverage (i.e. how complete the ground-truth surface was

covered by the prediction). For the voxel based model [35], we used the same pro-

cedure as [108], where point clouds are formed by creating one point in the center

of each surface voxel. Surface voxels are extracted by subtracting the prediction by

its eroded version and rescale them such that the tightest 3D bounding boxes of the

prediction and the ground-truth CAD models have the same volume.

Table 2.3 shows our results. Our solution outperforms competing methods in 12

out of 13 categories on the pred→GT error, and in 6 categories on GT→pred error.

Note that we are consistently better than the point-based methods such as [49] in both

metrics; and we are consistently better than [108] in the pred→GT metric. Further-

more, our method wins by a considerable margin in terms of the mean per category

37

Figure 2.3: Shapes generated by 1) the fully connected baseline; 2) the single-resolution
baseline; and 3) MRTNet. Colors in the first row indicate the index of a point in the output
point list.

on both metrics. It is important to highlight that the multi-view based method [108]

produces tens of thousands of points and many of them are not in the right positions,

which penalizes their pred→GT metric, but that helps to improve their GT→pred.

Moreover, as mentioned in [108], their method has difficulties capturing thin struc-

tures (e.g. lamps) whereas ours is able to capture them relatively well. For example,

our GT→pred error for the lamp category (which contains many thin geometric

structures) is more than two times smaller than the error by [108], indicating that

MRTNet is more successful at capturing thin structures in the shapes.

Ablation studies. In order to quantify the effectiveness of the multiresolution de-

coder, we compared our method with two different baselines: a fully connected de-

coder and a single-resolution decoder. The fully connected decoder consists of 3

linear layers with 4096 hidden neurons, each layer followed by batch normalization

and ReLU activation units. On top of that, we add a final layer that outputs 4096×3

values corresponding to the final point cloud, followed by a hyperbolic tangent activa-

tion function. The single resolution decoder follows the same architecture of the MRT

decoder but replacing multiresolution convolutions with single-scale 1D convolutions.

Results are shown in Table 2.4. Note that both baselines are quite competitive. The

single-resolution decoder is comparable to the result of [108], while the fully connected

one achieves similar mean errors to [49]. Still, they fall noticeably behind MRTNet.

38

In
p
u
t

G
.T

.
M

R
T

N
et

F
an

[4
9
]

C
h

oy
[3

5]

Figure 2.4: Qualitative results for single-image shape inference. From top to bottom:
input images, ground truth 3D shapes, results of MRTNet, Fan et al. [49], and Choy et
al. [35].

In Figure 2.3 we visualize the structures of the output point clouds generated by

the three methods. The point clouds generated by MRTNet present strong spatial

coherence: points that are spatially nearby in 3D are also likely to be nearby in the

1D list. This coherence is present to some degree in the single-resolution outputs

(note the dark blue points in the chair’s arms), but is almost completely absent in

the results by the fully connected decoder. This is expected, since fully connected

layers do not leverage the spatial correlation of their inputs. Operating at multiple

scales enables MRTNet to enforce a stronger spatial coherence, allowing it to more

efficiently synthesize detailed point clouds with coherent geometric structures.

Qualitative results. In Figure 2.4 we present qualitative results of our method

and comparisons to two prior works. The input images have 3 color channels and

dimensions 224 × 224. In Figure 2.5 we show results of our method applied on

39

Figure 2.5: Shapes generated by applying MRTNet on Inernet photos of furnitures and
toys. MRTNet is trained on the 13 categories of ShapeNet database (Table 2.3) . Note
how the network is capable of generating detailed shapes from real photos, even though it
is trained only on rendered images using simple shading models. For each output shape we
show two different views.

photographs downloaded from the Internet. To apply our method, we manually

removed the background from the photos using [1], which generally took less than

half a minute per photo. As seen from the results, MRTNet is able to capture the

structure and interesting geometric details of the objects (e.g. wheels of the office

chairs), even though the input images are considerably different from the rendered

ones used in training.

2.3.3 Unsupervised Learning of Point Clouds

For unsupervised learning of point clouds, we train our MR-VAE using the ShapeNet

dataset [24]. By default we compute N = 4K points for each shape using Poisson

40

M
R

T
N

et
B

as
el

in
e

Figure 2.6: Qualitative comparisons of MR-VAE with a single-resolution baseline model.
Results are generated by randomly sampling the encoding z. MR-VAE is able to preserve
shape details much better than the baseline model, and produces less noisy outputs.

Figure 2.7: Test set shapes reconstructed by MR-VAE trained on all categories of
ShapeNet (using 80%/20% training/test split). MR-VAE is able to reconstruct high-quality
diverse shapes.

Disk sampling [15] to evenly disperse the points. Each point set is then spatially

sorted using a kd-tree. Here we use the vanilla kd-tree where the splitting axes alter-

nate between x, y, z at each level of the tree. The spatially sorted points are used as

input to train the MR-VAE network (Section 2.2). Similar to before, we also train a

baseline model that follows the same network but replacing multiresolution convolu-

tions with single-scale 1D convolutions in both encoder and decoder. As Figure 2.6

shows, the shapes generated by the MR-VAE trained on chairs are of considerably

higher quality than those generated by the baseline model.

We also performed multiple-category shape generation by training MR-VAE on

80% of the objects from ShapeNet dataset. The remaining models belong to our test

split. Reconstructions of objects in the test split are included in Figure 2.7. Even

when trained with a greater variety of shapes, the MR-VAE is able to reconstruct

41

Figure 2.8: Point correspondences among different shapes generated by MR-VAE. We
picked three index ranges (indicated by three colors) from one example chair, and then color
coded points in every shape that fall into these three ranges. The images clearly show that
the network learned to generate shapes with consistent point ordering.

high quality shapes from its embedding. This demonstrates that MR-VAE is suitable

for various inference tasks such as shape completion or point cloud reconstructions.

Point ordering in the generated shapes. A useful way to analyze shape gener-

ation is to see if the generated points have any consistent ordering across different

shapes. This is an interesting question because as described previously, our MR-

VAE is trained using Chamfer Distance, a metric that’s invariant to permutations

of points. While the input to the network is all spatially sorted, the output is not

restricted to any particular order and can in theory assume any arbitrary order. In

practice, similar to the image-to-shape model, we observe that there is a consistent

ordering of points in the generated shapes, as shown in Figure C.4. Specifically, we

picked three index ranges from one example chair, one at the top, one on the side, and

one close to the bottom, then we color coded points in each shape that fall into these

three index ranges. In the figure we can see clearly that they fall into approximately

corresponding regions on each chair shape.

Shape interpolation. Another common test is shape interpolation: pick two en-

codings (either randomly sampled, or generated by the encoder for two input shapes),

42

Figure 2.9: Shape interpolation results. For each example, we obtain the encodings z
of the starting shape and ending shape, then linearly interpolate the encodings and use
the decoder to generate output shapes from the interpolated z. Results show plausible
interpolated shapes.

Method Accuracy

SPH [90] 68.2
LFD [27] 75.5
T-L Network [62] 74.4
VConv-DAE [157] 75.5
3D-GAN [204] 83.3
MRTNet-VAE (Ours) 86.4

Table 2.5: Unsupervised representation learning. The MR-VAE model is trained
with all ShapeNet objects, and its features are used to classify ModelNet40 [206] objects.
This protocol is the same used by the other competing methods. Our classifier is a single
linear layer, where the input is a set of features gathered from the first three layers of the
MR-VAE encoder.

linearly interpolate them and use the decoder to generate the output shape. Figure 2.9

shows two sets of interpolation results of chairs from the ShapeNet dataset.

Unsupervised classification. A typical way of assessing the quality of represen-

tations learned in a unsupervised setting is to use them as features for classification.

To do so, we take the MR-VAE model trained with all ShapeNet objects, and use its

features to classify ModelNet40 [206] objects. Our classifier is a single linear layer,

where the input is a set of features gathered from the first three layers of the MR-VAE

encoder. The features are constructed this way: we apply a pooling operation of size

128, 64 and 32 respectively on these three layers; then at each layer upsample the two

smaller resolutions of features to the higher resolution such that all three resolutions

have the same size. Finally, we concatenate all those features and pass them through

43

a linear layer to get the final classification. It is important to notice that we did

not perform any fine-tuning: the only learned parameters are those from the single

linear layer. We used an Adam optimizer with learning rate 10−3 and β = 0.9. The

learning rate is decayed by dividing it by 2 every 5 epochs. Using this approach,

we obtained an accuracy of 86.34% on the ModelNet40 classification benchmark, as

shown in Table 2.5. This result is considerably higher compared to similar features

extracted from unsupervised learning in other autoencoders. This shows that the

representations learned by our MR-VAE is more effective at capturing and linearizing

the latent space of training shapes. Visualizations of the latent representation learned

by MR-VAE can be found in the supplemental material for this chapter.

2.3.4 Discussions

Robustness to transformations. Kd-trees are naturally invariant to point jittering

as long as it’s small enough so as to not alter the shape topology. Our approach

is invariant to translations and uniform scaling as the models are re-centered at the

origin and resized to fit in the unit cube. On the other hand, kd-trees are not invariant

to rotations. This can be mitigated by using practices like pooling over different

rotations (e.g. MVCNN) or branches that perform pose prediction and transformation

(e.g. PointNet). However, we notice that simply having unaligned training data was

enough to account for rotations in the classification task, and the ModelNet40 dataset

contains plenty of unaligned shapes. Moreover, since the KDNet [96] also employs a

kd-tree spatial data structure, the discussions there about transformations also apply

to our method.

Computation time. Building a kd-tree of N points takes O(N logN) time, where

N = 210 for 1K points. While PointNet does not require this step, it’s also more than

2.0% worse in the classification task. The time to run a forward pass for classifica-

tion is as follows: PointNet takes 25.3ms, while MRTNet takes 8.0ms on a TITAN

44

GTX1080, both with batch size of 8. Kd-tree building is also much faster than ren-

dering a shape multiple times like in MVCNN [168] or voxelizing it [147]. Using 16

different test-time augmentations does not have significant impact in computational

time, as the 16 versions are classified in the same batch. This number of test-time

augmentations is comparable to other approaches, e.g. 10 in [96], 80 in [168], and 12

in [194] and [169].

2.4 Conclusion

In conclusion, we introduced multiresolution tree networks (MRTNet) for point

cloud processing. They are flexible and can be used for shape classification, genera-

tion, and inference tasks. Our key idea is to represent a shape as a set of locality-

preserving 1D ordered list of points at multiple resolutions, allowing efficient 1D

convolution and pooling operations. The representation improves information flow

across scales, enabling the network to perform coarse-to-fine analysis, leading to faster

convergence during training and higher quality for shape generation.

In future work, we would like to incorporate additional point attributes, such as

normal and color, into the network, to further improve accuracy of shape recognition

and allow the shape generator to produce these attributes. We would also like to

apply and extend the method to process spatio-temporal shape analysis, such as on

animated shapes or other temporarlly changing 3D point data.

45

CHAPTER 3

LEARNING GENERATIVE MODELS OF SHAPE
HANDLES

Figure 3.1: Gallery of 3D shapes generated as sets of handles (zoom for details).
We propose a class of generative models for synthesizing sets of handles – lightweight proxies
that can be easily utilized for high-level tasks such as shape editing, parsing, animation etc.
Our model can generate sets with different cardinality and is flexible to work with various
types of handles, such as sphere-mesh handles [178] (first and third figures) and cuboids
(middle figure).

Dramatic improvements in quality of image generation have become a key driving

force behind many novel image editing applications. Yet, similar approaches are

lacking for editing and generating 3D shapes. There are two related challenges. First,

learning generative models for 3D data is challenging, as unlike images, high-quality

3D data is hard to obtain and the data is high dimensional and often unstructured.

Second, regardless of whether good generative models are available, manipulating and

editing 3D shapes in interactive applications is harder to users than editing images.

For this reason, the geometry processing community has developed techniques for

representing 3D data as a small collection of simpler proxy shapes [7,26,37,83,107,118,

207]. In this paper, we refer to these light-weight proxies as shape handles due to their

46

ability to be easily manipulated by users. These representations have been widely used

in tasks that require interaction and high-level reasoning in 3D environments, such

as shape editing [57,178], animation [179], grasping [120], and tracking [181].

We propose a generative models of shape handles. Our method adopts a two-

branch network architecture to generate shapes with varying number of handles,

where one branch focuses on generating handles while the other predicts the exis-

tence of each handle (Section 3.2.2). Furthermore, we propose a novel similarity

measure based on distance fields to compare shape handle pairs. This measure can

be easily adapted to accommodate various type of handles, such as cuboids and

sphere-meshes [178] (Section 3.2.1). Finally, in contrast to previous work [136, 186]

which focuses on unsupervised methods, we leverage recent works in collecting 3D

annotations [122] as well as shape summarization techniques [178] to provide super-

vision to our approach. Experiments show that our method significantly outperforms

previous methods on shape parsing and generation tasks. Using self-supervised train-

ing data generated by [178], our approach produces shapes that are twice as accurate

as competing approaches in terms of intersection-over-union (IoU) metric. By em-

ploying human annotated data, our model can be further improved, achieving even

higher accuracy than using self-supervised training data. Moreover, as shape handles

provide a compact representation, our generative networks are compact (less than

10MB). Despite the small memory footprint, our method generates a diverse set of

high quality 3D shapes, as seen in Figure 3.1.

Finally, our method is built towards generating shapes using representations that

are amenable to manipulation by users. In contrast to point clouds and other 3D

representations such as occupancy grids, handles are intuitive to modify and naturally

suitable for editing and animation tasks. The latent space of shape handles induced by

the learned generative model can be leveraged to support shape editing, completion,

and interpolation tasks, as depicted in Figure 3.2.

47

3.1 Related work

Deep generative models of 3D shapes. Multiple 3D shape representations have

been used in the context of deep generative models. 3D voxel grids [35, 52] are a

natural extension to image-based architectures, but suffer from high memory foot-

print requirements. Sparse occupancy grids [70, 146, 174, 194] alleviate this issue us-

ing a hierarchical grid, but they are still not able to generate detailed shapes and

they require additional bookkeeping. Multi-view representations [111, 166], point

clouds [2,49,51,55], mesh deformations [87,193] and implicit functions [31,58,119,135]

provide alternatives that are compact and capable of generating detailed shapes. How-

ever, these approaches are focused on reconstructing accurate 3D shapes and are not

amenable to tasks like editing. Our goal is different: we explore generative models

to produce sets of handles – summarized shape representations that can be easily

manipulated by users.

Two closely related methods to ours are Tulsiani et al. [186] and Paschalidou et

al. [136] where they propose models to generate shapes as a collection of primitives

without supervision. In contrast, we are focused on creating models capable of uti-

lizing shape decompositions provided by external agents; either a human annotator

or a shape summarization technique. We demonstrate that, by using the extra in-

formation provided by annotations or well known geometric processing techniques,

our method is capable of generating more accurate shapes while keeping the repre-

sentation interpretable and intuitive for easy editing. Other approaches focused on

learning shape structures through stronger supervision [104, 121, 130], requiring not

only handle description, but also relationships between them, e.g. support, symme-

try, adjacency, hierarchy, etc. In contrast, our method models shapes as sets and we

show that inter-handle relationships can be learned directly from data, so that the

latent space induced by our model can be used to guide shape editing, completion,

and interpolation tasks. Furthermore, we present a general framework that can be

48

easily adapted to different types of handles, not only a single parametric family, like

cuboids [104,121,186] or superquadrics [136].

Methods for shape decomposition. Shape decomposition has been extensively

studied by the geometry processing literature. The task is to approximate a complex

shape as a set of simpler, lower-dimensional parts that are amenable for editing. We

refer to these parts as shape handles. Early cognitive studies have shown that humans

tend to reason about 3D shapes as a union of convex components [75]. Multiple

approaches have explored decomposing shapes in this manner [85,107,225]. However,

those approaches are likely to generate too many parts, making them difficult to

manipulate. This problem was addressed by later shape approximation methods

such as cages [207], 3D curves [57,64,118] and sphere-meshes [178], which are shown

very useful in shape editing and other high-level tasks. Our method is flexible to

work with various types of shape handles, and in particular we show experiments

using cuboids as well as sphere-meshes.

Several closely related methods to ours approximate complex shapes using prim-

itives such as cylinders [223] or cuboids [207]. These approximations are easy to

interpret and manipulate by humans. However, most existing methods rely solely

on geometric cues for computing primitives, which can lead to counter-intuitive de-

compositions. In contrast, our method takes supervision from semantic information

provided by human annotators or shape summarization techniques, and therefore our

results more accurately match human intuition.

3.2 Method

Consider a dataset D = {Si}ni=1 containing n sets of shape handles. Each set of

handles Si represents a 3D shape and consists of multiple handle descriptors. Our

goal is to train a model fθ capable of generating sets similar to the ones in D, i.e.,

using them as supervision. More precisely, given an input xi associated with a set

49

Figure 3.2: Overview. We propose a method to train a generative model g for sets of
shape handles. Once trained, the latent representation z can also be used in applications
like shape editing and interpolation.

of handles Si, our goal is to estimate the parameters θ such that fθ(xi) ≈ Si. The

input xi can be an image, a point cloud, an occupancy grid, or even the set of handles

itself. When xi = Si, fθ corresponds to an autoencoder. If we add a regularization

term to the bottleneck of fθ, we have a Variational Auto-Encoder (VAE), which we

use for applications like shape editing, completion and interpolation (Section 3.3.4).

However, we need to use a loss function capable of measuring the similarity between

two sets of handles, i.e.the reconstruction component of a VAE. Ideally, this loss

function would be versatile – we should be able to use it to generate different types

of handles with minimal modifications. Moreover, our model needs to be capable of

generating sets with different cardinalities, since the sets Si do not always have the

same size – in practice, the size of the sets used as supervision can vary a lot and our

network must accommodate this need.

In this section, we describe how to create a model satisfying these constraints.

First, we describe how to compute similarities between handles. Our method is flexible

and only relies on the ability to efficiently compute the distance from an arbitrary

point in space to the handle’s surface. We then demonstrate how to use this framework

with two types of handles: cuboids and sphere-meshes. Finally, we describe how to

50

build models capable of generating sets with varying sizes, by employing a separate

network branch to predict the existence of shape handles.

3.2.1 Similarity between shape handles

Consider two sets of shape handles of the same type: A = {aj}|A|j=1 and B =

{bk}|B|k=1, where aj and bk are parameters that describe each handle. For example, if

the handle type is cuboid, aj (or bk) would include the cuboid dimensions, rotation

and translation in space. One way to compute similarity between sets is through

Chamfer distance. Let the asymmetric Chamfer distance between the two sets of

handles A and B be defined as:

Ch(A,B) =
1

|A|
∑
a∈A

min
b∈B

D(a, b) (3.1)

where D(a, b) is a function that computes the similarity between two handles with

parameters a and b. There are multiple choices forD(a, b). One straightforward choice

is to define D as the `p-norm of the vector a− b. However, this is a poor choice as the

parameters are not homogeneous. For example, parameters that describe rotations

should not contribute to the similarity metric in the same way as those describing

translations. Furthermore, there may be multiple configurations that describe the

same shape – e.g., vertices that are in different orders may describe the same triangle;

a cube can be rotated and translated in multiple ways and end up occupying the same

region in space.

We address these problems by proposing a novel distance metric D(a, b) which

measures the similarity of the distance field functions of the two handles. Specifically,

let P be a set of points in the 3D space and let µ(a) represent the surface of the

handle described by a. Now, we define D as follows:

D(a, b) =
∑
p∈P

(
min

pa∈µ(a)
‖p− pa‖2 − min

pb∈µ(b)
‖p− pb‖2

)2

(3.2)

51

Intuitively, D calculates the sum of squared differences between two feature vectors

representing the distance fields with respect to each of the handles. Each dimension

of these feature vectors contains the distance between a point in a set of probe points

P and the surface of the handle defined by its parameters (a and b in Equation 3.2).

The main advantage of this similarity computation is its versatility: it allows us to

compare any types of shape handles; the only requirement is the ability to efficiently

compute minph∈µ(h) ‖p− ph‖2 given handle parameters h and a point p. In the follow-

ing subsections, we show how to efficiently perform this computation for two types of

shape handles: cuboids and sphere-meshes.

Cuboids. We choose to represent a cuboid by parameters h = 〈c, l, r1, r2〉, where

c ∈ R3 is the cuboid center, l ∈ R3 is the cuboid scale factor (i.e. dimensions),

r1, r2 ∈ R3 are vectors describing the rotation of the cuboid. This rotation rep-

resentation has continuity properties that benefit its estimation through neural net-

works [224]. Notice that we can build a rotation matrix R from r1 and r2 by following

the procedure described in [224]. Now, consider the transformation τh(p) = RTp− c.

Let µC(h) ∈ R3 represent the surface of the cuboid parametrized by h. We can

compute minph∈µC(h) ‖p− ph‖2 (i.e. distance from p to the cuboid) as follows:

min
ph∈µC(h)

‖p− ph‖2 =
∥∥(|τh(p)| − l)+

∥∥
2

+
(

max(|τh(p)| − l)
)−

where (·)+, (·)− and | · | represent element-wise max(·, 0), min(·, 0) and absolute value,

respectively. Since this expression can be computed in O(1), we are able to compute

Equation 3.2 in O(|P|), where the number of probing points |P| is relatively small.

In practice, we sample 64 points in a regular grid in the unit cube.

Sphere-meshes. A triangle mesh consists of a set of vertices and triangular faces

representing the vertex connectivity. Every vertex is a point in space and the surface of

52

Figure 3.3: Schematic representation of sphere-meshes. A sphere-mesh (middle) is com-
puted from a regular triangle mesh (left) as input, and it consists of multiple sphere-triangles
(right), each of which is a volumetric representation

a triangle contains all the points that can be generated by interpolating the triangle’s

vertices using barycentric coordinates. A sphere-mesh is a generalization of a triangle

mesh – every vertex is a sphere instead of a point in space. Thus, every sphere-

mesh “triangle” is actually a volume delimited by the convex-hull of the spheres

centered at the triangle vertices. Figure 3.3 presents a visual description of sphere-

mesh components. Thiery et al. [178] introduced an algorithm to compute sphere-

meshes from regular triangle meshes. They show that complex meshes can be closely

approximated with a sphere-mesh containing a fraction of the original components.

We model sphere-meshes as a set of sphere-mesh triangles, called sphere-triangles.

Similarly to a regular triangle, a sphere-triangle is fully defined by its vertices,

the difference being that its vertices are now spheres instead of points. Thus, we

choose to represent a sphere-triangle using parameters h = 〈r1, r2, r3, c1, c2, c3〉; where

c1, c2, c3 ∈ R3 are the centers of the three spheres, and r1, r2, r3 ∈ R+ are their radii.

Let µT (h) represent the the surface of the sphere-triangle parametrized by h. For

calculating the similarity between two sphere-triangles: as each sphere-triangle is

uniquely defined by its three spheres, it suffices to have µT contain only the surfaces

53

of these three spheres, and hence it does not need to contain the entire sphere triangle.

Thus, the distance of a probing point p to the handle surface is computed as follows:

min
ph∈µT (h)

‖p− ph‖2 = min
i∈{1,2,3}

(‖p− ci‖2 − ri).

3.2.2 Generating sets with varying cardinality

The neural network f generates shapes represented by sets of handles given an

input x. Our design of f includes two main components: an encoder q that, given an

input x, outputs a latent set representation z; and a decoder g that, given the latent

set representation z, generates a set of handles. Even though we can use a symmetric

version of Equation 3.1 to compute the similarity between the generated set g(q(xi))

and the ground-truth set of handles Si, so far our model has not taken into account

the varying size (i.e. number of elements) of the generated sets. We address this issue

by separating the generator into two parts: a parameter prediction branch gp and an

existence prediction branch ge. The parameter prediction branch is trained to always

output a fixed number of handle parameters where [gp(z)]i represents the parameters

of the ith handle. On the other hand, the existence prediction branch [ge(z)]i ∈ [0, 1]

represents the probability of existence of the ith generated handle. Now, we need to

adapt our loss function to consider the probability of existence of a handle.

If we assume that all handles exist, our model can be trained using the following

loss:

L = Ch(gp(zi), Si) + Ch(Si, gp(zi)),

where Si is a set of shape handles drawn from the training data and zi is a latent

representation computed from the associated input xi. However, we want to modify

this loss to take into account the probability of a handle existing or not. To do so,

note that L has two terms. The first term measures accuracy: i.e. how close each

54

of the handles in gp(zi) is from the handles in Si. For this term, we can use ge as

weights for the summation in Equation 3.1, which leads to the following definition:

P (z, S) =
K∑
i=1

min
s∈S

D([gp(z)]i, s)[ge(z)]i, (3.3)

where z is a latent space representation, S is a set of handles andK = |gp(z)| = |ge(z)|.

The intuition is quite simple: if the ith handle is likely to exist, its distance to the

closest handle should be taken into consideration; on the other hand, if the ith handle

is unlikely to exist, it does not matter if it is approximating a handle in S or not.

The second term in L measures coverage: every handle in Si must have (at least)

one handle in the generated set that is very similar to it. Here, we use an insight

presented in [136] to efficiently compute the coverage of Si while considering the prob-

ability of elements in a set existing or not. Let gsp(z) be the list of generated handles

gp(z) ordered in non-decreasing order according to D([gsp]i, s) for i = 1, ..., |gp(z)|. We

compute the coverage of a set S from a set generated from z as follows:

C(z, S) =
∑
s∈|S|

K∑
i=1

D([gsp(z)]i, s)[g
s
e(z)]i

i−1∏
j=1

(1− [gse(z)]j). (3.4)

The idea behind this computation is the following: for every handle s ∈ S, we

compute its distance to every handle in gp(z), weighted by the probability of that

handle existing or not. However, the distance to a specific handle is important only

if no other handle closer to s exists. Thus, the whole term needs to be weighted

by
∏i

j=1(1 − [gse(z)]j). Finally, we can combine Equations 3.3 and 3.4 to define the

reconstruction loss Lrec used to train our model:

Lrec = P (z, S) + C(z, S). (3.5)

3.2.2.0.1 Alternate training procedure. Although minimizing the loss in Equa-

tion 3.5 at once enables generating sets of different sizes, our experiments show that

55

Figure 3.4: Comparison of results after the first stage (top row) and second stage (bottom
row) of alternate training. While the first stage ensures coverage, some extra, unnecessary
handles are also generated. The second stage trains the existence branch, which assigns a
low probability of existence to the inaccurate handles.

the results can be further improved if we train gp and ge in an alternating fashion.

Specifically, we first initialize the biases and weights of the last layer of ge to ensure

that all of its outputs are 1, i.e., the model is initialized to predict that every primitive

exists. Then, in the first stage of the training, we fix the parameters of ge and train

gp minimizing only the coverage C(z, S). During the second stage of the training, we

fix the parameters of gp and update the parameters of ge, but this time minimizing

the full reconstruction loss Lrec. As we show in Section 4, this alternating procedure

improves the training leading to the generation of more accurate shape handles. The

intuition is that while training the model to predict the handle parameters (gp), the

network should be only concerned about coverage, i.e., generating at least one similar

handle for each ground-truth handle. On the other hand, while training the existence

prediction branch (ge), we want to remove the handles that are in incorrect positions

while keeping the coverage of the ground-truth set.

56

3.3 Experiments

This section describes our experiments and validates results. We experimented

with two different types of handles: cuboids computed from PartNet [122] segmen-

tations and sphere-meshes computed from ShapeNet [24] shapes using [178]. We

compare our results to two other approaches focused on generating shapes as a set of

simple primitives, namely cuboids [186] and superquadrics [136]. All the experiments

in the paper were implemented using Python 3.6 and PyTorch. Computation was

performed on TitanX GPUs.

3.3.1 Datasets

Cuboids from PartNet [122]. We experiment with human annotated handles

by fitting cuboids to the parts segmented in PartNet [122]. The dataset contains

26,671 shapes from 24 categories and 573,585 part instances. In order to compare

our model with other approaches trained on the ShapeNet [24] chairs dataset, we

select the subset of PartNet chairs that is also present in ShapeNet. This results

in 6773 chair models segmented in multiple parts. Every model has on average 18

parts, but there are also examples with as many as 137 parts. For every part we fit

a corresponding cuboid using PCA. Then, we compute the volume of every cuboid

and keep at topmost 30 cuboids in terms of volume. Notice that 92% of the shapes

have less than 30 cuboids, so those remain unchanged. The others will have missing

components, but those usually correspond to very small details and can be ignored

without degrading the overall structure.

Sphere-meshes from ShapeNet [24]. In contrast to cuboids (which are com-

puted from human annotated parts), we compute sphere-meshes fully automatically

using the procedure described in [178]. We use ShapeNet categories that are also

analyzed in [136, 186]: chairs, airplanes and animals. The sphere-mesh computation

procedure requires pre-selecting how many sphere-vertices to use. The algorithm

57

starts by considering the regular triangle mesh as a trivial sphere-mesh (vertices with

null radius) and then decimates the original mesh progressively through edge collaps-

ing, optimizing for new sphere-vertex each time an edge is removed. This procedure

is iterated until the required number of vertices is achieved.

In our case, since our model is capable of generating sets with different cardinali-

ties, we are not required to set a fixed number of primitives for every shape. Therefore

we use the following method to compute a sphere-mesh with adaptive number of ver-

tices. Specifically, for every shape in the dataset, we start by computing a sphere-mesh

with 10 vertices. Then, we sample 10K points both on the sphere-mesh surface and

the original mesh. If the Hausdorff distance between the point clouds is smaller than

ε = 0.2 (point clouds are normalized to fit the unit sphere), we keep the current

computed sphere-mesh. Otherwise, we compute a new sphere-mesh by increment-

ing the number of vertices. This procedure continues until we reach a maximum of

40 vertices. This adaptive sphere-mesh computation allows our model to achieve a

good balance between shape complexity and summarization – simpler shapes will be

naturally represented with a smaller number of primitives. We note that the sphere-

mesh computation allows the resulting mesh to contain not only triangles, but also

edges (i.e. degenerate triangles). For simplicity, we make no distinction between

sphere-triangles or edges: edges are simply triangles that have two identical vertices.

3.3.2 Shape Parsing

The shape parsing task is to compute a small set of primitives from non-parsimonious,

raw, 3D representations, like occupancy grids, meshes or point clouds. We analyze the

ability of our model in performing shape parsing using a similar setup to [136, 186].

Specifically, following the notation defined in Section 3.2, we train a model fθ using

input-output pairs 〈xi, Si〉, where xi corresponds to a point cloud with 1024 points

and Si is a set of handles summarizing the shape represented by xi. We use a Point-

58

Figure 3.5: Shape parsing on the chairs dataset. From top to bottom, we show
ground-truth shapes, results by Tulsiani et al. [186], results by our method using sphere-
mesh handles, and our method using cuboids handles. Note how our results (last two rows)
are able to generate handles with much better details such as the stripes on the back of
the chair (first column), legs on wheel chairs (second column) and armrests in several other
columns.

Net [169] encoder to process a point cloud with 1024 points and generate a 1024

dimensional encoding. This encoding is then used as an input for our two-branched

set decoder. Both branches follow the same architecture: 3 fully connected layers with

256 hidden neurons followed by batch normalization and ReLU activations. The only

difference between the two branches is in the last layer. Assume N is the maximum

set cardinality generated by our model and D is the handle dimensionality (i.e. num-

ber of parameters of each handle descriptor, which happens to be D = 12 for both

sphere-mesh and cuboid). Then gp outputs N ×D values followed by a tanh activa-

tion, while ge outputs N values followed by a sigmoid activation. We set N = 30 for

cuboid handles and N = 50 for sphere-meshes. The model is trained end-to-end by

using the alternating training described in Section 3.2. Training is performed using

the Adam optimizer with a learning rate of 10−3 for 5K iterations in each stage.

59

Figure 3.6: Shape parsing on the airplanes and animals datasets. From top to
bottom, we show ground-truth shapes, results by Tulsiani et al. [186], results by Paschalidou
et al. [136], and results by our model trained using sphere-mesh handles. Our results contain
accurate geometric details, such as the engines on the airplanes and animal legs that are
clearly separated.

Figures 3.5 and 3.6 show visual comparisons of our method with previous work.

Qualitatively, our method generates shape handles with accurate geometric details,

including many thin structures that previous methods struggle with.

Quantitative evaluation. We compare our method against [136,186] using inter-

section over union (IoU) metric and results are shown in Table 3.1. As expected, when

using cuboids as handles, our method leverages the annotated data from the Part-

Net [122] to achieve significantly more accurate shape approximations (more than

twice the IoU in comparison). On the other hand, as [136, 186] are trained with-

out leveraging annotated data, a more fair comparison is between theirs and our

method using sphere-mesh handles, which are computed automatically. Our method

still clearly outperforms theirs in all categories – chairs, airplanes and animals. This

60

Handle type
Category

Chairs Airplanes Animals

[186] Cuboid 0.129 0.065 0.334
[136] Superquadric 0.141 0.181 0.751

Ours
Cuboid 0.311 - -
Sphere-mesh 0.298 0.307 0.761

Table 3.1: Quantitative results for shape parsing. Intersection over union computed
on the reconstructed shapes. The best self-supervised results are shown in bold font.

Figure 3.7: Ablation studies. Shapes generated from a model trained without our
proposed handle similarity metric (first row), model trained without the two-stage training
procedure (second row), and our full model (last row). Note that comparing handles using
just `2-norm (first row) yields poor results. Training gp and ge at the same time (instead of
alternating) yields reasonable results, but some parts are missing and/or poorly oriented.

shows that even though a neural network in theory should be able to learn the best

parsimonious shape representations, using self-supervision generated by shape sum-

marization techniques (e.g. sphere-meshes) can still help it achieve more accurate

approximations.

3.3.3 Ablation studies

We investigated the influence of the two main contributions of this work: the

similarity metric for handles and the alternating training procedure for gp and ge.

61

w/o similarity w/o alternate full model
0.192 0.320 0.352

Table 3.2: Quantitative results of ablation studies comparing our full model with two
variations that lack our handle similarity metric and alternate training procedure respec-
tively.

To do so, we adopt a shape-handle auto-encoder and compare different variations

by computing the IoU of reconstructed shapes in a held-out test set. The auto-

encoder architecture is very similar to the one used in shape parsing, except for

the encoder – it still follows a PointNet architecture, but every “point” is actually

a handle treated as a point in a D-dimensional space. We analyzed three different

variations. In the first one, we simply used the `2-norm between the handle parameters

(cuboids, in this case). As shown in Figure 3.7 and Table 3.2, the proposed handle

similarity metric has a significant impact on the quality of the generated shapes.

The second variation consists of training the same model, but without using the

alternating procedure described in Section 3.2. Figure 3.7 shows that the alternating

training procedure generates more accurate shapes, with fewer missing parts and

better cuboid orientation.

3.3.4 Applications

In this section, we demonstrate the use of our generative model in several appli-

cations. We employed a Variational Auto-Encoder (VAE) [94] for this purpose. It

follows the same architecture as the auto-encoder described in Section 3.3.3 with the

only difference being that the output of the encoder (latent representation z) has di-

mensionality 256 instead of 512. Additionally, following [55], we added an additional

regularization term to the training objective:

Lreg = ‖cov(Q(x) + δ)‖2 + Ex∼D[Q(x)] (3.6)

62

Figure 3.8: Latent space interpolation Sets of handles can be interpolated by linearly
interpolating the latent representation z. Transitions are smooth and generate plausible
intermediate shapes. Notice that the interpolation not only changes handle parameters,
but also adds new handles / removes existing handles as necessary.

where Q is the encoder, cov(·) is the covariance matrix, ‖·‖2 is the Frobenius norm, x

is input handle set and δ is random noise sampled from N (0, cI). Thus, the network

is trained minimizing the following function:

L = Lrec + λLreg. (3.7)

In all our experiments, we used λ = 0.1 and c = 0.01. The model is trained using the

alternate procedure described before, i.e.Lrec is replaced by C(z, S) while training gp.

Interpolation. Once the VAE model is trained, we are able to morph between

two shapes by linearly interpolating their latent representations z. In particular,

we sample two values z1, z2 from N (0, I) and generate new shapes by passing the

interpolated encodings αz1+(1−α)z2 through the decoder g, where α ∈ [0, 1]. Results

using cuboid handles are presented in Figure 3.8. Note that the shapes are smoothly

interpolated, with new handles added and old handles removed as necessary when the

overall shape deforms. Additionally, relationships between handles, 3.4.4.0.1 Shape

editing.like symmetries, adjacency and support, are preserved, thanks to the latent

space learned by our model, even though such characteristics are never explicitly

specified as supervision.

Handle completion. Consider an incomplete set of handles A = {ai}Ni=1 as input,

the handle completion task is to generate a complete set of handles A∗, such that A∗

contains not only the handles in the input A but also necessary additional handles

63

that result in a plausible shape. For example, given a single cuboid handle as shown in

Figure 3.9, we want to generate a complete chair that contains that input handle. We

perform this task by finding a latent representation z∗ that generates a set of handles

approximating the elements in A. Specifically, we solve the following optimization

problem:

z∗ = argmin
z∈Z

C(z, A), A∗ = g(z∗), (3.8)

where C is the coverage metric defined in Equation 3.4 and A∗ is the completed

shape (i.e. output of the decoder using z∗ as input). We can also use the existence

prediction branch (ge) in this framework to reason about how complex we want the

completed shapes to be. Specifically, we add an additional term to the optimization:

z∗ = argmin
z∈Z

C(z, A) + γ
N∑
i=1

[ge(z)]i, (3.9)

where γ controls the complexity of the shape. If γ = 0, we are not penalizing a set

with multiple handles – only coverage matters. As γ increases, existence of multiple

handles is penalized more, leading to a solution with a lower cardinality. As can

be seen in Figure 3.9, our model is capable of recovering plausible chairs even when

given a single handle. In addition, we can generate multiple proposals for A∗ by

initializing the optimization with different values of z. More results can be found in

the supplemental material.

Shape editing. For editing shapes, we use a similar optimization based framework.

Consider an original set of handles A describing a particular shape. Assume that the

user made edits to A by modifying the parameters of some handles, creating a new

set A′. Our goal is to generate a plausible new shape A∗ from A′, while minimizing

the deviation from the original shape. To achieve this goal, we solve the following

minimization problem via gradient descent:

64

Figure 3.9: Results of handle completion. Recovering full shape from incomplete set
of handles. Using γ to control the complexity of the completed shape (left). Predicting a
complete chair from a single handle (right).

3.4.4.0.1 Shape editing.

Figure 3.10: Editing chairs. Given an initial set of handles, a user can modify any
handle (yellow). Our model then updates the entire set of handles, resulting in a modified
shape which observes the user edits while preserving the overall structure.

z∗ = argmin
z∈Z

C(z, A′) + γ ‖z − zA‖2 , A∗ = g(z∗) (3.10)

where zA is the latent representation of the original shape. The intuition for Equa-

tion 3.10 is simple: we want to generate a plausible shape that approximates the user

edits by minimizing C(z, A′) but also keep the overall characteristics of the original

shape A by adding a penalty for deviating too much from zA. Results are shown in

Figure 3.10. As observed in the figure, when the user edits one of the handles, our

model can automatically modify the shape of the entire chair while preserving its

overall structure.

Limitations. Our method has several limitations to be addressed in future work.

First, during training we set a maximum number of handles to be generated. Increas-

65

ing this number would allow more complex shapes but also entail a larger network

with higher capacity. Therefore, there is a trade-off between the compactness of the

generative model and the desired output complexity. Furthermore, our method cur-

rently does not guarantee the output handles observe certain geometric constraints,

such as parts that need to be axis-aligned or orthogonal to each other. For man-made

shapes, these are often desirable constraints and even slight deviation is immediately

noticeable. While our model can already learn geometric relationships among handles

from the data directly, generated shapes might benefit from additional supervision

enforcing geometric constraints.

3.4 Conclusion

We presented a method to generate shapes represented as sets of handles – lightweight

proxies that approximate the original shape and are amenable to high-level tasks, like

shape editing, parsing and animation. Our approach leverages pre-defined sets of han-

dles as supervision, either through annotated data or self-supervised methods. We

proposed a versatile similarity metric for shape handles that can easily accommodate

different types of handles, and a two-branch network architecture to generate handles

with varying cardinality. Experiments show that our model is capable of generat-

ing compact and accurate shape approximations, outperforming previous work. We

demonstrate our method in a variety of applications, including interactive shape edit-

ing, completion, and interpolation, leveraging the latent space learned by our model to

guide these tasks. In the next chapter, we will investigate how to use pre-defined sets

of handles (convex polytopes) as supervisory signal for learning per-point embeddings

that can be used in discriminative models.

66

CHAPTER 4

LABEL-EFFICIENT LEARNING ON POINT CLOUDS
USING APPROXIMATE CONVEX DECOMPOSITIONS

The performance of current deep neural network models on tasks such as classi-

fication and semantic segmentation of point cloud data is limited by the amount of

high quality labeled data available for training the networks. Since in many situa-

tions collecting high quality annotations on point cloud data is time consuming and

incurs a high cost, there has been increasing efforts in circumventing this problem by

training the neural networks on noisy or weakly labeled datasets [158], or training in

completely unsupervised ways [30,55,72,212,214].

A ubiquitous technique in training deep networks is to train the network on one

task to initialize its parameters and learn generically useful features, and then fine-

tune the network on the final task. In particular, there has been great interest in

so-called self-supervised tasks for initialization. These tasks, which do not require

any human annotations, allow the network to be initialized by using various tech-

niques to generate labels automatically, i.e., in a self-supervised manner – e.g.tasks

such as clustering, solving jigsaw puzzles, and colorization. There have been a few

recent attempts to come up with similar tasks that help with 3D data [30, 72]. The

overarching question here is “what makes for a good self-supervision task?” – what

are the useful inductive biases that our model learns from solving such a task that is

beneficial to the actual downstream target task we are interested in solving.

We propose using a classical shape decomposition method, Approximate Convex

Decomposition (ACD), as the self-supervisory signal to train neural networks built to

67

Human
Annotation

Self-supervision

Supervision

ACD

Neural
Network

Approximate Convex
Decomposition

Figure 4.1: Overview of our method v.s. a fully-supervised approach. Top: Approxi-
mate Convex Decomposition (ACD) can be applied on a large repository of unlabeled point
clouds, yielding a self-supervised training signal for the neural network without involving
any human annotators. Bottom: the usual fully-supervised setting, where human anno-
tators label the semantic parts of point clouds, which are then used as supervision for
the neural network. The unsupervised ACD task results in the neural network learning
useful representations from unlabeled data, significantly improving performance in shape
classification and semantic segmentation when labeled data is scarce or unavailable.

process 3D data. We posit that being able to decompose a shape into geometrically

simple constituent parts provides an excellent self-supervisory learning signal for such

purposes. As shown in the Figure 4.2, ACD decomposes shapes into segments that

roughly align with instances of different parts, e.g.two wings of an airplane are de-

composed into two separate approximately convex parts. Many man-made shapes are

influenced by physical and geometric constraints. Convex parts tend to be easily man-

ufactured, and are strong and aerodynamic, thus fulfilling the above requirements.

However, strictly convex decomposition often leads to highly over-segmented shapes.

For that reason, we chose approximate convex decomposition, which we show benefits

a number of learning tasks.

Our approach is illustrated in Figure 4.1. The main idea is to automatically gen-

erate training data by decomposing unlabeled 3D shapes into convex components.

68

Since ACD relies solely on geometric information to perform its decomposition, the

process does not require any human intervention. From the model perspective, we

formulate ACD as a metric learning problem on point embedding and train the model

using a contrastive loss [34,69]. We demonstrate the effectiveness of our approach on

standard 3D shape classification and segmentation benchmarks. In classification, we

show that the representation learned from performing shape decomposition leads to

features that achieve state-of-the-art performance on ModelNet40 [206] unsupervised

shape classification (89.8%). For few-shot part segmentation on ShapeNet [24], our

model outperforms the state-of-the-art by 7.5% mIoU when using 1% of the avail-

able labeled training data. Moreover, differently from other unsupervised approaches,

our method can be applied to any of the well-known neural network backbones for

point cloud processing. Finally, we provide thorough experimental analysis and visu-

alizations demonstrating the role of the ACD self-supervision on the representations

learned by neural networks.

4.1 Related Work

Learning Representations on 3D data. Shape representations using neural net-

works have been widely studied in the field of computer graphics and computer

vision. Occupancy grids have been used to represent shape for classification and

segmentation tasks [116]; however it suffered from issues of computational and mem-

ory efficiency, which were later circumvented by architectures using spatial parti-

tioning data structures [97, 147, 194, 195]. Multi-view approaches [77, 86, 175] learn

representations by using order invariant pooling of features from multiple rendered

views of a shape. Another class of methods take a point cloud representation (i.e.a

set of (x, y, z) co-ordinates) as input, and learn permutation invariant representa-

tions [55, 72, 140, 141, 198, 212]. Point clouds are a compact 3D representation that

does not suffer from the memory constraints of volumetric representations nor the vis-

69

ibility issues of multi-view approaches. However, all these approaches rely on massive

amounts of labeled 3D data. In this paper, we focus on developing a technique to allow

label-efficient representation learning of point clouds. Our approach is architecture-

agnostic and relies on learning approximate convex decompositions, which can be

automatically computed from a variety of shape representations without any human

intervention.

Approximate Convex Decompositions. Early cognitive science literature has

demonstrated that humans tend to reason about 3D shapes as a union of convex com-

ponents [75]. However, performing exact convex decomposition is a NP-Hard problem

that leads to an undesirable high number of components on realistic shapes [11]. Thus,

we are interested in a particular class of decomposition techniques named Approximate

Convex Decomposition (ACD) [85,107,114,225], which compute components that are

approximately convex – up to a concavity tolerance ε. This makes the computation

significantly more efficient and leads to shape approximations containing a smaller

number of components. These approximations are useful for a variety of tasks, like

mesh generation [107] and collision detection [199]. ACDs are also an important step

in non-parametric shape segmentation methods [8,85]. Furthermore, ACD is shown to

have a low rand-index compared to human segmentations in the PSB benchmark [85],

which indicates that it is a reasonable proxy for our intuitions of shape parts. In this

work, we used a particular type of ACD named Volumetric Hierachical Approximate

Convex Decomposition (V-HACD) [114] – details in Section 4.2.1. Differently from

non-parametric approaches, our goal is to use ACD as a self-supervisory task to im-

prove point cloud representations learned by deep neural networks. We show not

only that the training signal provided by ACD leads to improvements in semantic

segmentation, but also to unsupervised shape classification.

Self-supervised learning. In many situations, unlabeled images or videos them-

selves contain information which can be leveraged to provide a training loss to learn

70

useful representations. Self-supervised learning explores this line of work, utilizing

unlabeled data to train deep networks by solving proxy tasks that do not require any

human annotation effort, such as predicting data transformations [60,131,132] or clus-

tering [21,22]. Learning to colorize grayscale images was among the first approaches

to training modern deep neural networks in a self-supervised fashion [101,219,220] –

being able to predict the correct color for an image requires some understanding of a

pixel’s semantic meaning (e.g.skies are blue, grass is green etc.), leading to learning

representations useful in downstream tasks like object classification. The contextual

information in an image also lends itself to the design of proxy tasks – learning to

predict the relative positions of cropped image patches as in Doersch et al. [42], sim-

ilarity of patches tracked across videos [196, 197], inpainting a missing patch in an

image by leveraging the context from the rest of the image [138, 183]. Motion from

unlabeled videos also provides a useful pre-training signal, as shown in Pathak et

al. [137] using motion segmentation, and Jiang et al. [84] who predict relative depth

as pre-training for downstream scene understanding tasks. Other approaches include

solving jigsaw puzzles with permuted image patches [131] and training a generative

adversarial model [43]. An empirical comparison of various self-supervised tasks may

be found in [65, 98]. In the case of limited samples i.e.the few-shot classification

setting, including self-supervised losses along with the usual supervised training is

shown to be beneficial in Su et al. [171]. Recent work has also focused on learning

unsupervised representations for 3D shapes using tasks such as clustering [72] and

reconstruction [157,214], which we compare against in our experiments.

Label-efficient representation learning on point clouds. Several recent ap-

proaches [30, 72, 124, 158, 226] have been proposed to alleviate expensive labeling of

shapes. Muralikrishnan et al. [124] learn per-point representation by training the

network to predict shape-level tags. Yi et al. [215] embeds pre-segmented parts in

descriptor space by jointly learning a metric for clustering parts, assigning tags to

71

them, and building a consistent part hierarchy. Another direction of research is to

utilize noisy/weak labels for supervision. Chen et al. [30] proposed a branched auto-

encoder, where each branch learns coarse part level features, which are further used

to reconstruct the shape by producing implicit fields for each part. However, this ap-

proach requires one decoder for every different part, which restricts their experiments

to category-specific models. On the other hand, our approach can be directly applied

to any of the well known point-based architectures, being capable of handling mul-

tiple categories at once for part segmentation and learning state-of-the-art features

for unsupervised shape classification. Furthermore, [30] shows experiments on single

shot semantic segmentation on manually selected shapes, whereas we show results

on randomly selected training shapes in few-shot setting. Most similar to our work,

Hassani et al. [72] propose a novel architecture for point clouds which is trained on

multiple tasks at the same time: clustering, classification and reconstruction. In our

experiments, we demonstrate that we outperform their method on few-shot segmen-

tation by 7.5% IoU and achieve the same performance on unsupervised ModelNet40

classification by using only ACD as a proxy task. If we further add a reconstruc-

tion term, our method achieves state-of-the-art performance in unsuperivsed shape

classification. Finally, Sharma et al. [158] proposed learning point embedding by uti-

lizing noisy part labels and semantic tags available freely on a 3D warehouse dataset.

The model learnt in this way is used for a few-shot semantic segmentation task. In

this work, we instead get part labels using approximate convex decomposition, whose

computation is completely automatic and can be applied to any mesh regardless of

the existence of semantic tags.

72

In
p
u
t

A
C
D

S
em
an
ti
c

S
eg
m
en
ta
ti
o
n

Figure 4.2: Input point clouds (first row), convex components automatically computed
by ACD (second row) and human-labeled point clouds (last row) from the ShapeNet [24]
part segmentation benchmark. Note – (i) different colors for the ACD components only
signify different parts– no semantic meaning or inter-shape correspondence is inferred by
this procedure; (ii) for the human labels, colors do convey semantic meaning: e.g.the backs
of chairs are always orange; (iii) while the ACD decompositions tend to oversegment the
shapes, they contain most of the boundaries present in the human annotations, suggesting
that the model has similar criteria for decomposing objects into subparts; e.g.chair’s legs
are separated from the seat, wings and engines are separated from the airplane boundary,
pistol trigger is separated from the rest, etc

4.2 Method

4.2.1 Approximate Convex Decomposition

In this subsection, we provide an overview of the shape decomposition approach

used to generate the training data for our self-supervised task. A detailed description

of the method used in this work can be found in [114].

Decomposing complex shapes as sets of convex components is a well studied prob-

lem [85, 107, 114, 225]. Given a polyhedron P , the goal is to compute the smallest

set of convex polyhedra C = {Ck|k = 1, ..., N}, such that the union ∪k=N
k=1 Ci cor-

responds to P . However, exact convex decomposition of polyhedra is an NP-Hard

problem [11] and leads to decompositions containing too many components, rendering

it impractical for use in most applications (ours included). This can be circumvented

by Approximate Convex Decomposition (ACD) techniques. ACD relaxes the con-

vexity constraint of exact convex decomposition by allowing every component to be

73

approximately convex up to a concavity ε. The way concavity is computed and how

the components are split varies according to different methods [59, 85, 107, 114, 225].

In this work, we use an approach called Volumetric Hierarchical Approximate Convex

Decomposition (V-HACD) [114]. The reasons for utilizing this approach are three-

fold. First, as the name suggests, V-HACD performs computations using volumetric

representations, which can be easily computed from dense point cloud data or meshes

and lead to good results without having to resort to costly decimation and remeshing

procedures. Second, the procedure is reasonably fast and can be applied to open

surfaces of arbitrary genus. Third, V-HACD guarantees that no two components

overlap, which means that there is no part of the surface that is approximated by

more than one component. In the next paragraph, we describe V-HACD in detail.

V-HACD. Since the method operates on volumetric representations, the first step is

to convert a shape into an occupancy grid. If the shape is represented as a point cloud,

one can compute an occupancy grid by selecting which cells are occupied by the points

and filling its interior. In our case, since our training shapes are from ShapeNet [24]

which come with meshes, we chose to compute the occupancy grid by voxelizing the

meshes using [78]. Once the voxelization is computed, the algorithm proceeds on

computing convex components by recursively splitting the volume into two parts.

First, the volume is centered and aligned in the coordinate system according to its

principal axis. Then, one of the three axis aligned planes is selected as a splitting plane

that separates the volume in two different parts. This procedure is applied multiple

times until we reach the maximum number of desired components or the concavity

tolerance is reached. The concavity η(C) of a set of components C is computed as

follows:

η(C) = max
k=1,...N

d(Ck, CH(Ck)) (4.1)

where d(X, Y) is the difference between the volumes X and Y ; CH(X) is the convex

hull of X; and Ck is the kth element of the set C. The splitting plane selection happens

74

by choosing one of the axis aligned planes which minimizes an energy E(K,p), where

K is the volume we are aiming to split and p is the splitting plane. This energy is

defined as:

E(K,p) = Econ(K,p) + αEbal(K,p) + βEsym(K,p), (4.2)

where Econ is the connectivity component, which measures the sum of the normal-

ized concavities between both sides of volume; Ebal is the balance component, which

measures the dissimilarity between both sides; and Esym is the symmetry component,

which penalizes planes that are orthogonal to a potential revolution axis. α and β

are weights for the last two terms. In all our experiments we used the default val-

ues of α = β = 0.05. We refer the reader to [114] for a detailed description of the

components in the energy term.

Assigning component labels to point clouds. The output of ACD for every

shape is a set of convex components represented by convex meshes. For each shape,

we sample points on the original ShapeNet mesh and on the mesh of every ACD

component. We then propagate component labels to every point in the original point

cloud by using nearest neighbor matching with points in the decomposition. More

precisely, given an unlabeled point cloud {pi}Ni=1, this assigns a component label

Γ(pi, C) to each point pi via

Γ(pi, C) = argmin
k=1...|C|

[
min
pj∈Ck

||pi − pj||
]
. (4.3)

4.2.2 Self-supervision with ACD

The component labels generated by the ACD algorithm are not consistent across

point clouds, i.e.“component 5” may refer to the seat of a chair in one point cloud,

while the leg of the chair may be labeled as “component 5” in another point cloud.

Therefore, the usual cross-entropy loss, which is generally used to train networks for

tasks such as semantic part labeling, is not applicable in our setting. We formulate

75

the learning of Approximate Convex Decompositions as a metric learning problem on

point embeddings via a pairwise or contrastive loss [69].

We assume that each point pi = (xi, yi, zi) in a point cloud x is encoded as Φ(x)i

in some embedding space by a neural network encoder Φ(·), e.g.PointNet [169] or

PointNet++ [141]. Let the embeddings of a pair of points from a shape be Φ(x)i and

Φ(x)j, normalized to unit length (i.e.||Φ(x)i|| = 1), and the set of convex components

as described above be C. The pairwise loss is then defined as

Lpair(x, pi, pj, C) =

1− Φ(x)>i Φ(x)j, if [Γ(pi, C) = Γ(pj, C)]

max(0,Φ(x)>i Φ(x)j −m), if [Γ(pi, C) 6= Γ(pj, C)].
(4.4)

This loss encourages points belonging to the same component to have a high

similarity Φ(x)>i Φ(x)j, and encourages points from different components to have low

similarity, subject to a margin m. [·] denotes the Iverson bracket.

Joint training with ACD. Formally, let us consider samples X = {xi}i∈[n], divided

into two parts: X L and X U of sizes l and u respectively. Now X L := {x1, ...,xl} consist

of point clouds that are provided with human-annotated labels YL := {y1, ...,yl},

while we do not know the labels of the samples X U := {xl+1, ...,xl+u}. By running

ACD on the samples in X U , we can obtain a set of components for each shape. The

pairwise contrastive loss Lpair (Eq. 4.4) can then be defined over xi ∈ X U as a self-

supervised objective. For the samples xi ∈ X L, we have access to their ground-truth

labels YL, which may for example, be semantic part labels. In that case, the standard

choice of training objective is the cross-entropy loss LCE, defined over the points in

an input point cloud. Thus, we can train a network on both X L and X U via a joint

loss that combines both the supervised (LCE) and self-supervised (Lpair) objectives,

L = LCE + λ · Lpair. (4.5)

76

The scalar hyper-parameter λ controls the relative strength between the super-

vised and self-supervised training signals. In the pretraining scenario, when we only

have the unlabeled dataset X U available, we can train a neural network purely on the

ACD parts by optimizing the Lpair objective.

4.3 Experiments

We demonstrate the effectiveness of the ACD self-supervision across a range of

experimental scenarios. For all the experiments in this section we use ACDs computed

on all shapes from the ShapeNetCore data [24], which contains 57,447 shapes across

55 categories. The decomposition was computed using a concavity tolerance of 1.5×

10−3 and a volumetric grid of resolution 1283. All the other parameters are set to

their default values according to a publicly available implementation1 of [114]. The

resulting decompositions have an average of 17 parts per shape.

4.3.1 Shape classification on ModelNet

In this set of experiments, we show that the representations learned by a network

trained on ACD are useful for discriminative downstream tasks such as classifying

point clouds into shape categories.

Dataset. We report results on the ModelNet40 shape classification benchmark, which

consists of 12,311 shapes from 40 shape categories in a train/test split of 9,843/2,468.

A linear SVM is trained on the features extracted on the training set of ModelNet40.

This setup mirrors other approaches for unsupervised learning on point clouds, such

as FoldingNet [214] and Hassani et al. [72].

Experimental setup. A PointNet++ network is trained on the unlabeled ShapeNet-

Core data using the pairwise contrastive loss on the ACD task, using the Adam

1https://github.com/kmammou/v-hacd

77

https://github.com/kmammou/v-hacd

optimizer, initial learning rate of 1e-3 and halving the learning rate every epoch.

However, this network architecture creates an embedding for each of the N points

in an input shape, while for the shape classification task we require a single global

descriptor for the entire point cloud. Therefore, we aggregate the per-point features

of PointNet++ at the first two set aggregation layers (SA1 and SA2) and the last fully

connected layer (fc), resulting in 128, 256 and 128 dimensional feature vectors, re-

spectively. Since features from different layers may have different scales, we normalize

each vector to unit length before concatenating them, and apply element-wise signed

square-rooting [152], resulting in a final 512-dim descriptor for each point cloud. The

results are presented in Table 4.1.

Comparison with baselines. As an initial näıve baseline, we use a PointNet++

network with random weights as our feature extractor, and then perform the usual

SVM training. This gives 78% accuracy on ModelNet40 – while surprisingly good,

the performance is not entirely unexpected: randomly initialized convolutional neural

networks are known to provide useful features by virtue of their architecture, as

studied in Saxe et al. [154]. Training this network with ACD, on the other hand, gives

a significant boost to performance (78% → 89.1%), demonstrating the effectiveness

of our proposed self-supervision task. This indicates some degree of generalization

across datasets and tasks – from distinguishing convex components on ShapeNet to

classifying shapes on ModelNet40. Inspired by [72], we also investigated if adding a

reconstruction component to the loss would further improve accuracy. Reconstruction

is done by simply adding an AtlasNet [68] decoder to our model and using Chamfer

distance as reconstruction loss. Without the reconstruction term (i.e. trained only

to perform ACD using contrastive loss), our result accuracy (89.1%) is the same as

the multi-task learning approach presented in [72]. After adding a reconstruction

term, we achieve an improved accuracy of 89.8%. On the other hand, having just

reconstruction without ACD yields an accuracy of 86.2%. This shows not only that

78

Table 4.1: Unsupervised shape classification on the ModelNet40 dataset. The representa-
tions learned in the intermediate layers by a network trained for the ACD task on ShapeNet
data are general enough to be useful for discriminating between shape categories on Mod-
elNet40.

Method Accuracy (%)

VConv-DAE [157] 75.5
3D-GAN [204] 83.3
Latent-GAN [2] 85.7
MRTNet [55] 86.4
PointFlow [212] 86.8
FoldingNet [214] 88.4
PointCapsNet [221] 88.9
Multi-task [72] 89.1

Our baseline (with Random weights) 78.0
With reconstruction term only 86.2
Ours with ACD 89.1
Ours with ACD + Reconstruction 89.8

ACD is a useful task when learning representations for shape classification, but that

it can also be combined with shape reconstruction to yield even better results.

Comparison with previous work. Approaches for unsupervised or self-supervised

learning on point clouds are listed in the upper portion of Table 4.1. Our method

achieves 89.1% classification accuracy from purely using the ACD loss, which is

met only by the unsupervised multi-task learning method of Hassani et al. [72]. We

note that our method merely adds a contrastive loss to a standard architecture (Point-

Net++), without requiring a custom architecture and multiple pretext tasks as in [72],

which uses clustering, pseudo-labeling and reconstruction.

4.3.2 Few-shot segmentation on ShapeNet

Dataset. We report results on the ShapeNetSeg part segmentation benchmark [24],

which is a subset of the ShapeNetCore database with manual annotations (train/val/test

splits of 12,149/1,858/2,874). It consists of 16 man-made shape categories such as

79

Table 4.2: Few-shot segmentation on the ShapeNet dataset (class avg. IoU over 5 rounds).
K denotes the number of shots or samples per class for each of the 16 ShapeNet categories
used for supervised training. Jointly training with the ACD task reduces overfitting when
labeled data is scarce, leading to significantly better performance over a purely supervised
baseline.

Samples/cls. k=1 k=3 k=5 k=10

Baseline 53.15 ± 2.49 59.54 ± 1.49 68.14 ± 0.90 71.32 ± 0.52
w/ ACD 61.52 ± 2.19 69.33 ± 2.85 72.30 ± 1.80 74.12 ± 1.17

k=20 k=50 k=100 k=inf

Baseline 75.22 ± 0.82 78.79 ± 0.44 79.67 ± 0.33 81.40 ± 0.44
w/ ACD 76.19 ± 1.18 78.67 ± 0.72 78.76 ± 0.61 81.57 ± 0.68

airplanes, chairs, and tables, with manually labeled semantic parts (50 in total), such

as wings, tails, and engines for airplanes; legs, backs, and seats for chairs, and so on.

Given a point cloud at test time, the goal is to assign each point its correct part label

out of the 50 possible parts. Few-shot learning tasks are typically described in terms

of “n-way k-shot” – the task is to discriminate among n classes and k samples per

class are provided as training data. We modify this approach to our setup as follows

– we select k samples from each of the n = 16 shape categories as the labeled training

data, while the task remains semantic part labeling over the 50 part categories.

Experimental setup. For this task, we perform joint training with two losses – the

usual cross-entropy loss over labeled parts for the training samples from ShapeNetSeg,

and an additional contrastive loss over the ACD components for the samples from

ShapeNetCore (Eq. 4.5), setting λ = 10. In our initial experiments, we found joint

training to be more helpful than pre-training on ACD and then fine-tuning on the few-

shot task (an empirical phenomenon also noted in [209]), and thereafter consistently

used joint training for the few-shot experiments. All overlapping point clouds between

the human-annotated ShapeNetSeg and the unlabeled ShapeNetCore were removed

from the self-supervised training set. The (x, y, z) coordinates of the points in each

80

Table 4.3: Comparison with state-of-the-art semi-supervised part segmentation methods
on ShapeNet. Performance is evaluated using instance-averaged IoU.

Method
1% labeled 5% labeled

IoU IoU

SO-Net [103] 64.0 69.0
PointCapsNet [221] 67.0 70.0
MortonNet [177] - 77.1
Multi-task [72] 68.2 77.7

ACD (ours) 75.7 79.7

point cloud are used an the input to the neural network; we do not include any

additional information such as normals or category labels in these experiments.

Comparison with baselines. Table 4.2 shows the few-shot segmentation perfor-

mance of our method, versus a fully-supervised baseline. Especially in the cases of

very few labeled training samples (k = 1, . . . , 10), having the ACD loss over a large un-

labeled dataset provides a consistent and significant gain in performance over purely

training on the labeled samples. As larger amounts of labeled training samples are

made available, naturally there is limited benefit from the additional self-supervised

loss – e.g.when using all the labeled data, our method is within standard deviation

of the purely supervised baseline. Qualitative results are shown in Fig. 4.3.

Comparison with previous work. The performance of recent unsupervised and

self-supervised methods on ShapeNet segmentation are listed in Table 4.3. Consistent

with the protocol followed by the multi-task learning approach of Hassani et al. [72],

we provide 1% and 5% of the training samples of ShapeNetSeg as the labeled data

and report instance-average IoU. Our method clearly outperforms the state-of-the-

art unsupervised learning approaches, improving over [72] at both the 1% and 5%

settings (68.2 → 75.7% and 77.7 → 79.7%, respectively).

81

B
a
s
e
li
n
e

A
C
D

G
T

Figure 4.3: Qualitative comparison on 5-shot ShapeNet [24] part segmentation. The base-
line method in the first row corresponds to training using only 5 examples per class, whereas
the ACD results in the second row were computed by performing joint training (cross-
entropy from 5 examples + contrastive loss over ACD components from ShapeNetCore).
The network backbone architecture is the same for both approaches – PointNet++ [141].
The baseline method merges parts that should be separated, e.g.engines of the airplane,
details of the rocket, top of the table, seat of the motorcycle, etc.

4.3.3 Analysis of ACD

On the effect of backbone architectures. Differently from [30,72,214], the ACD

self-supervision does not require any custom network design and should be easily

applicable across various backbone architectures. To this end, we use two recent high-

performing models – PointNet++ (with multi-scale grouping [141]) and DGCNN [198]

– as the backbones, reporting results on ModelNet40 shape classification and few-shot

segmentation (k = 5) on ShapeNetSeg (Table 4.4). On shape classification, both

networks show large gains from ACD pre-training: 11% for PointNet++ (as reported

earlier) and 14% for DGCNN. On few-shot segmentation with 5 samples per category

(16 shape categories), PointNet++ improves from 68.14% IoU to 72.3% with the

inclusion of the ACD loss. The baseline DGCNN performance with only 5 labeled

samples per class is relatively lower (64.14%), however with the additional ACD loss

82

Table 4.4: Comparing embeddings from PointNet++ [141] and DGCNN [198] backbones:
shape classification accuracy on ModelNet40 (Class./MN40) and few-shot part segmenta-
tion performance in terms of class-averaged IoU on ShapeNet (Part Seg./ShapeNet).

Task / Dataset Method PointNet++ DGCNN

Class./MN40
Baseline 77.96 74.11
w/ ACD 89.06 88.21

5-shot Seg./ShapeNet
Baseline 68.14 ± 0.90 64.14 ± 1.43
w/ ACD 72.30 ± 1.80 73.11 ± 0.95

0 20 40 60 80
Training epochs

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

AC
D

lo
ss

Figure 4.4: Classification accuracy of a linear SVM on the ModelNet40 validation set v.s.
the ACD validation loss over training epochs.

on unlabeled samples, the model achieves 73.11% IoU, which is comparable to the

corresponding PointNet++ performance (72.30%).

On the role of ACD in shape classification. Fig. 4.4 shows the reduction in

validation loss on learning ACD (red curve) as training progresses on the unlabeled

ShapeNet data. Note that doing well on ACD (in terms of the validation loss) also

leads to learning representations that are useful for the downstream tasks of shape

classification (in terms of SVM accuracy on a validation subset of ModelNet40 data,

shown in blue).

83

ACD K-means Spectral HAC

0.0 0.5 1.0
NMI

0

20

40

60

80

100

Sh

ap
es

0.0 0.5 1.0
NMI

0

20

40

60

80

100

0.0 0.5 1.0
NMI

0

20

40

60

80

100

0.0 0.5 1.0
NMI

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.5: Correspondence between human part labels and shape decompositions: com-
paring ACD with basic clustering algorithms – K-means, spectral clustering and hierarchi-
cal agglomerative clustering (HAC). Row-1: histogram of normalized mutual information
(NMI) between human labels and clustering – ACD is closer to the ground-truth parts than
others (y-axes clipped at 100 for clarity). Row-2: plotting precision v.s. recall for each
input shape, ACD has high precision and moderate recall (tendency to over-segment parts),
while other methods are usually lower in both metrics.

However, the correlation between the two quantities is not very strong (Pearson

ρ = 0.667) – from the plots it appears that after the initial epochs, where we observe a

large gain in classification accuracy as well as a large reduction in ACD loss, continuing

to be better at the pretext task does not lead to any noticeable gains in the ability to

classify shapes: training with ACD gives the model some useful notion of grouping

and parts, but it is not intuitively obvious if perfectly mimicking ACD will improve

representations for classifying point-clouds into shape categories.

Comparison with clustering algorithms. We quantitatively analyse the connec-

tion between convex decompositions and semantic object parts by comparing ACD

with human part annotations on 400 shapes from ShapeNet, along with simple clus-

tering baselines – K-means [6], spectral clustering [161,192] and hierarchical agglom-

erative clustering (HAC) [123] on (x, y, z) coordinates of the point clouds. For the

baselines, we set the number of clusters to be the number of ground-truth parts in each

shape. For each sample shape, given the set of M part categories Ω = {ω1, ω2, . . . ωM}

84

and the set of N clusters C = {C1, C2, . . . CN}, clustering performance is evaluated

using normalized mutual information (NMI) [191], defined as

NMI(Ω, C) =
I(Ω; C)

[H(Ω) +H(C)]/2
, (4.6)

where I(·; ·) denotes the mutual information between classes Ω and clusters C, and

H(·) is the entropy [38]. A better clustering results in higher NMI w.r.t. the ground-

truth part labels. The first row of Fig. 4.5 shows the histograms of NMI between

cluster assignments and human part annotations: ACD, though not exactly aligned

to human notions of parts, is significantly better than other clustering methods, which

have very low NMI in most cases.

We plot the precision and recall of clustering for each of the 400 shapes on the

second row of Fig. 4.5. The other baseline methods show that a näıve clustering

of points does not correspond well to semantic parts. ACD has high precision and

moderate recall on most of the shapes – this agrees with the visual impression that

though ACD tends to oversegment the shapes, the decompositions contain most of the

boundaries present in the human annotations. For example, ACD typically segments

the legs of a chair into four separate components. Part annotations on ShapeNet

however label all the legs of a chair with the same label, since the benchmark does not

distinguish between the individual legs of a chair. We note that the correspondence

of ACD to human part labels is not perfect, and this opens an interesting avenue for

further work – exploring other decomposition methods like generalized cylinders [223]

that may correspond more closely to human-defined parts, and in turn could lead to

improved downstream performance on discriminative tasks.

4.4 Conclusions

Self-supervision using approximate convex decompositions (ACD) has been shown

to be effective across multiple tasks and datasets – few-shot part segmentation on

85

ShapeNet and shape classification on ModelNet, consistently surpassing existing self-

supervised and unsupervised methods in performance. A simple pairwise contrastive

loss is sufficient for introducing the ACD task into a network training framework,

without dependencies on any custom architectures or losses.

The method can be easily integrated into existing state-of-the-art architectures

operating on point clouds such as PointNet++ and DGCNN, yielding significant im-

provements in both cases. Extensive ablations and analyses are presented on the

approach, helping us develop a better intuition about the method. Given the demon-

strated effectiveness of ACD in self-supervision, this opens the door to incorporating

other shape decomposition methods from the classical geometry processing literature

into deep neural network based models operating on point clouds.

In the next chapters, instead of dealing with the lack of annotated 3D shapes, we

expand our focus to explore scenarios where 3D data itself is missing. More specif-

ically, the next chapter focus on priors induced by networks representing manifold

parametrizations whereas the following ones analyze volumetric occupancy grids and

differentiable operators that allow learning 3D directly from images (with different

levels of annotation).

86

CHAPTER 5

DEEP MANIFOLD PRIOR

The goal of this chapter is to characterize how the choice of the network architec-

ture impacts the properties of the low-dimensional manifolds parametrized by neural

networks. We present and analyze a deep manifold prior, an approach to represent

a manifold as a collection of transformations (atlas) of an Euclidean space param-

eterized using deep networks (Section 5.2). We show that random networks induce

smooth surfaces whose limiting behavior can be understood in terms of a Gaussian

process (GP) [33, 126, 201]. We analyze how the different network architectures af-

fect the distribution of position, normals and curvature of surfaces (Section 5.3). We

also derive the properties of implicit surfaces induced by the level-set of a scalar field

{f(x) = c} parameterized using a deep network.

As a concrete application we study the problem of interpolating and denoising

point clouds sampled from contours or surfaces of shapes, as seen in Figures 5.1

and 5.2. The manifold parametrization allows us to efficiently sample point clouds,

which can be combined with a Chamfer metric to measure a reconstruction error with

respect to the sampled data. We show that smooth surfaces are obtained when the

parameters of the networks are learned to minimize the reconstruction error starting

from a random initialization (Figure 5.2). The approach is also effective for the

level-set formulation, where the objective is to learn a deep network that correctly

classifies points as inside or outside the surface. However, an advantage of the explicit

parametrization is that it does not require the notion of what is inside. In addition

we introduce a regularization that reduces self-intersections, overlaps, and distortion

87

Figure 5.1: Deep manifold prior. Points interpolated by using deep networks to map
points in a 2D grid (top) and 1D grid (bottom) to the target shape (a 3D surface and a
2D curve respectively). The networks are randomly initialized and trained to minimize the
Chamfer distance to the target.

of the parametrization, which is desirable for applications such as texture mapping

(Section 5.2). Our approach requires no prior learning, works across a range of 3D

shapes, and outperforms strong baselines for point cloud denoising, such as Screened

Poisson Surface Reconstruction (SPSR) and Robust Implicit Moving Least Squares

(RIMLS). It is also more lightweight than approaches that operate on volumetric

representations of 3D shapes (Section 5.4).

Our analysis sheds lights on the impressive performance of several recently pro-

posed architectures for 3D surface generation, such as MRTNet [55], AtlasNet [68],

FoldingNet [214], and Pixel2Mesh [193], as well as implicit surface approaches [31,

58,119,135]. These can be be interpreted as different ways of parameterizing a man-

ifold. In particular, AtlasNet generates a 3D shape as a collection of surfaces, each

represented as a transformation of a unit grid using a fully-connected network. How-

ever, the generated pieces exhibit significant overlap which results in a poor surface

reconstruction and is less desirable for applying materials and textures to the sur-

88

Figure 5.2: Manifold reconstruction pipeline. Manifold parametrizations are en-
coded by neural networks (fθi) and trained to minimize the reconstruction error with respect
to the noisy target (left). Prior induced by the neural networks makes the generated surface
much closer to the ground-truth (right), without ever seeing any additional training data.

face (Section 5.4). The proposed regularization alleviates this problem. Moreover,

by replacing the fully-connected networks of AtlasNet with convolutional variants we

improve the performance on standard benchmarks for shape generation [35] with net-

works that have a fraction of the parameters, faster inference time, as well as smaller

memory footprint (Section 5.4).

5.1 Related Work

Manifold 3D shape generation 3D shape generation is an active area of research

with methods that generate 3D shapes as volumetic representations such as occupancy

grids [35,52,70,146,174,187,204], signed distance functions [31,58,119,135], mutliview

depth and normals [108,111,166,173], or point clouds [2,49,51,55]. Our work is closely

related to techniques for generating 3D shapes through a predefined connectivity or

parametrization structure over the surface of the shape. Pixel2Mesh [193] utilizes

graph convolutional networks to generate meshes that are homeomorphic to a sphere.

AtlasNet [68] and FoldingNet [214] learn a parametrization of a surface by adopt-

ing deep networks to transform point coordinates in a 2D plane to the shape surface.

Specifically, each point is generated as
(
f 1
θ (x), f 2

θ (x), f 3
θ (x)

)
where f iθ is a deep network

and x = (x1, x2) is a point in the unit grid. Alternate approaches [31,58,119,135] rep-

resent the surface as the level-set of a scalar field, f(x) = 0, x ∈ R3, e.g., of the signed

distance function. While these have been applied for shape generation by training on

89

3D shape datasets, our goal is to analyze the role of these parameterizations as an

implicit prior for manifold denoising and interpolation tasks.

Deep implicit priors Our work is related to the deep image prior [188] that gen-

erates images as a convolutional network transformation of a random signal on a unit

grid. By optimizing the randomly initialized network to minimize a reconstruction

loss with respect to the noisy target, their approach was shown to yield excellent

denoising results. Our approach generalizes this idea to manifold data, which is more

appropriate for interpolating and denoising contours and surfaces (see Figure 5.6 for

a comparison). Our work is also related to the recently proposed deep geometric

prior [202]. Their approach was used to estimate a surface from point cloud data by

partitioning the surface into small overlapping patches and reconstructing the local

manifold using a deep network. Consistency in the overlapping regions was enforced

by minimizing the Earth Movers distance (EMD). In contrast to their work, we learn

a small collection of non-overlapping parametrizations (atlas) by minimizing a regu-

larized term and Chamfer distance, which is much more efficient than EMD. We also

consider diverse tasks such as point cloud denoising, interpolation, and shape recon-

struction across a category where the atlases needs to be consistent across instances.

Finally, we present a theoretical analysis of the local properties of the generated

surface by analyzing its limiting behavior as a Gaussian process.

Embedding a manifold Our work is related to techniques for embedding mani-

folds into a low-dimensional Euclidean space (e.g., IsoMap [176] or LLE [149]). Our

approach parameterizes the inverse mapping from the Euclidean space to the data

manifold using a deep network. Interestingly, invertability can be guaranteed by

using networks with easy to compute inverses (e.g., NICE [41] or GLOW [95]). In

computer graphics, a number of techniques have been developed for shape surface

denoising and reconstruction. Screened Poisson Reconstruction [91] constructs an

90

implicit surface on a 3D volumetric grid based on oriented point samples by solving

the Poisson equation. Approaches based on Moving Least Squares [3,134,159] recon-

struct a surface by estimating an approximation of each local patch, similar to the

deep geometric prior [202] approach. Our approach outperforms these baselines by a

significant margin (Table 5.1).

Deep networks and Gaussian processes A Gaussian process (GP) is commonly

viewed as a prior over functions. Let T be an index set (e.g.., T ∈ Rd), let µ(t) be a

real-valued mean function and K(t, t′) be a non-negative definite kernel or covariance

function on T. If f ∼ GP (µ,K), then, for any finite number of indices t1, ..., tn ∈ T ,

the vector (f(ti))
n
i=1 is Gaussian distributed with mean vector (µ(ti))

n
i=1 and covari-

ance matrix (K(ti, tj))
n
i,j=1. Neal [126] showed that a two-layer network with infinite

number of hidden units approaches a GP. The mean and covariance of commonly

used non-linearities have been derived in several subsequent works [33, 201]. We use

this machinery to analyze the limiting GP of deep manifold priors.

5.2 Method

Background Our focus is to define priors over manifolds. We first introduce some

basic notation. A n-manifold is a topological space M for which every point in M

has a neighborhood homeomorphic to the Euclidean space Rn. Let U ⊂ M and

V ⊂ Rn be open sets. A homeomorphism φ : U → V , φ(u) = (x1(u), x2(u), ..., xn(u))

is a coordinate system on U and x1, x2, ..., xn are coordinate functions. The pair

〈U , φ〉 is a chart, whereas ζ = φ−1 is a parameterization of U . An atlas on M is

a collection of charts {Uα, φα} whose union covers M. Intuitively, surfaces are 2-

manifolds where as contours are 1-manifolds. Thus the dimensionality of the input

of the parameterization or the output of the chart corresponds to the order n of the

manifold. Atlases can be used to represent manifolds that cannot be decomposed

91

using a single parametrization (e.g., the surface of a sphere can be diffeomorphically

mapped to two planes but not one.)

General framework In our work we will replace the search over U by a search over

the parameters θ of the DNN fθ that encodes the parameterization fθ = ζ = φ−1.

More specifically, given a set of points P ∈M, we aim to recover the manifoldM by

computing the following:

θ∗ = argmin
θ
LC(fθ,x∼Rn(x), P). (5.1)

The approximated manifold can then be reconstructed in the domain on which it is

embedded fθ∗ . In practice, we restrict x to the unit hypercube [0, 1]n. Here L is a loss

function that computes a discrepancy between sets. Thus, reconstructing a manifold

represented by an atlas of k charts is done by computing the following:

θ∗1, θ
∗
2, ...θ

∗
k = argmin

θ1,θ2,...θk

LC(
k⋃
i=1

fθi(x), P) (5.2)

Parameterization We explore two choices of parameterizations of the coordinate

function fθ(x) as a deep neural network. The first uses a multi-layer perception

(MLP) to represent the parameterization explicitly: the network receives as an input

a value x ∈ Rn and outputs the coordinates of point in the manifold. We use ReLU

non-linearities throughout the network, except for the last layer where we use tanh.

This representation is analogous to the ones used in [68,214]. The second choice is to

encodeM directly through a convolutional network g(z), where z is a stationary signal

(Gaussian noise). We use 2D convolutional layers followed by ReLU activations and

bilinear upsampling, except for the last layer where we use tanh. The convolutional

parametrization induces a stationary prior (see Supplementary for details), and we

observe the resulting architectures are more memory-efficient and compact than the

first choice.

92

Loss function A key part of our method is computing a distance between two sets

of points P1 and P2. Such distance metric needs to be differentiable and reasonably

efficient to compute, since the cardinality of the sets might be large. Thus, similarly

to previous work [55, 68, 193, 214], we employ the Chamfer distance LC defined as

follows:

LC(P1, P2) =
∑
p1∈P1

min
p2∈P2

‖p1 − p2‖2
2 +

∑
p2∈P2

min
p1∈P1

‖p1 − p2‖2
2 .

Stretch regularization Representing the manifold as a set of multiple parame-

terizations output by DNNs has some drawbacks. First, there is no guarantee that

the charts are invertible, which means that a surface generated by fθ might contain

self-intersections. Second, multiple charts might be representing the same region of

the manifold. In theory this is not a problem as long as overlapping regions are con-

sistent. However, in practice this consistency is hard to achieve when point clouds

are sparse and noisy. We propose to alleviate those issues by penalizing the stretch

of the computed parameterization. Let N (w) be the neighborhood of w in Rn, the

stretch regularization LS can be defined as follows:

LS(θ) = Ex∼[0,1]n

 ∑
x′∈N (x)

‖fθ(x)− fθ(x′)‖2
2

 . (5.3)

Notice that we can compute the neighbors of x ahead of time which makes the com-

putation significantly cheaper. In practice, we sample x from a set of predefined

regularly spaced values in [0, 1] – a regular grid in the 2D case. Now we can define

our full loss function as follows.

L(θ) = LC(fθ,x∼Rn(x), P) + λLS(θ), (5.4)

where θ = θ1, θ2, ...θk and fθ(x) =
k⋃
i=1

fθi(x).

93

depth=4 depth=5 depth=6
0 0.5 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Covariance vs. Depth

depth=2 depth=4 depth=8

depth=1 depth=2 depth=3

Figure 5.3: Characterizing the deep manifold prior. (left) a plot demonstrating
the relationship between the network depth and the covariance function for the limiting GP.
(middle) Random curves generated by the coordinate (top rows) and arc-length (bottom
rows) parametrizations using deep networks with varying depths. (right) Random surfaces
generated by deep networks of varying depths.

Manifolds as deep level-sets An alternative approach is to represent d-manifold

as the level-set of a scalar function over d+ 1 dimensions. For example, a surface can

be represented as the level set, f(x) = 0, where x ∈ R3. Prior work [31,58,119,135] has

explored this approach to generate a 3D surface by approximating its signed distance

function. Level-set formulation can naturally handle shapes with different topologies,

but require the knowledge of what is inside the surface, which can be challenging

to estimate for imperfect point-cloud data. In this work, we also characterize and

experiment with the manifold prior induced by the level-set of a deep network fθ(x) =

0 initialized randomly.

5.3 Limiting GP for the Deep Manifold Prior

Consider the case when the manifold coordinates are parametrized using a deep

network fθ(x). We show that random networks, e.g., whose parameters are drawn

i.i.d. from a Gaussian distribution, produces smooth manifolds. This is done by

analyzing the limiting behavior of the function as a Gaussian process. In practice this

is a good approximation to networks that are relatively shallow and have hundreds

of hidden units in each layer.

94

Concretely, the mean Eθ[fθ(x)] and covariance Eθ[fθ(x)fθ(y)T] of the parame-

terization characterize the structure of the generated manifold. For example, the

covariance function of a smooth manifold decays slowly as a function of distance in

the input space compared to a rough one. Following prior work [33,126,201], we first

derive the mean and covariance for a two layer network with a scalar output. We

then generalize the analysis to vector outputs and multi-layer networks.

Consider a two-layer fully-connected network on an input x ∈ Rn. Let H be the

number of units in the hidden layer represented using parameters U = (u1, u2, . . . uH)

where uj ∈ Rn and the second layer has one output parameterized by weights v ∈ RH .

Denote the non-linearity applied to each unit as the scalar function h(·). The output

of the network is: f(x) =
∑H

k=1 vkh(uTk x). When the parameters U and v are drawn

from a Gaussian distributions N(0, σ2
uI) and N(0, σ2

vI) respectively, we have:

EU,v[f(x)] = EU,v

[
H∑
k=1

vkh
(
uTk x

)]
= 0,

since U and v are independent and zero mean. Similarly, the covariance function

K(x, y) can be shown to be:

K(x, y) = EU,v[f(x)f(y)] = Hσ2
vEU

[
h
(
uTk x

)
h
(
uTk y

)]
.

This follows since each uk is drawn i.i.d, each vk is independent and drawn identically

from a Gaussian distribution with zero mean. The quantity V (x, y) = Eu
[
h(uTx)h(uTy)

]
can be computed analytically for various transfer functions. Williams [201] showed

that when h(t) = erf(t) = 2/
√
π
∫ t

0
e−t

2
dt, then

Verf(x, y) =
2

π
sin−1 xTΣy√

(xTΣx) (yTΣy)
. (5.5)

95

Here Σ = σ2I is the covariance of u. For the ReLU non-linearity h(t) = max(0, t),

Cho and Saul [33] derived the expectation as:

Vrelu(x, y) =
1

π
‖x‖‖y‖ (sinψ + (π − ψ) cosψ) , (5.6)

where ψ = cos−1
(

xT y
‖x‖‖y‖

)
. We refer the reader to [33, 201] for kernels corresponding

of other transfer functions.

An application of the Central Limit Theorem shows that by letting σ2
v scale as

1/H and H → ∞, the output of a two layer convolutional network converges to a

Gaussian distribution with zero mean and covariance

K1(x, y) = EU,v [f(x)f(y)] = V (x, y) . (5.7)

Hence the limiting behavior of the DNN can be approximated as a Gaussian

process with a zero mean and covariance function K(x, y) = V (x, y).

Extending to multiple outputs The above analysis can be extended to the case

when the function f(x) is vector valued. For example a 2-manifold in 3D can be

represented as f(x) = (f 1(x), f 2(x), f 3(x)), with x ∈ R2. In our case, the functions

share a common backbone and each f i(x) is constructed from the outputs of the

last hidden layer parameterized with weights vi, i.e., f i(x) =
∑H

k=1 v
i
kh(uTk x). From

the earlier analysis we have that each f i(x) has zero mean in expectation. And the

covariance between dimension i and j of f is:

Ki,j
1 (x, y) = EU,vi,vj

[
f i(x)f j(y)

]
= V (x, y) 1[i = j].

This follows from the fact that each vik is independent and drawn from a zero mean

distribution. Thus, the covariance is a diagonal matrix with entries V (x, y) in its the

diagonal.

96

Extending to multiple layers The analysis can be extended to multiple layers

by recursively applying the formula for the two-layer network. Denote K`(x, y) as the

covariance function of a scalar valued fully-connected network with ` + 1 layers and

J(θ) = sin θ + (π − θ) cos θ. Following [33] for the ReLU non-linearity we have the

following recursion:

K`+1(x, y) =
1

π
(K`(x, x)K`(y, y))1/2 J (ψ`) .

Where ψ`(x, y) = cos−1 K`(x,y)√
K`(x,x)K`(y,y)

and K0(x, y) = xTy. Note that if in each layer

we add a bias term sampled from a N(0, σ2
b) the covariance changes to K`(x, y) + σ2

b

and the mean remains unchanged at zero.

5.3.1 Discussion and Analysis

The above analysis shows that random networks induce certain priors over the

coordinates of the manifold. The effect of increasing the depth of the network can

be seen by visualizing how the covariance cosψ`(x, y) varies as a function of depth.

Figure 5.3 plots cosψ`(x, y) at x = 0 for a curve as a function of the depth of the

network for σb = 0.01. The covariance decays faster with depth, indicating that the

deeper networks produce manifolds with higher spatial frequencies (or curvatures).

This can also be seen in Figure 5.3 which shows random curves (middle) from a

surfaces (right) for networks with varying depths.

One potential drawback of fully-connected network parameterization is that the

generated manifold does not have a stationary (translationally invariant) covariance

function. A covariance function K(x, y) is stationary if it can be written as K(x, y) =

k(x − y). On the other hand, a convolutional network that produces coordinates

through a series of convolutional layers operating on a random noise has a stationary

covariance [32]. This is identical to the approach for generating natural images in the

deep image prior [188] and we explore this alternative in Section 5.4.2.

97

Normals and curvature While we have shown that the outputs f(x) induced by

random networks is a GP in the limit, what can be said about intrinsic properties such

as normals and curvature? Consider the curve γ(t) = (x(t), y(t)). Since derivatives

are linear operators, it follows that distribution of derivatives, ẋ and ẏ, are also

Gaussian [165]. The curvature is given by κ = (ẍẏ − ÿẋ)/(ẋ2 + ẏ2)
3
2 . Unfortunately,

since each of the derivatives converge to a zero mean Gaussian distribution, the

limiting distribution of the curvature κ does not exist. The pathology arises because

the parameterization has a speed ambiguity, i.e., replacing t with any monotonic

function of t results in the same curve. To avoid this one can directly parametrize the

derivatives as ẋ = cos(f(t)) and ẏ = sin(f(t)) where f is a deep network. This is an

arc-length (unit speed) parametrization since ẋ2 + ẏ2 = 1. Once the derivatives are

generated, the curve can be reconstructed by integration, i.e., x =
∫ t

0
cos(f(t))dt. In

this case the limiting distribution of the coordinates, normal, and curvature all exist

and are also GPs. We derive the mean and covariance function in the Supplementary

material. Figure 5.3-middle shows draws from the GP with direct (top) and arc-

length (bottom) parametrizations. One can see that arc-length parametrizations lead

to more length-uniform curves.

Unlike curves, it is much more challenging to design arc-length parametrizations of

surfaces. The difficulty arises due to the fact the gradients need to satisfy additional

constraints for the surface to be integrable [172]. Hence, we directly parameterized

the coordinate function and proposed the stretch regularization to minimize distor-

tion. Alternatives ways of parameterizing the surface to satisfy properties such as

conformality [127] is left for future work.

Deep level-set prior Finally, the GP analysis applies in a straightforward manner

to the level-set formation fθ(x) = 0 where fθ is a ReLU network mapping the 3D

position x ∈ R3 to a scalar. The induced distribution over the scalar field is a GP for

random networks. Since for a differentiable function f with non-zero gradient, the

98

Surface Contour Implicit RIMLS [134] SPSR [91]
bunny 2.71E-04 6.64E-04 5.52E-04 1.43E-03 3.96E-04
dragon 4.18E-04 6.12E-04 1.20E-03 1.65E-03 1.46E-02
car 2.73E-04 4.57E-04 6.83E-02 1.50E-03 2.10E-03
cup 2.59E-04 5.80E-04 2.64E-02 1.74E-03 1.00E-02
mobius 3.51E-04 4.95E-04 3.26E-03 1.96E-03 1.89E-02
chair 3.95E-04 4.22E-04 7.32E-03 2.09E-03 2.58E-02
spiral 1.05E-03 7.31E-04 1.64E-02 2.98E-03 7.90E-02
ring 5.69E-04 5.54E-04 4.81E-02 2.46E-03 3.76E-02
avg. 4.48E-04 5.65E-04 2.13E-02 1.98E-03 2.36E-02

Table 5.1: Quantitative results for point cloud denoising. Surface, Contour and
Implicit represent different deep manifold priors based on a 2-manifold, 1-manifold and
level-set paramertization.

S1R S8R S1 S8 - -
avg. 4.48E-03 4.48E-04 2.75E-03 1.35E-03 - -

C1R C8R C1 C8 RIMLS [134] SPSR [91]
avg. 1.08E-03 5.77E-04 1.00E-03 5.82E-04 1.98E-03 2.36E-02

Table 5.2: Ablation studies. Comparison between different variations of our approach.
Naming follows the following convention: S corresponds to a 2-manifold parameterization
(surface), whereas C corresponds to a 1-manifold (contour). The following number (1 or 8)
corresponds to the number of parameterizations. A R letter is added if stretch regularization
was used (λ = 1.0).

gradient is orthogonal to the level set, one can characterize the surface by analyzing

the gradient field ∇f . The limiting distribution over the gradient field is also a GP

and one can estimate the mean and convariance functions by a similar analysis (see

Supplementary material for details). However, the training objective of the level-

set prior is different from the explicit parameterization as the network must classify

points as inside or outside the surface. This supervision can be challenging to obtain

from noisy data, especially for thin structures. We provide a comparison with this

approach in Section 5.4.

5.4 Experiments

In this section we will present quantitative and qualitative results for applying

the manifold prior to multiple manifold reconstruction tasks. All the experiments

99

1.00.10.050.0 1.00.10.050.0

Figure 5.4: Effect of the regularization weight on the reconstructed manifold.
For this experiment, we use our method to reconstruct a sphere using an atlas with 8 charts
and render each one with a different color. Without any regularization, there is a significant
amount of deformation applied to each surface (hence the space between the points) and
a considerable amount of overlap between different parts. As the regularization weight
increases, those aspects are noticeably reduced.

in this paper were implemented using Python 3.6 and PyTorch. Computation was

performed on TitanX GPUs.

5.4.1 Denoising and Interpolation

Benchmark Our benchmark consists of 8 different 3D shapes with diverse charac-

teristics. The shapes are normalized to fit a unit cube and 16K points are sampled on

their surfaces. The point positions are perturbed by a Gaussian noise with standard

deviation 2× 10−3 and zero mean. Figure 5.7 shows the ground-truth shapes as well

as their noisy counterpart. Since the level-set representation and the baseline meth-

ods (RIMLS [134], SPSR [91]) require normal information, we estimate the normal

for every point by using the local frame defined by its nearest neighbors. We experi-

mented multiple numbers of neighbors for both baselines and used the value that led

to the best results: 20 neighbors for SPSR and the level-set representation, 30 neigh-

bors for RIMLS. The network used in the level-set representation follows the same

architecture and training protocol as the one used for the explicit parametrizations

(described in the next paragraph). However, it is trained to predict every point as

outside (+1) or inside the surface (-1). Points with positive values are generated by

translating every point in the point cloud along the normal direction for a distance

ε = 2×10−3. Points with negative values are generated in the same way, but applying

a displacement to the opposite direction. For RIMLS, we used a relative spatial filter

100

size of 10, 15 projection iterations and a volumetric grid with 2003 resolution. For

SPSR, we used an octree with depth 7 and 8 iterations.

Experimental setup Our method performs denoising by minimizing Equation 5.4.

In this framework, P is the noisy point cloud we are trying to reconstruct and fθ is

a neural network. In all experiments we use a neural network with 3 fully connected

layers, where the layers have 256, 128 and 64 hidden units, respectively. The output of

the networks is a point in R3. The input can be either a point in R (1-manifold) or R2

(2-manifold). We use ReLU activations followed by batch normalization at each layer,

except for the last, where we use a tanh non-linearity. We vary the architecture of fθ

with respect to the number of parameterizations (1 or 8) and dimensionality (1 or 2).

Additionally, we try each one of these architectural variations with λ = 0 and λ = 1.0.

When using 8 parametrizations, 4096 points are sampled per parametrization. When

using just one parametrization, 16K points are sampled. We optimize our objective

through gradient descent using the Adam optimizer with learning rate 10−3. For

evaluation, we uniformly sampled 16K points in the computed manifold (represented

as a triangular mesh) and compute the Chamfer distance with respect to the ground-

truth.

Results and discussion. Our methods significantly outperform the baselines for

most of the shapes. Quantitative results can be seen in Table 5.1 and the qualitative

results are shown in Figure 5.7. The numbers are computed using 8 parametrizations

(for surfaces and curves) and λ = 1.0. A comparison between different variations of

our approach is displayed in Table 5.2. RIMLS, SPSR and level-set representations

(Implicit in Table 5.1) have trouble reconstructing point clouds with a significant

amount of noise. This is due to the fact that those methods rely on accurate surface

normal estimates to infer inside/outside regions of the shape. Besides, RIMLS and

methods based on implicit functions (SPSR and level-set representations) work better

101

when dealing with closed surfaces. Shapes that are better approximated by contours

(ring, spiral, chair’s legs) are particularly challenging for those approaches. On the

other hand, the networks parametrizing explicit functions (Surface and Contour in

Table 5.1) are able to adapt to different structures and present a fair performance

across a diverse set of shapes.

The results in Table 5.2 suggest that using multiple parametrizations gives a

better approximation than just using a single one. This happens because complex

shapes are easier to represent by multiple parametrizations. For example, while using

a single 2-manifold parametrization, the ring tends to be approximated by a disk,

which significantly increases the reconstruction error when the points are uniformly

sampled over the final mesh. This behavior is illustrated in Figure 5.5. Our ablation

studies also indicate that using stretch regularization helps parametrizations of both

surfaces and contours. Figure 5.4 shows the effect of stretch regularization for two

different shapes. As the regularization weight increases, the overlap between different

parameterizations becomes smaller. When overlaps exist, the manifold representation

is suboptimal – the same regions are being generated multiple times.

Interpolation We also explored using the manifold prior for point cloud interpo-

lation. This experiment follows the same experimental setup as denoising. However,

instead of perturbing the points with Gaussian noise, we randomly select 1K points

out of 16K. Interpolation is performed by minimizing Equation 5.4. Results can be

seen in Figure 5.5. For these experiments we use a single parameterization and in-

clude stretch regularization, without which the surface has holes and significant folds.

Our method is able to reconstruct reasonable surfaces from a small set of points.

Comparison with the deep image prior We also compare our approach to the

deep image prior [188] for interpolating points in 2D images. Results are presented

in Figure 5.6. We use the same architecture from [188] while minimizing the mean

102

input

Figure 5.5: Interpolation results on the top. Stretch regularization (λ = 1.0) helps gener-
ate smoother surfaces. On the bottom, denoising using one vs. multiple parametrizations.
Shapes on the left were reconstructed using a single parameterization, whereas shapes on
the right used 8 parameterizations. Using multiple parameterizations helps reconstruct
complex shapes.

input Deep Image Prior Deep Manifold Prior

Figure 5.6: Comparison to the deep image prior [188]. Image-based prior (middle)
is not able to connect the dots in the input image (left). On the other hand, the manifold
prior is able to reasonably interpolate the dotted drawing.

squared error with respect to the image pixels. For the manifold prior, we use a single

1-manifold parameterization following the architecture described before, differing only

in the dimensionality of the output: points this this case are in R2 instead of R3.

Coordinates of the black pixels in the input image are used to form a point cloud and

the manifold is computed by minimizing Chamfer distance with respect to it.

103

no
is
y

M
L
S

P
S
R

1
D

2
D

G
T

Im
p
li
ci
t

Figure 5.7: Qualitative comparison between different denoising methods. Rows
display different methods, whereas columns display different shapes. Baseline methods do
not perform as well as the deep manifold prior, even for closed surfaces like the bunny (first
column) and the dragon (fifth column). As we can see, 2-manifold parameterizations are
better for reconstructing surfaces, whereas 1-manifold counterparts reconstruct the curves
(last two columns) more acurattely.

5.4.2 Learning from data

Finally, we show how the insights presented in the earlier sections, in particular

convolutional parameterization and stretch regularization, can also improve genera-

tive models of 3D shapes when trained on a large collection of shapes.

To measure the effect of the stretch regularization in a learning-based scenario, we

train a model using the same architecture as AtlasNet [68] on a subset of 50, 000 shapes

across 13 categories of the ShapeNet dataset [24]. Adding stretch regularization did

not significantly impact the Chamfer metric – error of 1.46 × 10−3 and 1.47 × 10−3

with and without regularization. However, the results are qualitatively better. As

seen in Figure 5.8 the regularization reduces the stretch and overlap of the generated

surfaces, and eliminates artifacts where holes are incorrectly filled.

104

Figure 5.8: Autoencoder results. Results on using AtlasNet [68] trained w/o (top) and
w/ (bottom) stretch regularization. The latter results in meshes with reduced deformation
and overlap, and removes artifacts where the chair’s back is incorrectly filled.

Architecture mean/cat. mean/inst. #params.

MRTNet 4.80 4.26 81.6M
AtlasNet 4.74 4.38 42.6M
ConvAtlas 4.53 4.00 14.5M

Table 5.3: Quantitative results for single-view image-to-shape reconstruction.
The table reports the mean Chamfer distance metric (scaled by 103) computed per category
and per instance.

We also train a convolutional decoder with stretch regularization on the single-

view reconstruction benchmark [35]. Our approach called ConvAtlas is compared

against AtlasNet and MRTNet [55] in Table C.1. For a fair comparison, we use 4K

points for evaluation across all methods. ConvAtlas outperforms both approaches in

terms of per-category and per-instance error, and also leads to more compact models.

Per-category results and experimental details are in the Supplementary material.

5.5 Conclusion

We presented a manifold prior induced by deep neural networks. Our experiments

show that the prior can be effectively used for a variety of manifold reconstruction

tasks: denoising, interpolation and single-view reconstruction. Besides, we analyzed

105

the influence of the architecture in the characteristics of the prior by posing the

models as GP. In conjunction to the prior induced by deep networks, we showed

that using a stretch regularization procedure enables better manifold approximation

and improves the quality of the generated meshes, reducing large deformations and

overlaps between different parameterizations.

106

CHAPTER 6

SHAPE RECONSTRUCTION USING DIFFERENTIABLE
PROJECTIONS AND DEEP PRIORS

Consider the problem of reconstructing a 3D shape from silhouettes. The classic

visual hull algorithm that intersects the visible volumes from each viewpoint is easy

to implement but is sensitive to errors in viewpoint estimation and silhouette noise.

A Bayesian approach for this problem would be to add appropriate priors over the

shape and viewpoint estimates and perform posterior inference. This is challenging

for two reasons. First, the search space of 3D shape is large since there is no compact

shape basis to search over for general shapes. Second, Bayesian inference is typically

expensive for high-dimensional data.

To this end we present differentiable projection operators T and deep shape priors

for which Bayesian inference can be performed via stochastic gradient descent and

their variants [200]. While many priors exist, of interest is the “deep shape prior” of

Ulyanov et al. [188] which showed that the space of natural images x can represented

as a parametric family fθ(η) where f is a convolutional network, θ its parameters,

and η is a fixed input. Their work showed that search over natural images can be

replaced by a search over the parameters of the network θ, which can be efficiently

done via gradient descent.

Our work takes this idea further. First, we endow the deep image prior with 3D

convolutions resulting in a deep shape prior. Second, we incorporate differentiable

projection operators T that model projection measurements, such as silhouettes, given

projection parameters φ such as viewpoints. Thus inferring a shape x given noisy

107

reconstructed
shape

...

...

Figure 6.1: Shape reconstruction from binary images with uncertain viewpoints.
We propose to use deep networks together with differentiable projection operators for shape
reconstruction. Our approach leverages the shape prior induced by neural networks to recon-
struct shapes from projections without any learning procedure. Additionally, our approach
can use differentiable operators to reconstruct shapes under noisy projection measurements,
like perturbed viewpoint information.

projection measurements y reduces to the following optimization over network pa-

rameters θ and projection parameters φ:

min
φ,θ∈RD

E (y, T (fθ(η), φ)) + P (φ), (6.1)

where P (φ) is a prior over projection parameters, which is often a simple function.

We show that for a number of shape construction problems such as tomographic

reconstruction, shape from silhouettes or depth maps, it is possible to construct pro-

jection operators using existing neural network building blocks that are differentiable

with respect to both the input and projection parameters. Thus the objective can be

minimized using “backpropagation” machinery, which is generally much faster than

Bayesian inference using Markov Chain Monte Carlo (MCMC) techniques.

Apart from choosing the network architecture and the projection operator, the

approach does not require any task-specific training. Nevertheless, it yields com-

pelling results for tomographic reconstruction in the low sampling regime, where it

outperforms a state-of-the-art approach based on iterative BM3D [113]. Our work

also shows that the deep image prior generalized to 3D volumes is effective at mod-

108

eling 3D shapes. In problems such as visual hull reconstructions, or reconstruction

from depth maps, we can accurately estimate the 3D shape of an object from only

a few views, even when there are uncertainties in the view estimates, or when depth

maps are corrupted by noise. The reconstruction results are significantly better than

handcrafted priors. These tasks are illustrated in Figures 6.3-6.9.

6.1 Related work

In this section we briefly summarize techniques for solving inverse problems for

image and volumetric reconstruction of the form:

min
x∈X

P (x) + E(y, T (x)). (6.2)

The data term E and the projection operator T are application specific, but there

is considerable flexibility on modeling the prior term P . These include smoothness

priors such as total variation (TV) [150] and L0 gradients [210], Gaussian mixture

models over patches [227], denoising autoencoders [190]. The deep image prior [188]

represents images as the output convolutional network with random parameters from

a fixed (random) input. The authors showed that outputs of networks consisting of

several convolutional and pooling layers, followed by several deconvolutional layers

with few or no skip connections in between tend to generate natural images. Recently,

an extension to the deep image prior shows that it is asymptotically equivalent to a

Gaussian Process [32]. This suggests a Bayesian approach to the problem: conducting

posterior inference through Langevin dynamics avoids the need for early stopping

and improves results for denoising and inpainting tasks. The deep image prior is also

related to procedural priors such as bilateral filtering [182], non-local means [20], or

block matching 3D (BM3D) [39]. These models use non-local self-similarity of patches

in images to collectively denoise them.

109

For complex projection operators T involving noisy and incomplete measurements

y, applying procedural priors is non-trivial. Suppose y and z denote the observed

and unobserved projection measurements corrupted by noise: (y, z) = T (x) + δ.

For example y could denote the subset of frequencies in the Fourier transform, or

projections of data in a compressed sensing application. Maggioni et al. [113] proposed

the following iterative scheme:

1. Estimate x by inverting the measurement x(k) = T −1(y, z(k)) starting from

z(1) = 0.

2. Denoise x(k) using BM3D to obtain x(k+1).

3. Re-estimate (., z(k+1)) = T (x(k+1)) + δ(k). Note that only the unobserved part

of projection is estimated keeping y fixed across iterations.

The iterative BM3D can be applied to problems where the support of Y is small.

This procedure is related to the alternating direction method of multipliers (ADMM) [16]

which has been applied for solving linear inverse problems of the form: minx ||y −

Ax||22 + λP (x). ADMM solves the augmented Lagrangian L(x, z,u):

L(x, z,u) = ||y − Az||22 + λP (x) +
ρ

2
||x− z + u||22

over auxiliary variables z and u for ρ > 0 by alternatively optimizing x, z, and u as:

x(k+1) ← argmin
x

λP (x) +
ρ

2
||x− z(k) + u(k)||22

z(k+1) ← argmin
z
||y − Az||22 +

ρ

2
||x(k+1) − z + u(k)||22

u(k+1) ← x(k+1) − z(k+1) + u(k)

The optimization decouples the reconstruction and the prior. The first involves in-

ference with an image prior and squared-loss term. The second objective is quadratic

110

in z can be solved with conjugate gradient decent. The decoupling allows use of

explicit or implicit priors, as well as learned proximal projection operators [25, 213]

proj(z−u, ρ) that map a vector z−u to x in the manifold of natural images within

a distance ρ from it, similar to a denoising autoencoder, to solve the inverse problem.

Finally, a class of approaches directly learn the inverse mapping G : Y → X

using rich parametric models such as a neural network in a fully-supervised man-

ner. These models amortize inference during training and enable efficient inference

given noisy measurements. Such models have been successfully applied for various

inverse problems such as super resolution [44], denoising [208], colorization [101,219],

and estimating depth and normals from images [48]. However a disadvantage is the

architecture and parameters of the model are likely to be specific to the noise and

projection operators, which require separate training for each task.

Closely related to this work, recent approaches have employed geometric trans-

formations on deep features to generate novel views of a 3D object [129, 164]. In

contrast to our approach, those techniques do not explicitly define the projection op-

erators – they are parameterized by a deep neural network. As a consequence, the

inferred representation does not directly correspond to a 3D shape, but to a higher

lever representation learned by the model.

6.2 Method

Our approach for Bayesian inference will be to optimize the objective in Equa-

tion 6.1 using Stochastic Gradient Descent (SGD). This corresponds to a Maximum

Likelihood Estimate (MLE), or Maximum A-Posteriori (MAP) estimate if priors over

parameters θ are added. Although more sophisticated schemes for SGD based poste-

rior sampling exist [32,200], we find that SGD works reasonably well for the problems

we consider.

111

Solving reconstruction problems with SGD requires formulating differentiable pro-

jection operators and differentiable priors over the shapes. We use the deep image

prior for image-based reconstruction tasks, and a 3D convolutional version for shape

reconstruction tasks. In earlier work the deep image prior was used to solve a number

of reconstruction problems with linear measurements [188]. For example in denoising

the projection operator is the identity transformation, while in inpainting the projec-

tion operator is a mask indicating which pixels are present and absent. In this section,

we present three differentiable projection operators that can be combined with deep

neural networks for reconstructing shapes from partial and noisy observations.

6.2.1 Radon Projection (TR)

In [144], Radon proposed the utilization of the inverse of an integral transform to

reconstruct images from a CT scan. The forward version of this transform is known

as Radon transform R and can be described by the following:

R(φ, r) =

∫
L

s(x, y)dl, L = {(x, y)|x sinφ− y cosφ = r} (6.3)

where s represents a density function, φ is the angle of projection, and this transform

represents data obtained as the output of a CT scan. Let Tψ(s) be an operator

that rotates s by ψ degrees, i.e. Tψ(s)(x, y) = s(x cosψ − y sinψ, x sinψ + y cosψ).

Plugging this in Equation (6.3) we have:

R(φ, r) =

∫
L

Tψ(s)(x, y)dl

L = {(x, y)|x sin(φ+ ψ)− y cos(φ+ ψ) = r}

Taking ψ = −φ:

R(φ, r) =

∫
L

T−φ(s)(x, y)dl, L = {(x, y)|y = r} (6.4)

112

R(φ, r) =

∫
R

T−φ(s)(x, r)dx (6.5)

In practice, s is represented by image and T−φ(s) is computed by rotating a regular

grid and resampling the image as described in [82]. Specifically, let I
(φ)
i,j be the value

of the pixel i, j in the image formed by s rotated by −φ degrees, the discrete version

of the Radon transform is:

R(φ, r) =
S∑
i=1

I
(φ)
i,r , (6.6)

where S is the size of the image. Notice that the result of the Radon transform R

is also an image (called sinogram and is parametrized by φ and r) as can be seen in

Figure 6.3. Finally, our operator TR receives an image I of size S×S, a set of values φ

representing the projection angles and outputs an image of size S × |φ|. The process

is differentiable and can be implemented as a sum over one dimension of multiple

rotated images.

6.2.2 Silhouette Projection (TS)

Shape reconstruction from silhouettes consists in the following problem: given

a set of silhouette images of the same object from different views, estimate the 3D

shape of the object. Silhouette projection can be formulated as a differentiable oper-

ator TS(V, φ). To do so, we represent 3D shape as a voxel grid V , and the projection

TS(V, φ) generates a silhouette of the shape V captured from a view φ. The for-

mulation of TS follows [52]. Specifically, let V : Z3 → [0, 1] ∈ R be the voxel grid,

representing the occupancy value at a given integer 3D coordinate c = (i, j, k). The

rotated version of the voxel grid V (c) is defined as Vφ(c) = Φ(V, Tφ(c)), where Tφ(c)

is the coordinate obtained by rotating c around the origin according to φ and Φ(V, c)

is a procedure that samples a value of V in a position c – trilinear or nearest neighbor

sampling.

The next step consists in performing the projection to create an image from the

rotated voxel grid. This is done by applying the projection operator P (V)i,j = 1 −

113

e−τ
∑
k V (i,j,k). The intuition behind this operator is similar to the idea of the Radon

transform: compute a line integral of the occupancy function V along each line of

sight (assuming othographic projection), with the difference that here we apply an

exponential falloff to create a smooth and differentiable function. The smoothness

can be controlled by the parameter τ : bigger values result in binary images. If there

all voxels along the line of sight are empty, the projection results in a value of 0;

as the number of non-empty voxels increases, the value approaches 1. Combined

with the rotated version of the voxel grid, we define our final projection operator as:

TS(V, φ)i,j = 1−e−τ
∑
k Vφ(i,j,k) where i, j is the pixel coordinate of the resulting image.

6.2.3 Depth Image Projection (TD)

Given a 3D shape represented as a voxel occupancy grid V and a view φ, the

depth image captures the distance values from the viewpoint to the visible points

on the shape. This is useful in practical applications as depth images are frequently

captured by LiDAR and similar depth sensors. Here, we demonstrate that the depth

projection operator can be built upon the silhouette projection operator. To do so,

we first define a visibility function A(V, φ, c) that describes whether a given voxel c

inside the grid V is visible, when seen from a view φ:

A(V, φ, i, j, k) = exp

{
− τ

k∑
l=1

Vφ(i, j, l)

}
(6.7)

Intuitively, this is the complement of the silhouette projection, the difference is that

we are incrementally accumulating the occupancy (from the first voxel on the line of

sight) as we traverse the voxel grid, instead of summing all voxels on entire the line

of sight. If voxels on the path from the first to the current voxel are all empty, the

value of A is 1 (indicating the current voxel is ‘visible’ to the view φ). If there is at

least one non-empty voxel on the path, the value of A will be close to 0 (indicating

this voxel is not visible).

114

2D shape Visibility from top Visibility from right

x

de
pt

h

Depth map from top

depth

y

Depth map from right

Figure 6.2: A example 2D shape to depth projection. On the left is a 2D shape
visualized as a binary occupancy (white is occupied). The visibility map for each pixel from
the top and right views are shown next – a pixel is white (value=1) if it is visible. The
depth maps are obtained by summing the visibility maps along the vertical and horizontal
directions for the top and right views receptively.

Now that we have the visibility value of each voxel, the depth value of a pixel in

the projected image is simply the line integral of A along the line of sight: D(i, j) =∑
k A(V, φ, i, j, k). This accumulates the number of voxels along the entire line of

sight that are visible, therefore it gives the depth value. Refer to Figure 6.2 for

illustrations.

While using this operator along with a neural network, we found that it works

better if we apply an exponential decay. Thus, we can define the depth projection

operator TD as follows:

TD(V, φ)i,j = 1− exp

{
−
∑
k

A(V, φ, i, j, k)

}
(6.8)

This smoothly maps the depth value to the range between [0,1]. Specifically, it maps a

depth value of 0 to 0, and infinity to 1, while still remaining a differentiable operator.

6.3 Experiments

This section presents the results of applying our shape projection operators along

with deep shape priors for three reconstruction tasks.

Network Architecture. In the volumetric reconstruction experiments (i.e. re-

constructing 3D shapes from silhouette images and depth images respectively), the

115

0.134, 15.3 0.694, 18.6 0.701, 26.0 0.967, 31.7

0.199, 16.7 0.731, 24.7 0.693, 26.2 0.784, 26.8

0.210, 16.5 0.732, 23.7 0.718, 26.5 0.834, 27.6

Image Sinogram FBP TV prior Iterative BM3D Deep prior

Figure 6.3: Tomographic reconstruction results from sinograms (radon transforms)
sampled with n = 30 angles and noise (σ = 1). The sinogram is rescaled to the image size
with nearest neighbor interpolation for visibility. From left to right in each row is the noise
free image, the noisy sinogram, reconstruction with the filtered backprojection (FBP), TV
prior, BM3D, and deep image prior. The SSIM and PSNR are shown for each approach on
top of the corresponding figure. Our approach outperforms the other learning free baselines
by a significant margin. Zoom in for details.

116

GT 4 views 8 views 16 views 32 views

Figure 6.4: Effect of the number of views in the reconstruction from silhouettes.
3D shape reconstructed from silhouette images of the same object. Even without having
access to enough 3D information, our method is still capable of generating plausible shapes.

network architecture is a fully convolutional UNet [148] where the encoder has 5 lay-

ers with 8, 16, 32, 64 and 128 filters. The decoder is a mirrored version of the encoder

and skip connections are applied just in the 2 innermost layers. The upsampling is

done through bilinear/trilinear interpolation followed by a convolution. All convolu-

tions have filter size 3 and are followed by batch normalization and ReLU activation

function. The input to the network is a tensor of the same size as the output, and its

values sampled from N (0, 1). In all the experiments, we used Adam optimizer with

learning rate=10−2.

For the image reconstruction (i.e. tomography) we doubled the number of filters

in each layer keeping the rest of the network architecture identical to account for

higher spatial frequency of the underlying signal. The only other difference between

the network that produces images and the one that produces voxel grids is that

the convolutional operations are performed in 2D instead of 3D. Even though the

network can be used to generate data of any size (since it is fully convolutional), in

our experiments we set our image resolutions to 256 × 256 and voxel resolution to

1283.

6.3.1 Tomography Reconstruction

In tomographic reconstruction our goal is to invert the sinograms as described in

Section 6.2. With deep image prior the reconstruction involves solving the following

117

optimization problem:

min
θ∈RD

||R− TR(fθ(η))||1, (6.9)

where f is our neural network described above, η is its noise input, and R is the input

sinogram (which may have low angular sampling rate and/or be corrupted by noise).

To test the ability of our algorithm when handling challenging input, we use a low

angular sample rate (n = 30) and simulate noisy sinograms by adding a Gaussian noise

of σ = 1. Figure 6.3 shows the reconstruction results of the Shepp-Logan phantom

image [160] and two separate slices of a sample from the BrainWeb database [36].

These images have been commonly used to evaluate CT reconstruction algorithms.

For each reconstruction we compute the structured similarity (SSIM) index and PSNR

values with respect to the groundtruth image (higher is better).

The standard solution for tomography is Filtered Back Projection (FBP): it inverts

the Radon transform using the Fourier slice theorem. When angular sampling rate is

low, the reconstruction using FBP turns out to have severe aliasing artifacts as seen

in Figure 6.3 third column. The TV prior significantly improves the reconstructions

for all three images. The iterative BM3D approach [113] described was run for 100

iterations. We noticed that the PSNR values converged after 100 iterations with the

largest gains in PSNR in the first 20 iterations. Note that running BM3D on the

FBP reconstruction corresponds to one iteration of this approach. For the deep prior

we obtain results by running 2000 gradient steps. Compared to iterative BM3D,

the deep prior produces reconstructions with significantly better SSIM values and

comparable or better PSNR values (last two columns in Figure 6.3). The relatively

poor performance of BM3D may be because the aliasing noise in CT reconstructions

tends to be more structured and less like natural image noise when compared to

the noise observed in image denoising applications. It takes many iterations for the

iterative BM3D algorithm to get rid of the artifacts produced by the inverse radon

118

Figure 6.5: Reconstruction from silhouettes without viewpoint noise. 3D shapes
reconstructed from 8 silhouette images of the same object. Viewing angles were sampled
uniformly at random. Top row using space carving baseline, middle row using the deep
image prior, bottom row is ground-truth.

transform but this causes smoothing of the underlying structures leading to lower

SSIM scores.

6.3.2 Shape-from-Silhouette 3D Reconstruction

For 3D shape reconstruction from silhouette images, we employ the 3D convo-

lutional neural network described as before to generate a voxel grid V where each

voxel represents an occupancy value. The output of the network is then passed to the

projection operator TS along with a view direction φ. Given a set of N viewpoints

φ = {φ1, φ2, ..., φn} and its associated images Iφi , our problem is described by the

following optimization:

min
θ∈RD

N∑
i=1

||Iφi − TS(fθ(η), φi)||1, (6.10)

where f is our neural network and η its noise input. We solve this minimization

using gradient descent and then use fθ(η) to generate our final reconstruction. The

results can be seen in Figure 6.4. Even with a small number of silhouette images, our

119

method is able to reconstruct reasonable 3D shapes. The viewpoints for this example

are chosen by evenly rotating the object along the horizontal axis (e.g. with 4 views,

each view is 90 degrees apart; with 8 views, each is 45 degrees apart and so on).

A baseline approach for this problem is space carving, which takes the intersection

of all the projected views to generate the occupancy grid. We show a qualitative

comparison with space carving in Figure 6.5. Space carving provides reasonable

reconstructions for most of the shapes, but some of the objects contain artifacts like

creases or even missing parts. On the other hand, the deep shape prior tends to

create overly smooth shapes, which sometimes means removing some parts of the

object (chairs in Figure 6.5) or adding content where should exist a sharp boundary

(lamp in Figure 6.5).

View uncertainties. In the previous formulation, we assume that the set view-

points φ corresponds exactly to the observed views. However, a more realistic sce-

nario is to assume that we are given a set of noisy viewpoint measurements. In this

case, besides estimating the parameters of the network predicting the shape, we are

also looking to estimate viewpoints φ̂. We assume that the noisy viewpoints φ are

sampled independently from V onMises(φ∗, κ), where κ is the dispersion of the Von-

Mises distribution with mean φ∗ (the ground-truth viewpoints). This leads to adding

an extra term to Equation 6.10 and also optimizing over the predicted viewpoints φ̂:

min
φ̂,θ

N∑
i=1

||Iφ∗i − TS(fθ(η), φ̂i)||1 + λ cos(φ̂i − φi), (6.11)

where λ is the weight of the viewpoint regularization term. We use λ = 0.1 in our

experiments. Notice that our projection operator is fully differentiable with respect

to the viewpoint parameters and can be easily implemented using automatic differ-

entiation packages.

120

Figure 6.6: Shape-from-silhouette reconstruction using captured images. For
this glass object, we photographed 4 views, with 45◦ angle apart, against a uniform back-
ground color. We then applied background-color removal and converted each image to
binary silhouette image. The first reconstructed model is the result using our deep prior,
whereas the second is the result using the space carving baseline.

plane bunny car desk dragon guitar lamp piano plant sofa table teapot mean

Ours 0.35 0.88 0.72 0.81 0.59 0.64 0.62 0.86 0.79 0.78 0.82 0.84 0.72

Carving 0.49 0.77 0.59 0.41 0.55 0.51 0.26 0.64 0.58 0.51 0.44 0.83 0.55

Carving∗ 0.51 0.85 0.72 0.50 0.62 0.71 0.28 0.60 0.61 0.57 0.55 0.81 0.61

Table 6.1: 3D reconstruction from silhouettes with uncertain viewpoints. In-
tersection over union of the reconstructed occupancy from 12 different shapes. We ran-
domly sample viewpoints to generate 8 binary images for each shape. Those viewpoints are
slightly perturbed before being used by the methods, except for the last (Carving∗) which
corresponds to using space carving without noisy viewpoints. Our approach significantly
outperforms the space carving baseline in all scenarios.

Evaluation To evaluate our approach we selected twelve meshes from standard

benchmarks. Three of them are well know 3D shapes (Stanford bunny, dragon and

Utah teapot) while the others were selected from 9 different categories of the Model-

Net40 dataset [205]. We voxelize those shapes filling their interior to generate binary

occupancy grids of resolution 1083. Those voxel grids will correspond to our ground-

truth data. Our network generates 1283 occupancy grids, but we use data in a smaller

resolution to zero-pad the volume and avoid artifacts in the boundaries. Next, we

randomly sample 8 viewpoints and render a binary image Iφi from each sampled

view. Since we want to evaluate the ability of the methods to reconstruct the 3D

shape while dealing with view uncertainty, we sample views φ̂ from V onMises(φ, κ)

121

and associate them with the corresponding binary images. We use κ = 100 for all

the experiments. In other words, even though an image Iφ was rendered from a view-

point φ, we assign a slightly perturbed viewpoint φ̂ to this image . Finally, we use

the binary images Iφ and the perturbed viewpoints φ̂ to reconstruct the 3D shape

by minimizing the objective described in Equation 6.11. This is done through 500

steps of gradient descent. We compare our approach with a space carving baseline

and report the intersection over union of the estimated occupancy grids in Table 6.1.

Our method outperforms vanilla space carving even when the viewpoints given

are not perturbed, which demonstrates the robustness of our method to viewpoint

perturbations. Figure 6.7 shows a qualitative comparison of the reconstructed shapes.

Our approach reconstructs the shapes with high fidelity, preserving details and thin

structures. On the other hand, space carving ends up reconstructing objects with

missing parts and and rough structures as we can observe in Figure 6.7.

Reconstructions using captured images. We have also evaluated our method

using images captured from a camera. Results are presented in Figure 6.6. The

subject is a glass object, for which we photographed 4 views evenly spaced with

45◦ horizontal rotation angle apart from each other, against a uniform background

color. We then use [1] to remove background and convert each image to a binary

silhouette image. We compare results using our method with standard visual hull

(i.e. space carving). As can be observed, our method leads to smooth reconstructions

and the resulting objects look more natural. In contrast, the visual hull results

contain artifacts and sharp transitions around changing views, which would require

significantly more number of views to eliminate.

6.3.3 Shape-from-Depth Images 3D Reconstruction

The setup for 3D reconstruction from depth images is the same for the binary im-

ages except for the use of the projection TD instead of TS. All the input depth images

122

C
a
rv
in
g

O
u
rs

G
T

Figure 6.7: Shape-from-silhouette reconstruction with perturbed viewpoints.
Results for the space carving baseline in the first row, our method in the second row,
ground-truth shapes in the third row. Our results are computed minimizing Equation 6.11
through 500 gradient descent steps. Our method is capable of updating the initial viewpoint
parameters and is capable to recover from imprecise viewpoint assignment. The space
carving baseline is not robust to viewpoint perturbations which means it ends up carving
the wrong regions of the volume, leading to poor reconstructions and eliminating thin object
structures.

have their range scaled to be in [0, 1] using the exponential map in Equation (7.4).

We analyzed the ability of the method to reconstruct 3D shapes from depth images

perturbed by different levels of Gaussian noise while using 4 views. Results can be

seen in Figure 6.8. Additionally, we analyzed the reconstruction quality while varying

the number of views. Results are presented in Figure 6.9. For these experiments, we

kept the noise level very high (σ = 0.1). We notice that even when dealing with very

noisy projections, our method is able to reconstruct high quality shapes if enough

views are given.

6.4 Conclusion

We showed that by combining the deep image or volumetric prior with differen-

tiable projection operators, signals can be reconstructed from a few noisy projection

123

σ = 0 σ = 0.01 σ = 0.02 σ = 0.05 σ = 0.1

Figure 6.8: Effect of noise in the reconstruction. 3D shape reconstructed from 4
noisy depth images of the same object. The variance of the Gaussian noise increases from
left to right. Shape prior can reconstruct high quality shapes even with considerable amount
of noise.

Input 4 views 8 views 16 views 32 views

Figure 6.9: Effect of the number of views in the reconstruction from depth
images. 3D shape reconstructed from very noisy (σ = 0.1) depth images of the same
object. On the left, example of the input depth images. If provided enough views, our
method is able to reconstruct high quality shapes even from highly noisy inputs.

measurements using stochastic gradient descent. The approach is learning free and

can be used as a generic prior. Nevertheless, with a relatively simple network ar-

chitecture our approach outperformed several handcrafted and procedural priors for

image based and volumetric reconstruction tasks. Although we presented results for

tomography and for shape reconstruction from silhouettes and depth maps, the ap-

proach can be used whenever the rendering or measurement process is differentiable.

These include problems such as estimating shape from shading and geometry from

multiple shaded images.

124

A potential issue is the use of volumetric representations for shapes which incurs

high memory requirements and longer running times. A possible line of research is

to investigate shape priors for more compact 3D representations like point clouds

or multi-view. Combining deep priors with work on differentiable computer graph-

ics pipelines opens up the possibility of applying this approach for solving inverse

problems in many applications.

125

CHAPTER 7

INFERRING 3D SHAPES FROM IMAGE COLLECTIONS
USING ADVERSARIAL NETWORKS

The ability to infer 3D shapes of objects from their 2D views is one of the cen-

tral challenges in computer vision. For example, when presented with a catalogue of

airplane silhouettes as shown in the top of Figure 7.1, one can mentally infer their

3D shapes by simultaneously reasoning about the shape and viewpoint variability. In

this work, we investigate the problem of learning a generative model of 3D shapes

from a collection of images of an unknown set of objects within a category taken from

an unknown set of views. The images can be thought of as generalized projections of

3D shapes into a 2D space in the form of silhouettes, depth maps, or even part seg-

mentations. The problem is challenging as one is not provided with the information

about which object instance was used to generate each image, the viewpoint from

which each image was taken, the parameterization of the underlying shape distribu-

tion, or even the number of underlying instances. Hence, traditional techniques based

on structure from motion [13,71] or visual hulls [102], cannot be directly applied.

We use the framework of generative adversarial networks (GANs) [63] and aug-

ment the 3D shape generator with a projection module, as illustrated in Figure 7.2.

The generator produces 3D shapes, the projection module renders the shape from

viewpoint sampled from a viewpoint distribution, and the adversarial network dis-

criminates real images from generated ones. The projection module is a differentiable

renderer that allows us to map 3D shapes to 2D images, as well as back-propagate

the gradients of 2D images to 3D shapes. Once trained, the model can be used to

126

{ }, , ,

, , ...

{ }, , ,

, , ...

{ }, , ,

, , ...

Figure 7.1: Our algorithm infers a generative model of the underlying 3D shapes given
a collection of unlabeled images rendered as silhouettes, semantic segmentations or depth
maps. To the left, images representing the input dataset. To the right, shapes generated
by the generative model trained with those images.

infer 3D shape distributions from a collection of images (Figure 7.1 shows some sam-

ples drawn from the generator), and to infer depth or viewpoint from a single image,

without using any 3D or viewpoint information during learning. We call our approach

projective generative adversarial network (PrGAN).

While there are several ways of rendering a 3D shape, we begin with a silhouette

representation. The motivation is that silhouettes can be easily extracted when ob-

jects are photographed against clear backgrounds, such as in catalogue images, but

nevertheless they contain rich shape information. Real-world images can also be used

by removing background and converting them to binary images. Our generative 3D

model represents shapes using a voxel representation that indicates the occupancy

of a volume in a fixed-resolution 3D grid. Our projection module is a feed-forward

operator that renders the volume as an image. The feed-forward operator is differen-

tiable, providing the ability to adjust the 3D volume based on projections. Finally,

127

we assume that the distribution over viewpoints is known (assumed to be uniform in

our experiments, but it could be any distribution).

We then extend our analysis first presented in our earlier work [52] by incorporat-

ing recent advances in training GANs and designing projection modules to incorpo-

rate richer supervision. The latter includes the availability of viewpoint information

for each image, depth maps instead of silhouettes, or semantic segmentations such

as part labels during learning. Such supervision is easier to collect than acquiring

full 3D scans of objects. For example, one can use a generic object viewpoint es-

timator [170] as weak supervision for our problem. Similarly, semantic parts can

be labeled on images directly and already exist for many object categories such as

airplanes, birds, faces, and people. We show that such information can be used to

improve 3D reconstruction by using an appropriate projection module.

To summarize our main contributions are as follows: (i) we propose PrGAN,

a framework to learn probabilistic distributions over 3D shapes from a collection of

2D views of objects. We demonstrate its effectiveness on learning shape categories

such as chairs, airplanes, and cars sampled from online shape repositories [24, 206].

The results are reasonable even when views from multiple categories are combined;

(ii) PrGAN generates 3D shapes of comparable quality to GANs trained directly

on 3D data [204]; (iii) The learned 3D representation can be used for unsupervised

estimation of 3D shape and viewpoint given a novel 2D shape, and for interpolation

between two different shapes, (iv) Incorporating additional cues as weak supervision

improves the 3D shapes reconstructions in our framework.

7.1 Related work

Estimating 3D shape from image collections. The difficulty of estimating 3D

shape can vary widely based on how the images are generated and the assumptions

one can make about the underlying shapes. Visual-hull techniques [102] can be used to

128

infer the shape of an object by computing the intersection of the projected silhouettes

taken from known viewpoints. When the viewpoint is fixed and the lighting is known,

photometric stereo [203] can provide accurate geometry estimates for rigid and diffuse

surfaces. Structure from motion (SfM) [71] can be used to estimate the shape of

rigid objects from their views taken from unknown viewpoints by jointly reasoning

about point correspondences and camera projections. Non-rigid SfM can be used

to recover shapes from image collections by assuming that the 3D shapes can be

represented using a compact parametric model. An early example is that of Blanz

and Vetter [13] for estimating 3D shapes of faces from image collections where each

shape is represented as a linear combination of bases (Eigen shapes). However, 3D

shapes need to be aligned in a consistent manner to estimate the bases which can

be challenging. Recently, non-rigid SfM has been applied to categories such as cars

and airplanes by manually annotating a fixed set of keypoints across instances to

provide correspondences [88]. Our work augments non-rigid SfM using a learned 3D

shape generator, which allows us to generalize the technique to categories with diverse

structures without requiring correspondence annotations. Our work is also related

to recent work of Kulkarni et al. [99] for estimating a disentangled representation

of images into shape, viewpoint, and lighting variables (dubbed “inverse graphics

networks”). However, the shape representation is not explicit, and the approach

requires the ability to generate training images while varying one factor at a time.

Inferring 3D shape from a single image. Optimization-based approaches put

priors on geometry, material, and light to estimate all of them by minimizing the re-

construction error when rendered [9,10,100]. Our approach on the other hand exploits

implicit priors induced by deep networks [32,56] for generative modeling. Recognition-

based methods have been used to estimate geometry of outdoor scenes [76,155], indoor

environments [47, 156], and objects [5, 153]. More recently, convolutional networks

have been trained to generate views of 3D objects given their attributes and camera

129

parameters [45], to generate 3D shape given a 2D view of the object [173], and to

generate novel views of an object [222]. Most of these approaches are trained in a

fully-supervised manner and require 3D data or multiple views of the same object

during training.

Generative models for images and shapes. Our work builds on the success

of GANs for generating images across a wide range of domains [63]. Recently, Wu

et al. [204] learned a generative model of 3D shapes using GANs equipped with 3D

convolutions. However, the model was trained with aligned 3D shape data. Our work

aims to solve a more difficult question of learning a 3D-GAN from 2D images. Several

recent works are in this direction. Rezende et al. [145] show results for 3D shape

completion for simple shapes when views are provided, but require the viewpoints

to be known and the generative models are trained on 3D data. Yan et al. [211]

learn a mapping from an image to 3D using multiple projections of the 3D shape

from known viewpoints and object identification, i.e., which images correspond to

the same object. Their approach employs a 3D volumetric decoder and optimizes a

loss that measures the overlap of the projected volume on the multiple silhouettes

from known viewpoints, similar to a visual-hull reconstruction. Tulsiani et al. [187]

learn a model to map images to 3D shape provided with color images or silhouettes

of objects taken from known viewpoints using a “ray consistency” approach similar

to our projection module. Kanazawa et al. [87] employs additional supervision in

the form of keypoint annotations to generate textured 3D meshes. On the other

hand, our method does not assume known viewpoints, object associations of the

silhouettes making the problem considerably harder. If object associations are given

and viewpoints are unknown, a possible solution is to use multi-view consistency

across similar objects, as demonstrated in [185]. More similar to our setup, Henderson

and Ferrari [74] propose a method to learn a generative model of 3D shapes from a

set of images without viewpoint supervision. However, their approach uses a more

130

constrained shape representation – sets of blocks or deformations in a subdivided

cube – and other visual cues such as lighting configuration and normals.

Differentiable renderers. Our generative models rely on a differentiable projec-

tion module to incorporate image-based supervision. Since our images are rendered

as silhouettes, the process can be approximated using differentiable functions com-

posed of spatial transformations and projections as described in Section 7.2. However,

more sophisticated differentiable renders, such as [89,105,110], that take into account

shading and material properties could provide richer supervision or enable learning

from real images. These renderers rely on mesh-based or surface-based representa-

tions which are challenging to generate due to their unstructured nature. Recent

work on generative models of 3D shapes with point clouds [2, 49, 51, 55, 68] or mul-

tiview [111, 173] representations provide a possible alternative to our voxel based

approach that we aim to investigate in the future.

projected image
CxNxN

viewpoint (θ,φ)

z ∈ R201

KxKxK kernels

{real, fake}

projection
module

discriminator

convolutions + upsampling

3D shape representation
CxNxNxN

Figure 7.2: The PrGAN architecture for generating 2D silhouettes of shapes factorized
into a 3D shape generator and viewpoint generator and projection module. A 3D voxel
representation (C×N3) and viewpoint are independently generated from the input z (201-d
vector). The projection module renders the voxel shape from a given viewpoint (θ, φ) to
create an image. The discriminator consists of 2D convolutional and pooling layers and
aims to classify if the generated image is “real” or “fake”. The number of channels C in the
generated shape is equal to one for an occupancy-based representation and is equal to the
number of parts for a part-based representation.

131

silhouette segmentation depth

Figure 7.3: The input to our model consists of multiple renderings of different objects
taken from different viewpoints. Those image are not annotated with identification or view-
point information. Our model is able to handle images from objects rendered as silhouettes
(left), semantic segmentation maps (middle) or depth maps (right).

7.2 Method

Our method builds upon GANs proposed in Goodfellow et al. [63]. The goal of

a GAN is to train a generative model in an adversarial setup. The model consists

of two parts: a generator and a discriminator. The generator G aims to transform

samples drawn from a simple distribution P that appear to have been sampled from

the original dataset. The discriminator D aims to distinguish samples generated

by the generator from real samples (drawn from a data distribution D). Both the

generator and the discriminator are trained jointly by optimizing:

min
G

max
D

Ex∼D[log (D(x))] + Ez∼P [log (1−D(G(z)))]. (7.1)

Our main task is to train a generative model for 3D shapes without relying on 3D

data itself, instead relying on 2D images from those shapes, without any view or shape

annotation1. In other words, the data distribution consists of 2D images taken from

different views and are of different objects. To address this mismatch we factorize

the 2D image generator into a 3D shape generator (G3D), viewpoint generator (θ, φ),

and a projection module Pθ,φ as seen in Figure 7.2. The challenge is to identify a

representation for a diverse set of shapes and a differentiable projection module to

1We later relax this assumption to incorporate extra supervision.

132

create final 2D images and enable end-to-end training. We describe the architecture

employed for each of these next.

3D shape generator (G3D). The input to the entire generator is z ∈ R201 with

each dimension drawn independently from a uniform distribution U(−1, 1). Our

3D shape generator G3D transforms the first 200 dimensions of z to a N × N ×

N voxel representation of the shape. Each voxel contains a value v ∈ [0, 1] that

represents its occupancy. The architecture of the 3D shape generator is inspired by

the DCGAN [143] and 3D-GAN [204] architectures. It consists of several layers of 3D

convolutions, upsampling, and non-linearities, as shown in Figure 7.2. The first layer

transforms the 200 dimensional vector to a 256×4×4×4 vector using a fully-connected

layer. Subsequent layers have batch normalization and ReLU layers between them

and use 3D kernels of size 5 × 5 × 5. At every layer, the spatial dimensionality is

increased by a factor of 2 and the number of channels is decreased by the same factor,

except for the last layer whose output only has one channel (voxel occupancy). The

last layer is succeeded by a sigmoid activation instead of a ReLU in order to keep the

occupancy values in [0, 1].

Viewpoint generator (θ, φ). The viewpoint generator takes the last dimension of

z ∈ U(−1, 1) and transforms it to a viewpoint vector (θ, φ). The training images

are assumed to have been generated from 3D models that are upright oriented along

the y-axis and are centered at the origin. Most models in online repositories and

the real world satisfy this assumption (e.g., chairs are on horizontal planes). We

generate images by sampling views uniformly at random from one of eight pre-selected

directions evenly spaced around the y-axis (i.e., θ = 0 and φ = 0◦, 45◦, 90◦, ..., 315◦),

as seen in Figure 7.3. Thus the viewpoint generator picks one of these directions

uniformly at random.

133

Projection module (Pr). The projection module Pr renders the 3D shape from

the given viewpoint to produce an image. For example, a silhouette can be rendered

in the following steps. The first step is to rotate the voxel grid to the corresponding

viewpoint. Let V : Z3 → [0, 1] ∈ R be the voxel grid, a function that given an

integer 3D coordinate c = (i, j, k) returns the occupancy of the voxel centered at

c. The rotated version of the voxel grid V (c) is defined as Vθ,φ = V (bR(c, θ, φ)c),

where R(c, θ, φ) is the coordinate obtained by rotating c around the origin according

to the spherical angles (θ, φ). Notice that R is straightforwardly implemented as a

matrix multiplication and can be extended to model other types of transformations,

e.g. perspective transformations. Refer to the Appendix A in [211] for more details.

The second step is to perform the projection to create an image from the rotated

voxel grid. This is done by applying the projection operator Pr((i, j), V) = 1 −

e−
∑
k V (i,j,k). Intuitively, the operator sums up the voxel occupancy values along each

line of sight (assuming orthographic projection), and applies exponential falloff to

create a smooth and differentiable function. When there is no voxel along the line

of sight, the value is 0; as the number of voxels increases, the value approaches 1.

Combined with the rotated version of the voxel grid, we define our final projection

module as: Prθ,φ((i, j), V) = 1− e−
∑
k Vθ,φ(i,j,k). As seen in Figure 7.3 the projection

module can well approximate the rendering of a 3D shape as a binary silhouette image,

and is differentiable. Section 7.4 presents projection modules that render the shape

as a depth image or one labeled with part segmentations using similar projection

operations, as seen in Figure 7.3. Thus the 2D image generator G2D can be written

compositionally as G2D = Pr(θ,φ) ◦G3D.

Discriminator (D2D). The discriminator consists of a sequence of 2D convolutional

layers with batch normalization layer and LeakyReLU activation [112] between them.

Inspired by recent work [143,204], we employ multiple convolutional layers with stride

2 while increasing the number of channels by 2, except for the first layer, whose input

134

has 1 channel (image) and output has 256. Similar to the generator, the last layer of

the discriminator is followed by a sigmoid activation instead of a LeakyReLU.

Training details. The entire architecture is trained by optimizing the objective in

Equation 7.1. Usually, updates to minimize each one of the losses is applied once at

each iteration. However, in our model, the generator and the discriminator have a

considerably different number of parameters, as the generator is trying to create 3D

shapes, while the discriminator is trying to classify 2D images. To mitigate this issue,

we employ an adaptive training strategy. At each iteration of the training, if the

discriminator accuracy is higher than 75%, we skip its training. We also set different

learning rates for the discriminator and the generator: 10−5 and 0.0025, respectively.

Similarly to the DCGAN architecture [143], we use ADAM with β1 = 0.5 for the

optimization.

7.3 Experiments

This section describes a set of experiments to evaluate our basic method and

several extensions. First, we compare our model with a traditional GAN for the

task of image generation and a GAN for 3D shapes. We present quantitative and

qualitative results. Second, we demonstrate that our method is able to induce 3D

shapes from unlabeled images even when the collection contains only a single view per

object. Third, we present 3D shapes induced by our model from a variety of categories

such as airplanes, cars, chairs, motorbikes, and vases. Using the same architecture,

we show how our model is able to induce coherent 3D shapes when the training data

contains images mixed from multiple categories. Finally, we show applications of

our method in predicting 3D shape from a novel 2D shape, and performing shape

interpolation.

135

(a) Results from 2D-GAN. (a) Results from PrGAN.

Figure 7.4: Comparison between 2D-GAN [63] and our PrGAN model for image gener-
ation on the chairs dataset. Refer to Figure 7.9 third row, left column for samples of the
input data.

7.3.0.0.1 Input data. We generate training images synthetically using 3D shapes

available in the ModelNet [206] and ShapeNet [24] databases. Each category contains

a few hundred to thousand shapes. We render each shape from 8 evenly spaced

viewing angles with orthographic projection to produce binary images. Hence our

assumption is that the viewpoints of the training images (which are unknown to the

network) are uniformly distributed. If we have prior knowledge about the viewpoint

distribution (e.g. there may be more frontal views than side views), we can adjust

the projection module to incorporate this knowledge. To reduce aliasing, we render

each image at 64 × 64 resolution and downsample to 32 × 32. We have found that

this generally improves the results. Using synthetic data allows us to easily perform

controlled experiments to analyze our method. It is also possible to use real images

downloaded from a search engine as discussed in Section 7.4.

7.3.1 Results

We quantitatively evaluate our model by comparing its ability to generate 2D

and 3D shapes. To do so, we use 2D image GAN similar to DCGAN [143] and

a 3D-GAN similar to the one presented in [204]. At the time of this writing the

implementation of [204] is not public yet, therefore we implemented our own version.

We will refer to them as 2D-GAN and 3D-GAN, respectively. The 2D-GAN has

the same discriminator architecture as the PrGAN, but the generator contains a

sequence of 2D transposed convolutions instead of 3D ones, and the projection module

136

(a) Results from 3D-GAN. (a) Results from PrGAN.

Figure 7.5: Comparison between 3D-GAN [204] and our PrGAN for 3D shape generation.
The 3D-GAN is trained on 3D voxel representation of the chair models, and the PrGAN
is trained on images of the chair models (refer to Figure 7.9 third row).

is removed. The 3D-GAN has a discriminator with 3D convolutions instead of 3D

ones. The 3D-GAN generator is the same as the PrGAN, but without the projection

module.

The models used in this experiment are chairs from ModelNet dataset [206]. From

those models, we create two sets of training data: voxel grids and images. The voxel

grids are generated by densely sampling the surface and inside of each mesh, and

binning the sample points into 32× 32× 32 grid. A value 1 is assigned to any voxel

that contains at least one sample point, and 0 otherwise. Notice that the voxel grids

are only used to train the 3D-GAN, while the images are used to train the 2D-GAN

and our PrGAN.

Our quantitative evaluation is done by taking the Maximum Mean Discrepancy [67]

(MMD) between the data created by the generative models and the training data.

We use a kernel bandwidth of 10−3 for images and 10−2 for voxel grids. The training

data consists of 989 voxel grids and 7912 images. To compute the MMD, we draw

128 random data points from each one of the generative models. The distance metric

between the data points is the hamming distance divided by the dimensionality of

the data. Because the data represents continuous occupancy values, we binarize them

137

Figure 7.6: Shapes generated from PrGAN by varying the number of views per object
in the training data. From the top row to the bottom row, the number of views per object
in the training set are 1, 2, 4, and 8 respectively.

by using a threshold of 0.001 for images or voxels created by PrGAN, and 0.1 for

voxels created by the 3D-GAN.

Results show that for 2D-GAN, the MMD between the generated images and the

training data is 90.13. For PrGAN, the MMD is 88.31, which is slightly better

quantitatively than 2D-GAN. Figure 7.4 shows a qualitative comparison. The results

are visually very similar. For 3D-GAN, the MMD between the generated voxel grids

and the training voxel grids is 347.55. For PrGAN, the MMD is 442.98, which is

worse compared to 3D-GAN. This is not surprising as 3D-GAN is trained on 3D data,

while PrGAN is trained on the image views only. Figure 7.5 presents a qualitative

comparison. In general PrGAN has trouble generating interior structures because

the training images are binary, carry no shading information, and are taken from a

138

limited set of viewing angles. Nonetheless, it learns to generate exterior structures

reasonably well.

7.3.1.1 Varying the number of views per model

In the default setting, our training data is generated by sampling 8 views per

object. Note that we do not provide the association between views and instances

to the generator. Here we study the ability of our method in the more challenging

case where the training data contains fewer number of views per object. To do so,

we generate a new training set that contains only 1 randomly chosen view per object

and use it to train PrGAN. We then repeat the experiments for 2 randomly chosen

views per object, and also 4. The results are shown in Figure 7.6. Notice that the 3D

shapes generated by PrGAN become slightly better as the number of views increase.

An interesting question is what’s the root cause for such improvements – it may be

due to the fact that more training data is available as the number of views per object

increases; or it could be that the presence of multiple views of the same object lead

to better reconstruction. Thus we further investigate this question by performing an

additional experiment, where the training data consists of 8 views per instance, but

only using half of the instances available in the dataset. In other words, this setup

has the same number of images as the experiment with 4 views of all instances, which

makes them comparable in terms of the total amount of training data. We observed no

qualitative or quantitative difference in the objects generated in these two scenarios.

Quantitative results using the model and metrics described in Section 7.4 are shown

in Table 7.1. Therefore, we believe the improved quality is most likely a consequence

of extra data available during training. Nevertheless, it is important to highlight that

differently from other approaches that require object correspondence [185, 211] our

method is able to induce reasonable shapes, even in the case of a single view per

object.

139

Figure 7.7: Shape interpolation by linearly interpolating the encodings of the starting
shape and ending shape.

7.3.1.2 Shape interpolation

Once the generator is trained, any encoding z supposedly generates a plausible

3D shape, hence z represents a 3D shape manifold. Similar to previous work, we

can interpolate between 3D shapes by linearly interpolating their z codes. Figure 7.7

shows the interpolation results for two airplane models and two chair models.

7.3.1.3 Unsupervised shape and viewpoint prediction

Our method is also able to handle unsupervised prediction of shapes in 2D images.

Once trained, the 3D shape generator is capable of creating shapes from a set of

encodings z ∈ R201. One application is to predict the encoding of the underlying 3D

object given a single view image of the object. We do so by using the PrGAN’s

generator to produce a large number of encoding-image pairs, then use the data

to train a neural network (called encoding network). In other words, we create a

training set that consists of images synthesized by the PrGAN and the encodings

that generated them. The encoding network is fully connected, with 2 hidden layers,

each with 512 neurons. The input of the network is an image and the output is an

encoding. The last dimension of z describes the view, and the first 200 dimensions

describe the code of the shape, which allows us to further reconstruct the 3D shape as

140

a 323 voxel grid. With the encoding network, we can present to it a single view image,

and it outputs the shape code along with the viewing angle. Experimental results

are shown in in Figure 7.8. This whole process constitutes a completely unsupervised

approach to creating a model that infers a 3D shape from a single image.

7.3.1.4 Visualizations across categories

Our method is able to generate 3D shapes for a wide range of categories. Figure 7.9

show a gallery of results, including airplanes, car, chairs, vases, motorbikes. For

each category we show 64 randomly sampled training images, 64 generated images

from PrGAN, and renderings of 128 generated 3D shapes (produced by randomly

sampling the 200-d input vector of the generator). One remarkable property is that

the generator produces 3D shapes in a consistent horizontal and vertical axes, even

though the training data is only consistently oriented along the vertical axis. Our

hypothesis for this is that the generator finds it more efficient to generate shapes

in a consistent manner by sharing parts across models. Figure 7.10 shows selected

examples from Figure 7.9 that demonstrates the quality and diversity of the generated

shapes.

The last row in Figure 7.9 shows an example of a “mixed” category, where the

training images combine the three categories of airplane, car, and motorbike. The

same PrGAN network is used to learn the shape distributions. Results show that

PrGAN learns to represent all three categories well, without any additional super-

vision.

141

Figure 7.8: At top 3 rows, the four images are different views of the same chair, with
predicted viewpoint on the top. Shapes are different but plausible given the single view.
In the bottom row, shape inferred (right) by a single view image (left) using the encoding
network. Input images were segmented, binarized and resized to match the network input.

142

Input Generated images Generated shapes

Figure 7.9: Results for 3D shape induction using PrGANs. From top to bottom we
show results for airplane, car, chair, vase, motorbike, and a ’mixed’ category obtained by
combining training images from airplane, car, and motorbike. In each row, we show on the
left 64 randomly sampled images from the input data to the algorithm, on the right 128
sampled 3D shapes from PrGAN, and in the middle 64 sampled images after the projection
module is applied to the generated 3D shapes. The model is able to induce a rich 3D shape
distribution for each category. The mixed-category produces reasonable 3D shapes across
all three combined categories. Zoom in to see details.

143

Figure 7.10: A variety of 3D shapes generated by PrGAN trained on 2D views of (from
the top row to the bottom row) airplanes, cars, vases, and bikes. These examples are chosen
from the gallery in Figure 7.9 and demonstrate the quality and diversity of the generated
shapes.

Figure 7.11: Our method is unable to capture the concave interior structures in this chair
shape. The pink shapes show the original shape used to generate the projected training
data, shown by the three binary images on the top (in high resolution). The blue voxel
representation is the inferred shape by our model. Notice the lack of internal structure.

144

7.3.2 Failure cases

Compared to 3D-GANs, the proposed PrGAN models cannot discover structures

that are hidden due to occlusions from all views. For example, it fails to discover that

some chairs have concave interiors and the generator simply fills these since it does

not change the silhouette from any view as we can see at Figure 7.11. However, this

is a natural drawback of view-based approaches since some 3D ambiguities cannot

be resolved (e.g., Necker cubes) without relying on other cues. Despite this, one

advantage over 3D-GAN is that our model does not require consistently aligned 3D

shapes since it reasons over viewpoints.

7.4 Improving PrGAN with richer supervision

This section shows how the generative models can be improved to support higher

resolution 3D shapes and by incorporating richer forms of view-based supervision.

7.4.1 Higher-resolution models

We extend the vanilla PrGAN model to handle higher resolution volumes. There

are two key modifications. First, we replace the transposed convolutions in the gener-

ator by trilinear upsampling followed by a 3D convolutional layer. In our experiments,

we noticed that this modification led to smoother shapes with less artifacts. This fact

was also verified for image generators [133]. Second, we add a feature matching com-

ponent to the generator objective. This component acts by minimizing the difference

between features computed by the discriminator from real and fake images. More

precisely, the feature matching loss can be defined as:

LFM(G,D) =
∥∥Ex∼D[Dk(x)]− Ez∼N (0,I)[Dk(G(z))]

∥∥2

2
(7.2)

where Dk(x) are the features from the kth layer of the discriminator when given an

input x. In our experiments we define k to be the last convolutional layer of the

145

discriminator. We empirically verified that this component promotes diversity in the

generated samples and makes the training more stable.

7.4.2 Using multiple cues for shape reasoning

So far our approach only relies on binary silhouettes for estimating the shape,

which contributes to the lack of geometric details. One strategy is replace the projec-

tion module with a differentiable function, e.g., a convolutional network, to approx-

imate a sophisticated rendering pipeline, like the one presented in [125, 128]. Such

a neural renderer could be a plug-in replacement for the projection module in the

PrGAN framework. This would provide the ability to use collections of realistically-

shaded images for inferring probabilistic models of 3D shapes and other properties.

We explore an alternate direction using differentiable projection operators that do

not rely on training procedures. This choice fits well in the PrGAN formulation as it

does not rely on 3D supervision for training any part of the model. In this section, we

present differentiable operators to render depth images and semantic segmentation

maps. We demonstrate that the extra supervision enables generating more accurate

3D shapes and allows relaxing the prior assumption on viewpoint distribution.

Learning from depth images. Our framework can be adapted to learn from

depth images instead of binary images. This is done by replacing the binary projection

operator Pr to one that can be used to generate depth images. We follow an approach

inspired by the binary projection. First, we define an accessibility function A(V, φ, c)

that describes whether a given voxel c inside the grid V is visible, when seen from a

view φ:

A(V, φ, i, j, k) = exp

{
− τ

k−1∑
l=1

Vφ(i, j, l)

}
. (7.3)

Intuitively, we are incrementally accumulating the occupancy (from the first voxel

on the line of sight) as we traverse the voxel grid instead of summing all voxels on

the entire the line of sight. If voxels on the path from the first to the current voxel

146

are all empty, the value of A is 1 (indicating the current voxel is “accessible” to the

view φ). If there is at least one non-empty voxel on the path, the value of A will be

close to 0 (indicating this voxel is inaccessible). A similar approach was used in our

earlier work [56].

Using A, we can define the depth value of a pixel in the projected image as the

line integral of A along the line of sight: PrDφ (i, j, V) =
∑

k A(V, φ, i, j, k). This

operation computes the number of accessible voxels from a particular direction φ,

which corresponds to the distance of the surface seen in (i, j) to the camera. Finally,

we apply a smooth map to the previous operation in order to have depth values in

the range [0, 1]. Thus, the projection module is defined as:

PrDφ ((i, j), V) = 1− exp

{
−
∑
k

A(V, φ, i, j, k)

}
. (7.4)

Learning from part segmentations. We also explore learning 3D shapes from

sets of images with dense semantic annotation. Similarly to the depth projection, we

modify our projection operator to enable generation of images whose pixels correspond

to the label of particular class (or none if there is no object). In this case, the output

of the generator is multi-channel voxel grid V : Z3 × C → [0, 1] ∈ R, where C is the

number of parts present in a particular object category.

Let G to be the aggregated occupancy grid defined as G =
∑C

c=1 V (i, j, k, c). The

semantic projection operator PrSφ ((i, j, c), V) is defined as:

PrSφ ((i, j, c), V) = 1− exp

{∑
k

Vφ(i, j, k, c)A(Gφ, i, j, k)

}
, (7.5)

where A is the accessibility operator defined previously. Intuitively, A(G, φ) encodes

if a particular voxel is visible from a viewpoint φ. When we multiply the visibility

computed with the aggregated occupancy grid by the value of a specific channel c in

V , we generate a volume that contains visibility information per part. Finally, we

147

Model Supervision D → G(z) G(z)→ D Avg.
PrGAN∗ Silhouette 0.431 0.391 0.411
PrGAN† Silhouette 0.429 0.391 0.410
PrGAN Silhouette 0.442 0.400 0.421
PrGAN Silhouette + View 0.439 0.431 0.435
PrGAN Depth 0.497 0.448 0.472
PrGAN Part Segmentation 0.496 0.507 0.502
3D-GAN Volumetric 0.538 0.530 0.534

Table 7.1: Quantitative comparison between models trained with different projection
operators. The Chamfer similarity under the volumetric intersection over union (IoU) is
shown for PrGAN trained with varying amounts of supervision and a 3D-GAN trained
with volumetric supervision. The metric (higher the better) indicates that PrGAN with
richer supervision are better and approaches the quality of 3D-GAN. PrGAN∗ is trained
using only 4 out of 8 views per object. PrGAN† is trained using all 8 views but for half of
the objects.

take the line integral along the line of sight to generate the final image. Examples of

images and shapes generated by this operator can be seen in Figure 7.12.

Learning with viewpoint annotation. We also experiment with the less chal-

lenging setup where our model has access to viewpoint information for every training

image. Notice that this problem is different from [89,211], since we still do not know

which images correspond to the same object. Thus, multi-view losses are not a viable

alternative. Our model is able to leverage viewpoint annotation by using conditional

discriminators. The conditional discriminator has the same architecture as the vanilla

discriminator but the input image is modified to contain its corresponding viewpoint

annotation. This annotation is represented by an one-hot encoding concatenated to

every pixel in the image. For example, if a binary image from a dataset with shapes

rendered from 8 viewpoints will be represented as a 9-channel image. This procedure

is done for images generated by our generator and images coming from the dataset.

148

7.4.3 Experiments

Setup. We generate training images using airplanes from the ShapeNet part seg-

mentation dataset [24]. Those shapes have their surface densely annotated as belong-

ing to one of four parts: body, wing, tail or engine. We render those shapes using

the same viewpoint configuration described in Section 7.3. However, in this scenario

we use 64× 64 images instead of 32× 32. The models are rendered as binary silhou-

ettes, depth maps and part segmentation masks. We train a high resolution PrGAN

model for every set of rendered images using the corresponding projection operator.

Each model is trained for 50 epochs and trained with the Adam optimizer. We use a

learning rate of 2.5× 10−3 for the generator and 2× 10−5 for the discriminator.

Evaluation. The models trained with different visual clues are evaluated through

the following metric:

1

|D|
∑
x∈D

min
g∈G

IoU(x, g) +
1

|G|
∑
g∈G

min
x∈D

IoU(x, g) (7.6)

where IoU corresponds to intersection over union, G is a set of generated shapes and

D is a set of shapes from the training data. In our setup, both G and D contain 512

shapes. Shapes in D are randomly sampled from the same dataset that originated

the images, whereas shapes in G are generated through G(z). Noticeably, the shapes

generated by PrGAN do not have the same orientation as the shapes in D but are

consistently oriented among themselves. Thus, before computing Equation 7.6, we

select one of 8 possible transformations that minimizes IoU – there are 8 rendering

viewpoints in the training set. Additionally, the components in Equation 7.6 indicate

two different aspects: the first term (D → G(z)) indicates how the variety in the

dataset is covered whereas the second term (G(z) → D) indicates how accurate the

generated shapes are. A comparison between models trained with different projection

operators can be seen in Table 7.1. The model trained with part segmentation clues

149

yields the best results. As expected, using only silhouettes leads to worse results in

both metrics and adding viewpoint supervision improves upon this baseline. Inter-

estingly, depth and part segmentation supervision clues lead to models that generate

shapes with similar variety (similar D → G(z)). However, shapes generated from

models using part segmentation clues are more similar to the ones in the dataset

(higher G(z)→ D).

7.5 Conclusion and Future Work

We proposed a framework for inferring 3D shape distributions from 2D shape

collections by augmenting a convnet-based 3D shape generator with a projection

module. This complements existing approaches for non-rigid SfM since these models

can be trained without prior knowledge about the shape family, and can generalize to

categories with variable structure. We showed that our models can infer 3D shapes

for a wide range of categories, and can be used to infer shape and viewpoint from a

silhouettes in a completely unsupervised manner. We believe that the idea of using

a differentiable render to infer distributions over unobserved scene properties from

images can be applied to other problems.

A limitation is that our approach cannot directly learn from real-world images, as

they usually have background pixels, and contain complex shading. In the future, our

method can be extended to accommodate real images using semantic segmentation

to extract foreground object from the background. In addition, it is possible to

incorporate photorealistic differentiable rendering modules capable of handling richer

surface colors, materials, and camera parameters. One could also incorporate other

forms of supervision, such as viewpoint or coarse shape estimates, to improve the 3D

shape inference. For example, camera parameters can be estimated using a generic

viewpoint estimator [170,184].

150

Real Generated

w
/

v
ie

w
p
o
in

t

Figure 7.12: Shapes generated using new part segmentations and depth maps. From
top to bottom, results using depth images, images with part segmentation, silhouettes and
silhouettes annotated with viewpoints. Models trained with images containing additional
visual cues are able to generated more accurate shapes. Similarly, viewpoint annotation also
helps. Notice that shapes generated from images with part annotation are able to generate
part-annotated 3D shapes, highlighted by different colors.

151

CONCLUSION AND FUTURE WORK

This thesis presented a set of models and learning techniques for 3D data gener-

ation and understanding. It focused on two fundamental aspects: models and data.

In the first three chapters, this thesis presented techniques for handling irregularly

structured representations, i.e. 3D shapes are described as permutation-invariant sets

of geometrical entities. For shape recognition and reconstruction, we presented ar-

chitectures for dealing with point clouds. We showed that one can circumvent their

irregular nature by automatically arranging them in spatial partitioning data struc-

tures. Those data structures allow us to efficiently represent point clouds using simple

linear basis and define multi-resolution convolutional operators. Those operators can

then be used as neural network building blocks in several scenarios: point cloud

classification, segmentation, single view reconstruction and within variational auto-

encoders. However, point clouds are not a very good representation if user wants to

manipulate the shape. To this end, this thesis also presented a class of models capable

of directly generating shape handles. Those generative models are quite flexible and

can be easily applied to tasks like shape completion, interpolation and editing using

various types of handles. Both point clouds and shape handles fall under the broader

category of irregularly structured (or set-based) representations. In comparison to

the more common multi-view and occupancy grid counterparts, both of them have

remarkable memory and computational efficiency.

In the remaining chapters, this thesis focused on the other big issue concerning

learning models for 3D reasoning: the lack of 3D data itself. To this end, we pre-

sented several approaches to address different types of data scarcity. When 3D data

exists, but it is unlabeled, we proposed a self-supervised task based on approximate

152

convex decomposition. We showed that when few labels are available, our proposed

self-supervised learning task significantly outperforms the state-of-the-art in unsu-

pervised shape classification and few-shot part segmentation. For shape generation,

the lack of 3D supervision increases the importance of the priors induced by the

different models and representations. We analyzed the priors induced by neural net-

works while parametrizing manifolds and showed how those can be applied to 2D and

3D manifold reconstruction. We further demonstrated how understanding these pri-

ors can improve learning-based tasks by proposing regularizations and convolutional

architectures that encode these priors more efficiently. We also investigated the pri-

ors induced by convolutional architectures while generating regular occupancy grids.

More importantly, we showed how those volumetric representations can be coupled

with differentiable projection operators to enable learning directly from posed images.

However, the most challenging setup arises when no 3D data is available and there

is no pose information. In this scenario, we only have access to images without any

object identification. This problem was tackled by employing a modified generative

adversarial network which generates 3D shapes and projects them to 2D using the

aforementioned projection operators. We demonstrated how this framework can lead

to learning 3D generative models without access to 3D shape, object or keypoint

annotation.

Future Work

Models and techniques for 3D shape understanding and generation experienced

remarkable progress in the last few years. The next paragraphs discuss some inter-

esting research challenges that follow the contributions of this thesis and the current

state of the field as a whole.

Learning from real images requires more than geometry. The projection

modules developed in our research can be seen as simple differentiable renderers. The

ultimate goal is not only be able to learn 3D from silhouettes but from photorealistic

153

images. Computer graphics research has developed a solid toolset for synthesizing

realistic images. Combining those techniques with good 3D shape representations

will lead to better models, capable of learning not only 3D geometry but material

properties, like color, textures and BRDFs, within a single framework. Models like

these have many applications in image and 3D editing and are paramount to aid the

creation of photorealistic content and 3D manipulation of 2D images. Perhaps more

importantly, techniques capable of reasoning about various components of the image

formation process can lead to better understanding of the inductive biases needed

to perform more efficient learning in various scenarios. In other words, how can one

design models that induce good priors for other scene components besides geometry,

like materials and illumination?

Models for Dynamic 3D Data. The main motivation of my research comes from

the intuition that reasoning with images is suboptimal when interacting with the real

tridimensional world. However, for many applications, considering a static 3D world is

also a crude approximation. After significant progress in developing models for static

objects, a natural next step is to think about problems concerning dynamic 3D scenes.

This requires rethinking many decisions concerning architectures and representations

for 3D data – a solution that simply adds an extra dimension is clearly not the best

one. More than that, foundational work creating datasets for these types of problems

is required. Models that are capable of reasoning about motion in 3D already have

a clear impact in autonomous navigation. Models that can generate moving data in

3D will likely not only have a similar impact in creative applications, but may also

lead to efficient 3D video representations.

Full-Scene Reconstruction. Techniques that yield the best single-view reconstruc-

tion results are usually applied in images containing a single object. While a lot of

progress has been made in this setup, it is time to move on to more interesting and

realistic scenarios. A natural extension is to build upon consolidated object detection

154

pipelines and utilize single-object reconstruction models in the process of reconstruct-

ing full scenes containing multiple objects. However, such model should not only be

able to reconstruct 3D from single-object proposals but also utilize contextual scene

information to guide its reconstruction. Whereas seminal work has been done in this

area, there is still a significant gap between the quality of reconstructing single ob-

jects when compared to full scenes. Closing this gap requires investigating efficient

3D representations and building datasets with full 3D annotation. Reconstructing

high-quality full 3D scenes from as few images as possible (maybe just one) is a

key component for developing the next generation of robots and augmented reality

applications.

Differentiable Programming for Computer Aided Design. Using differentiable

rendering to obtain supervisory signal for learning 3D shapes has shown remarkable

success. The main intuition behind those approaches is that, since we know how

to simulate the image formation process, one can devise differentiable approxima-

tions and insert them into the training loop. However, there are many other domains

where such approaches can be applied. For example, if one can differentiably simulate

agent behavior and interaction with objects, the signal can be used to guide many

design tasks. More than that: artists and game designers often rely on graph-based

descriptions of materials, shaders and game logic. Implementing differentiable ap-

proximations to these workflows would allow learning from data more efficiently and

recovering interpretable latent representations, crucial for allowing meaningful manip-

ulation by practitioners. These differentiable engines have the potential to become

the cornerstone of accelerated content creation workflows for games, visual effects and

3D design in general.

155

APPENDIX A

MULTIRESOLUTION TREE NETWORKS -
ADDITIONAL EXPERIMENTS

A.1 Shape segmentation model

As mentioned in the Chapter 2, MRTNet can also be applied to shape part seg-

mentation. Given an input shape represented as a point cloud, the task is to segment

the shape into meaningful parts. For example, a chair shape may be segmented into

back, seat, leg parts etc. Here we describe the segmentation model and experimental

results. The segmentation model follows a similar network to the MR-VAE, with two

main differences:

1. We add skip-connections, similar to what’s used in UNets [148] for image seg-

mentations. Specifically, each intermediate tensor in the MR-Encoder is con-

catenated to the tensor of the same size in the MR-Decoder.

2. The output point cloud dimensionality is changed to 50 (instead of 3), i.e. each

point is described by a part classification score for each of the 50 total possible

parts covering the 16 object categories in ShapeNet.

To spatially sort the input point cloud, we use the RPtree, which according to our

experiments leads to slight improvement for segmentation than using KDtree. Specif-

ically, the splitting axes are precomputed random vectors sampled uniformly over the

unit sphere. The same set of splitting axes are used for all shapes. In other words,

it’s almost the same as the vanilla KDtree except the axes are chosen as random

vectors instead of xyz. This ensures a consistent ordering and relationship between

neighboring points, which facilitate a dense classification task like part segmentation.

156

#instances 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
mean mean air- bag cap car chair ear- guitar knife lamp laptop motor- mug pistol rocket skate table
class object planes phone cycle

MRTNet 79.3 83.0 81.0 76.7 87.0 73.8 89.1 67.6 90.6 85.4 80.6 95.1 64.4 91.8 79.7 57.0 69.1 80.6
KDNet [96] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
PointNet [169] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
3DCNN [169] 74.9 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1
Yi, 2016 [216] 79.0 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3

Table A.1: Shape segmentation results. Numbers reported here are the mean intersection
over union (mIoU) scores. The table shows comparisons between methods that use 3D
position information without normal information.

Experiments. We trained our segmentation model described above on the ShapeNet

part segmentation benchmark, which contains groundtruth part labels for 16,881

shapes covering 16 different categories annotaded with 50 parts in total. Each object

has 2 to 6 parts. Since this dataset is already represented as point clouds, it is

not necessary to perform any additional point sampling. However, each shape may

contain a varying number of points, so for each shape we randomly duplicate existing

points until we have 4096 points. We follow the evaluation protocol used in prior

work [96, 169], where labels that do not appear in a particular category are ignored

during evaluation. In other words, only the predictions corresponding to labels of a

particular category are used.

Similar to the classification network, the segmentation network is trained by mini-

mizing a cross-entropy using an Adam optimizer with learning rate 10−3 and β = 0.9.

The learning rate is also divided by 2 every 5 training epochs. The first three con-

volutional layer have 32 filters and the next three have 64. We also apply test-time

anisotropic scale augmentation. The scaling factors are sampled uniformly at random

from the interval [0.8, 1.2]. At inference time, we compute 16 different scaled versions

of the point cloud and return the mean classification score for each point.

Figure A.1 shows qualitative results from our part segmentation, and Table A.1

lists the mean intersection over union (mIoU) results for all 16 categories. Our ap-

proach produces competitive results in comparison with the state of the art. In par-

ticular, it outperforms the recently proposed KDNet by nearly 2% in the mean per

category mIoU. However, it lacks behind some other recent works, like PointNet [169].

157

Figure A.1: Qualitative results for the shape segmentation task. Each different segmen-
tation part is shown in a different color.

In comparison to the multiresolution UNets, the single resolution counterpart leads

to a drop in about 1%. We believe that the drop here is much smaller in comparison

to the classification task because the multiresolution representation is replicating

similar benefits to UNet, where information from different scales is added directly to

the decoder. In order to verify this hypothesis we trained a segmentation network

without the skip connections from UNet. The multiresolution model obtained an

accuracy of 79.82%, while the baseline had 76.14%, which is 3% lower.

Increasing filter size in the single resolution network did not yield any benefits.

For example, increasing the kernel size from 2 to 8, led to a drop of about 1% in

performance. This demonstrates that the multiresolution network adds more than

simply increasing the receptive fields.

A.2 Image-to-Shape Inference: Additional Results

In this section, we show additional results of image-to-shape inference using MRT-

Net.

158

Category MRTNet Single Res. Fully Connected

airplane 0.976 / 0.920 1.142 / 1.185 1.258 / 1.423
bench 1.438 / 1.326 1.616 / 1.666 1.753 / 2.358

cabinet 1.774 / 1.602 1.913 / 1.916 1.980 / 2.263
car 1.395 / 1.303 1.511 / 1.476 1.583 / 1.668

chair 1.650 / 1.603 1.789 / 1.927 1.982 / 2.385
display 1.815 / 1.901 2.060 / 2.301 2.185 / 3.029
lamp 1.944 / 2.089 1.953 / 2.608 2.163 / 3.400

speaker 2.165 / 2.121 2.336 / 2.456 2.374 / 2.913
rifle 1.029 / 1.028 1.191 / 1.213 1.291 / 1.402
sofa 1.768 / 1.756 1.885 / 2.022 1.985 / 2.421
table 1.570 / 1.405 1.689 / 1.562 1.808 / 2.049

telephone 1.346 / 1.332 1.637 / 1.677 1.643 / 2.342
watercraft 1.394 / 1.490 1.482 / 1.792 1.703 / 2.202

mean 1.559 / 1.529 1.708 / 1.831 1.824 / 2.297

Table A.2: Single-image shape inference. Full results of the ablation studies covering
all 13 categories. Note that MRTNet is consistently better than both baselines.

Reconstructed meshes. For some applications, such as 3D printing, the output is

required to be triangle meshes instead of just point clouds. To do so, we take the

image-to-shape inference results (each shape containing 4K points), create a 0.0253

cube centered at each point, then apply Poisson Surface Reconstruction to create

triangle meshes. This is a simple way to create a mesh from a point cloud, with-

out normal estimation (due to the relatively low point count). Figure A.2 shows

renderings of the reconsturcted meshes. The input images are Internet photos from

Figure 6 in the paper. We rendered each mesh in wireframe mode to reveal the un-

derlying triangle meshes. Some geometric details in the point clouds are necessarily

smoothed out due to surface reconsturctions. Nonetheless, the reconsturcted meshes

are reasonably faithful to the input images.

Full ablation studies. In the paper, for image-to-shape inference experiments, we

presented a summary of ablation studies of MRTNet in comparison with a single-

resolution baseline, and a fully-connected baseline. Here we present the full ablation

study results, covering all 13 shape categories. Refer to Table A.2. Note that MRTNet

is consistently better than both baselines.

159

Figure A.2: Reconsturcted meshes from point clouds generated by applying MRTNet on
Inernet photos of furnitures and toys. From top-down, the first image in each example is
the input photo, the second is the point cloud (each 4K points) generated by MRTNet, the
third is a rendering of the reconstructed mesh. We rendered each mesh in wireframe mode
to reveal the underlying triangles. Zoom in for details.

A.3 Unsupervised Shape Generation (MR-VAE): Additional

Results

In this section, we show additional results of unsupervised shape generation.

Comparison with fully connected decoder. We experimented using fully-connected

(FC) decoders as a baseline for MR-VAE. The generated shapes have a much lower

quality: see results in Fig. A.3. This is not surprising as there is no prior work that

employs these types of decoders alone. Solutions like [49] use FC layers, but as an

additional branch to a much deeper convolutional architecture.

160

Figure A.3: Chairs generated by randomly sampling the encoding. Top: results from our
MR-VAE; Bottom: results by using a fully connected (FC) baseline.

Besides, generating shapes by sampling from a random noise is much harder than

reconstructing input shapes. The shapes presented in Fig. A.3 are all sampled from

a random noise and not reconstructions (which would be easy to generate at high

quality). Moreover, we are generating shapes with 4K points, which is more difficult

for a vanilla decoder, because it tends to generate a lot of misplaced points, as we can

see in Fig. A.3 bottom row. Similarly, single resolution decoders produce low-quality

samples as seen in Fig. 7 bottom row (in the main paper).

Finally, note that PointNet and Kd-net cannot be used as decoders since the

former ignores the ordering of points while the later conditions the processing on the

splits.

Visualization of MR-VAE encodings using t-SNE. In Figure A.4 we show vi-

sualizations of encodings learned by MR-VAE using t-SNE. Specifically, we randomly

selected 1000 shapes from the ShapeNet dataset, computed their encodings learned

by MR-VAE, then applied t-SNE to compute the 2D coordinate of each encoding,

and finally rendered all 1000 shapes on a 2D plane. From the results, we observe that

similar shapes tend to stay together, indicating the ability of MR-VAE on learning

the latent representations of the shapes.

161

Figure A.4: ShapeNet shapes arranged according to their encodings learned
by MR-VAE. 1000 samples from our model trained in the ShapeNet data. The position
of the models in the plane is computed after running t-SNE on the latent representation of
the shapes. Zoom in for details.

162

APPENDIX B

LEARNING GENERATIVE MODELS OF SHAPE
HANDLES - EXTRA RESULTS

B.1 Additional Completion results

In this section, we present additional results for the handle completion task. This

task consists of creating a set of handles that represents a plausible shape and contains

the handles in a given incomplete set. Here, we explore the challenging setup where

the incomplete set of handles (A) contains a single element. We solve this problem

by minimizing Equation 3.9 through gradient descent, which corresponds to finding

the latent representation z∗ that minimizes the coverage loss C(z, A). Results are

presented in Figure B.1. We are able to generate multiple completion proposals (in

blue) for each incomplete set of handles (in orange) by minimizing C(z, A) starting

from different values of z, initially sampled from a standard gaussian distribution

N (0, I). As we can see in Figure B.1, the “completed” set of handles corresponds to

plausible shapes while approximating the elements in the incomplete set.

163

Figure B.1: Additional completion examples. Given an incomplete set of handles
(orange cuboids), we solve the optimization problem described in Equation 8 (main paper)
using gradient descent. Using different starting points for z∗, our model is capable of com-
puting multiple plausible results that represent a complete shape and closely approximates
the incomplete set of handles.

164

APPENDIX C

DEEP MANIFOLD PRIOR - CONVOLUTIONAL
PARAMETRIZATIONS AND ADDITIONAL ANALYSIS

C.1 Convolutional Parametrizations

In the main paper, we experimented with fully connected architectures for repre-

senting manifold parametrizations. However, parametrizations represented by convo-

lutional architectures also induce a prior useful for manifold reconstruction tasks. In

this section, we show experiments with denoising and single-view reconstruction. We

start by defining a ConvBlock, which consists of a bilinear upsampling layer followed

by a 2D-conv, batch normalization [81] and Leaky ReLU activation (slope=0.2). Ev-

ery convolutional layer uses filter size 3 × 3, stride 1 and the number of filters is

exactly half the number of its input channels. In other words, at every ConvBlock,

the output tensor spatially doubles the size of its input tensor, but only has half the

number of channels. This pattern follows throughout the whole network, except for

the last layer, where the output layer always have 3 channels, representing the (x, y, z)

point coordinates.

C.1.1 Denoising

The denoising experiments follow the same procedure described in the main pa-

per, except for the network architecture. Instead of using a fully connected model,

we employ a network with 3 ConvBlocks, starting from an input tensor with shape

4×4×512 whose values are drawn from a standard gaussian distribution. The output

of each parametrization is a tensor with shape 32 × 32 × 3, which we can treat as

a point cloud with 1024 and use Chamfer distance in the same way as described in

165

Section 5. We also use the position of the points in the output tensor to define the

local neighborhood utilized in the stretch regularization. Results are presented in

Figure C.1. As we can see, convolutional parametrizations also induce a useful prior

for manifold reconstructions and, similarly to the other parametrizations, it is signifi-

cantly better than the baselines. Quantitatively, using convolutional parametrizations

in the denoising yields slightly worse results than using fully connected networks – in

terms of Chamfer distance, 4.58×10−4 vs. 4.48×10−4.

M
L
P

C
o
n
v

4.58E-4

4.48E-4

Figure C.1: Comparison of Conv and MLP networks for denoising. Average error across
shapes to the right. Both models use 8 parametrizations and stretch regularization. Zoom
for details.

C.1.2 Single-view Reconstruction

In this subsection we present quantitative and qualitative results for single-view

image-to-shape using convolutional paramterizations. We also train a convolutional

decoder with stretch regularization on the single-view reconstruction benchmark [35].

This follows the same experimental setup as previous papers [35,49,55,68]. However,

unlike AtlasNet [68], our network is trained in one stage, without the need to train

the decoder in an auto-encoder setting before fine-tuning it with an image CNN in a

second step. We used Adam optimizer [93] with learning rate of 10−3. The model is

trained for 40 epochs and the learning rate is divided by 2 every 5 epochs. We use

ResNet-18 as image encoder and 32 convolutional parameterizations. Even though we

use more parameterizations than AtlasNet, the total number of parameters is smaller

(see Table C.3. The evaluation results per category are presented in Table C.1. Com-

pared to MRTNet, our model performs better in 12 out of 13 categories. Compared

166

Figure C.2: Image-to-shape reconstruction results from the test set. The images
shown are the input (black background), our results (32K points, rendered blue), and ground
truth (rendered in light green). Qualitatively, our method is able to generate high-resolution
point clouds faithfully capturing fine geometric details such as the chair legs, arms, airplane
engines, monitor stands etc.

to AtlasNet, our method is better or ties (the firearm category) in 7 out of 13 cate-

gories. Overall our approach outperforms AtlasNet in per-category mean by 0.21, a

relative improvement of 4.4%. Also note that our model outperforms AtlasNet mainly

in categories with a large number of examples (tables, cars, airplanes, chairs). As a

result, if average over instances, our method has a per-instance mean of 4.0, vs. 4.38

by AtlasNet – a relatively improvement of 8.7%.

pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
AtlasNet [68] 2.17 3.39 3.93 3.40 4.56 5.05 12.24 8.79 2.15 4.58 4.15 3.25 3.93 4.74
MRTNet [55] 2.25 3.68 4.73 2.55 4.06 6.07 11.15 8.84 2.25 4.98 4.45 3.72 3.64 4.80
Ours (32 dec.) 2.06 3.40 4.46 2.60 3.76 5.94 10.66 8.38 2.15 4.64 3.96 3.45 3.40 4.53

Table C.1: Quantitative results for single-view image-to-shape reconstruction.
The table reports Chamfer distance metric (scaled by 103) computed per category, and the
mean of all categories. For each method 4K points were used to compute the distance.

167

Architecture mean/cat. mean/inst.
MRTNet 4.80 4.26
1 dec./vgg16/4k 4.85 4.30
1 dec./res18/16k 4.75 4.22
32 dec./res18/32k 4.53 4.00

Table C.2: Architecture variations and evaluation results. The table reports per-
category mean and per-instance mean for MRTNet, and three variations of our methods:
single decoder with 4K output points, 16K output points, and 32 decoders with 32 output
points. For all cases, the Chamfer distance is calculated using 4K sample points, and results
are scaled by 103.

Ablation studies. Table C.2 shows a quantitative comparison between a few archi-

tectural variations. We start by analyzing a variation of our network that generates

the same number of points (using a single decoder) as MRTNet (4K points) and the

same image encoder (vgg-16). The performance of this variation is 0.05 worse than

MRTNet, but it has an order of magnitude less parameters than MRTNet. Another

variation is to still use a single decoder but generate a higher-resolution point cloud

(16K points). This variation results in improved Chamfer distance, by 0.1, than the

first variation, indicating that the increased resolution does improve reconstruction

accuracy. Again, even when the number of generated points is higher than 4K, our

evaluation is done by randomly selecting 4K points, for fair comparison. The last row

in the table is our default setting (32 decoders outputting a total of 32K points). The

number of network parameters are reported in Table C.3. Even though the number

of points our network generates is 8 times that of MRTNet, its size is only about 1/6

of MRTNet, since our network does not need to represent multiple resolutions at each

layer. Compared to AtlasNet, our network is about 1/3 of its size, due to the efficiency

of using a fully convolutional architecture. Despite using a much smaller number of

parameters, our network outperforms MRTNet (in terms of Chamfer distance metric)

by 0.27, and AtlasNet by 0.21.

168

Method #parameters
AtlasNet 42.6M
MRTNet 81.6M
Ours (1 dec.) 2.49M
Ours (1 residual dec.) 5.79M
Ours (32 dec.) 14.5M

Table C.3: Comparing the # of network parameters.

Qualitative Results. Figure C.2 shows image-to-shape reconstruction results for

images from the test dataset. Overall our method is able to accurately capture fine

geometric details such as the chair legs, arms, airplane engines, monitor stands etc.

The number of points (32K) is considerably higher than previous work (e.g. 1K

by [49] and 4K by [55]). Some specific shapes, such as lamps and jet fighters, present

significant challenges for the network as the input images do not contain all the visual

details. Nonetheless our method is able to produce a reasonable approximation.

Test on real images. The test set images are synthetically rendered and as such

they look similar to the training images. To evaluate our method on real images we

use photos downloaded from the Internet, as shown in [55]. They are processed by

removing the background so only the foreground object remains. Figure C.3 shows

the results. The top row in the figure shows furniture objects, which demonstrate

that even though the network is trained using synthetic images rendered with ar-

tificial lighting and materials, the model is able to generalize well to real shading,

lighting, and materials. The second row shows additional objects where the shading

is considerably different from training images. In particular, the last image (desk-

top computer) is in a category that the training has never seen. Nonetheless the

reconstructed shape is reasonable.

Shape correspondence. Once trained, our network learns to generate shapes with

corresponding structures. We demonstrate this with the following experiment. First,

169

Figure C.3: Image-to-shape reconstruction results on Internet photos. We test
our method on real photos downloaded from the Internet and the results are rendered in
blue. The test images here are considerably different from the training set. Our method
achieves reasonable results with accurate geometric details. The last image (computer)
represents a category that has not been seen during training.

Reference Reference

Figure C.4: Visualizing Shape Correspondences. Our network learns approximate
shape correspondences even though the training is not supervised with such information.
The shapes shown here are generated by 32 decoders.

we randomly select a point cloud generated by our network and call it a reference

shape. Then, we assign every point in the reference shape a color, where the hue

is computed based on the point’s distance to the center of gravity of the object.

Then this color assignment is propagated to the other point clouds, such that a point

at index (i, j) in the output tensor is assigned the same color as the point on the

reference shape at the same index. The resulting colorized point clouds are shown in

Figure C.4. Similar color indicates similar index range in the output tensor. Note

that even though the network is not trained explicitly with point correspondences as

170

supervisory signal, it learns to generate corresponding parts in the same regions of

the output tensor, as can be seen around the tips of the chairs’ arms, legs and seats.

C.2 Limiting distribution for the curvature

We start by parameterizing the derivative of a space curve ẋ = cos(f(t)) and

ẏ = sin(f(t)) where f is a neural network. From the standard analysis we know

that f(t) converges to a Gaussian with mean µ and kernel k(·, ·). Without loss of

generality we can assume that the mean µ is such that cos(µ) 6= 0 and sin(µ) 6= 0.

This can be achieved by adding a fixed bias term µ to the output of the last layer. To

compute the limiting distribution of ẍ and ẏ we apply the first order delta method to

obtain:

ẋ→ N (cos(µ), σ2 sin2(µ)), (C.1)

ẏ → N (sin(µ), σ2 cos2(µ)). (C.2)

Note we can only apply the first order delta method when the derivatives are

not zero. Hence we assumed that µ is set to be a quantity which has this property.

Otherwise we need the second-order delta method and the resulting distribution would

be χ2 for one of the derivatives.

Since the derivative is a linear operator it follows that ẍ and ÿ are also GPs. The

curvature formula for a arc-length parameterized space curve is κ2 = ẍ2 + ÿ2. From

this it follows that κ2 is a χ2 random variable.

Graph parameterization. We also analyze the case where the curve is the graph

of a one-dimensional function, i.e., x = x,y = f(x). In this case the curvature

can be written as κ = f̈/((1 + ḟ 2)
3
2). Once again all the derivatives ḟ and f̈ are

Gaussian random variables. Assume that (ḟ , f̈) are distributed according to N(0,Σ).

171

Here Σ = [σḟ ,ḟ , σḟ f̈ ;σḟ f̈ , σf̈ f̈] denoting the joint covariance distribution. Applying the

delta method with g(a, b) = b/(1 + a2)3/2, we get that k is distributed as a Gaussian

random variable N(0,∇gTΣ∇g). Since ∇g(a, b)|0,0 = [0, 1], we have k → N(0, σf̈ f̈).

172

BIBLIOGRAPHY

[1] https://clippingmagic.com/.

[2] Achlioptas, Panos, Diamanti, Olga, Mitliagkas, Ioannis, and Guibas,
Leonidas J. Learning Representations and Generative Models For 3D Point
Clouds. In International Conference on Machine Learning (2018).

[3] Alexa, Marc, Behr, Johannes, Cohen-Or, Daniel, Fleishman, Shachar, Levin,
David, and Silva, Claudio T. Computing and rendering point set surfaces. IEEE
Transactions on visualization and computer graphics 9, 1 (2003), 3–15.

[4] Allen, Brett, Curless, Brian, and Popović, Zoran. The space of human body
shapes: reconstruction and parameterization from range scans. In ACM trans-
actions on graphics (TOG) (2003), vol. 22, ACM, pp. 587–594.

[5] Andriluka, Mykhaylo, Roth, Stefan, and Schiele, Bernt. Monocular 3D pose
estimation and tracking by detection. In Computer Vision and Pattern Recog-
nition (CVPR) (2010), IEEE.

[6] Arthur, David, and Vassilvitskii, Sergei. k-means++: The advantages of careful
seeding. Tech. rep., 2007.

[7] Attene, Marco, Falcidieno, Bianca, and Spagnuolo, Michela. Hierarchical mesh
segmentation based on fitting primitives. The Visual Computer 22, 3 (2006),
181–193.

[8] Au, Oscar Kin-Chung, Zheng, Youyi, Chen, Menglin, Xu, Pengfei, and Tai,
Chiew-Lan. Mesh Segmentation with Concavity-Aware Fields. IEEE Trans.
Visual. Comput. Graphics 18, 7 (Jul 2011), 1125–1134.

[9] Barron, Jonathan T, and Malik, Jitendra. Shape, illumination, and reflectance
from shading. Transactions of Pattern Analysis and Machine Intelligence
(PAMI) (2015).

[10] Barrow, Harry, and Tenenbaum, J. Recovering intrinsic scene characteristics.
Comput. Vis. Syst., A Hanson & E. Riseman (Eds.) (1978), 3–26.

[11] Bernard, Chazelle. Convex partitions of polyhedra: a lower bound and worst-
case optimal algorithm. SIAM J. Comput. (Jul 1984).

[12] Besl, Paul J, and McKay, Neil D. Method for registration of 3-d shapes. In
Robotics-DL tentative (1992), International Society for Optics and Photonics,
pp. 586–606.

173

https://clippingmagic.com/

[13] Blanz, Volker, and Vetter, Thomas. A morphable model for the synthesis of
3d faces. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques (1999), ACM Press/Addison-Wesley Publishing Co.,
pp. 187–194.

[14] Boscaini, Davide, Masci, Jonathan, Rodolà, Emanuele, and Bronstein,
Michael M. Learning shape correspondence with anisotropic convolutional neu-
ral networks. In NIPS (2016).

[15] Bowers, John, Wang, Rui, Wei, Li-Yi, and Maletz, David. Parallel poisson disk
sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29, 6 (2010),
166:1–166:10.

[16] Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Borja, Eckstein, Jonathan,
et al. Distributed optimization and statistical learning via the alternating di-
rection method of multipliers. Foundations and Trends in Machine learning 3,
1 (2011), 1–122.

[17] Brock, André, Lim, Theodore, Ritchie, James M., and Weston, Nick. Generative
and discriminative voxel modeling with convolutional neural networks.

[18] Bronstein, Alexander M, Bronstein, Michael M, Kimmel, Ron, Mahmoudi,
Mona, and Sapiro, Guillermo. A gromov-hausdorff framework with diffusion ge-
ometry for topologically-robust non-rigid shape matching. International Journal
of Computer Vision 89, 2 (2010), 266–286.

[19] Bruna, Joan, Zaremba, Wojciech, Szlam, Arthur, and LeCun, Yann. Spectral
networks and locally connected networks on graphs.

[20] Buades, Antoni, Coll, Bartomeu, and Morel, J-M. A non-local algorithm for
image denoising. In Computer Vision and Pattern Recognition (CVPR) (2005).

[21] Caron, Mathilde, Bojanowski, Piotr, Joulin, Armand, and Douze, Matthijs.
Deep clustering for unsupervised learning of visual features. In Proceedings of
the European Conference on Computer Vision (ECCV) (2018), pp. 132–149.

[22] Caron, Mathilde, Bojanowski, Piotr, Mairal, Julien, and Joulin, Armand. Un-
supervised pre-training of image features on non-curated data. In Proceedings of
the IEEE International Conference on Computer Vision (2019), pp. 2959–2968.

[23] Cashman, Thomas J, and Fitzgibbon, Andrew W. What shape are dolphins?
building 3d morphable models from 2d images. IEEE transactions on pattern
analysis and machine intelligence 35, 1 (2013), 232–244.

[24] Chang, Angel X, Funkhouser, Thomas, Guibas, Leonidas, Hanrahan, Pat,
Huang, Qixing, Li, Zimo, Savarese, Silvio, Savva, Manolis, Song, Shuran, Su,
Hao, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012 (2015).

174

[25] Chang, JH Rick, Li, Chun-Liang, Poczos, Barnabas, Kumar, BVK Vijaya, and
Sankaranarayanan, Aswin C. One network to solve them all—solving linear
inverse problems using deep projection models. arXiv preprint (2017).

[26] Chazelle, Bernard, and Dobkin, David Paul. Optimal Convex Decompositions.
No. C in Machine Intelligence and Pattern Recognition. 1985, pp. 63–133.

[27] Chen, Ding-Yun, Tian, Xiao-Pei, Shen, Yu-Te, and Ouhyoung, Ming. On Visual
Similarity Based 3D Model Retrieval. Computer Graphics Forum (2003).

[28] Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin,
and Yuille, Alan L. Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected crfs. arXiv preprint
arXiv:1606.00915 (2016).

[29] Chen, Yang, and Medioni, Gérard. Object modelling by registration of multiple
range images. Image and vision computing 10, 3 (1992), 145–155.

[30] Chen, Zhiqin, Yin, Kangxue, Fisher, Matthew, Chaudhuri, Siddhartha, and
Zhang, Hao. Bae-net: branched autoencoder for shape co-segmentation. In
Proceedings of the IEEE International Conference on Computer Vision (2019),
pp. 8490–8499.

[31] Chen, Zhiqin, and Zhang, Hao. Learning implicit fields for generative shape
modeling. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (2019).

[32] Cheng, Zezhou, Gadelha, Matheus, Maji, Subhransu, and Sheldon, Daniel. A
Bayesian Perspective on the Deep Image Prior. In Computer Vision and Pattern
Recognition (CVPR) (2019).

[33] Cho, Youngmin, and Saul, Lawrence K. Kernel methods for deep learning. In
Advances in neural information processing systems (2009), pp. 342–350.

[34] Chopra, Sumit, Hadsell, Raia, and LeCun, Yann. Learning a similarity metric
discriminatively, with application to face verification. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
(2005), vol. 1, IEEE, pp. 539–546.

[35] Choy, Christopher B, Xu, Danfei, Gwak, JunYoung, Chen, Kevin, and Savarese,
Silvio. 3D-R2N2: A unified approach for single and multi-view 3D object re-
construction. In European Conference on Computer Vision (2016).

[36] Cocosco, Chris A, Kollokian, Vasken, Kwan, Remi K-S, Pike, G Bruce, and
Evans, Alan C. Brainweb: Online interface to a 3D MRI simulated brain
database. In NeuroImage (1997).

175

[37] Cohen-Steiner, David, Alliez, Pierre, and Desbrun, Mathieu. Variational shape
approximation. In ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004),
SIGGRAPH ’04, ACM.

[38] Cover, Thomas M, and Thomas, Joy A. Elements of information theory. John
Wiley & Sons, 2012.

[39] Dabov, Kostadin, Foi, Alessandro, Katkovnik, Vladimir, and Egiazarian,
Karen. Image denoising by sparse 3-D transform-domain collaborative filtering.
IEEE Transactions on image processing 16, 8 (2007), 2080–2095.

[40] Dasgupta, Sanjoy, and Freund, Yoav. Random projection trees and low di-
mensional manifolds. In Proceedings of the fortieth annual ACM symposium on
Theory of computing (2008), ACM, pp. 537–546.

[41] Dinh, Laurent, Krueger, David, and Bengio, Yoshua. NICE: Non-linear inde-
pendent components estimation. arXiv preprint arXiv:1410.8516 (2014).

[42] Doersch, Carl, Gupta, Abhinav, and Efros, Alexei A. Unsupervised visual
representation learning by context prediction. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (2015), pp. 1422–1430.

[43] Donahue, Jeff, and Simonyan, Karen. Large scale adversarial representa-
tion learning. In Advances in Neural Information Processing Systems (2019),
pp. 10541–10551.

[44] Dong, Chao, Loy, Chen Change, He, Kaiming, and Tang, Xiaoou. Learning a
deep convolutional network for image super-resolution. In European Conference
on Computer Vision (ECCV) (2014).

[45] Dosovitskiy, Alexey, Tobias Springenberg, Jost, and Brox, Thomas. Learning to
generate chairs with convolutional neural networks. In Conference on Computer
Vision and Pattern Recognition (CVPR) (2015).

[46] Dutilleux, Pierre. An implementation of the “algorithme à trous” to compute
the wavelet transform. In Wavelets. Springer, 1990, pp. 298–304.

[47] Eigen, David, and Fergus, Rob. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In International
Conference on Computer Vision (ICCV) (2015).

[48] Eigen, David, Puhrsch, Christian, and Fergus, Rob. Depth map prediction
from a single image using a multi-scale deep network. In Advances in neural
information processing systems (NIPS) (2014).

[49] Fan, Haoqiang, Su, Hao, and Guibas, Leonidas J. A Point Set Generation
Network for 3D Object Reconstruction from a Single Image. In Computer
Vision and Pattern Recognition (CVPR) (2017).

176

[50] Gadelha, Matheus, Gori, Giorgio, Ceylan, Duygu, Mech, Radomir, Carr,
Nathan, Boubekeur, Tamy, Wang, Rui, and Maji, Subhransu. Learning gener-
ative models of shape handles. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2020).

[51] Gadelha, Matheus, Maji, Subhransu, and Wang, Rui. 3d shape generation using
spatially ordered point clouds. In British Machine Vision Conference (BMVC)
(2017).

[52] Gadelha, Matheus, Maji, Subhransu, and Wang, Rui. Unsupervised 3D Shape
Induction from 2D Views of Multiple Objects. In International Conference on
3D Vision (3DV) (2017).

[53] Gadelha, Matheus, Rai, Aartika, Maji, Subhransu, and Wang, Rui. Inferring
3d shapes from image collections using adversarial networks. To appear at
International Journal of Computer Vision (IJCV) (2020).

[54] Gadelha, Matheus, RoyChowdhury, Aruni, Sharma, Gopal, Kalogerakis, Evan-
gelos, Cao, Liangliang, Learned-Miller, Erik, Wang, Rui, and Maji, Subhransu.
Label-efficient learning on point clouds using approximate convex decomposi-
tions. In European Conference on Computer Vision (ECCV) (2020).

[55] Gadelha, Matheus, Wang, Rui, and Maji, Subhransu. Multiresolution Tree
Networks for 3D Point Cloud Processing. In ECCV (2018).

[56] Gadelha, Matheus, Wang, Rui, and Maji, Subhransu. Shape reconstruction
using differentiable projections and deep priors. In International Conference on
Computer Vision (ICCV) (2019).

[57] Gal, Ran, Sorkine, Olga, Mitra, Niloy J., and Cohen-Or, Daniel. iwires:
An analyze-and-edit approach to shape manipulation. ACM Transactions on
Graphics (Siggraph) 28, 3 (2009), #33, 1–10.

[58] Genova, Kyle, Cole, Forrester, Vlasic, Daniel, Sarna, Aaron, Freeman,
William T, and Funkhouser, Thomas. Learning shape templates with structured
implicit functions. In International Conference on Computer Vision (2019).

[59] Ghosh, Mukulika, Amato, Nancy M., Lu, Yanyan, and Lien, Jyh-Ming. Fast
approximate convex decomposition using relative concavity. Compututer Aided
Deisgn. 45 (Feb 2013), 494–504.

[60] Gidaris, Spyros, Singh, Praveer, and Komodakis, Nikos. Unsupervised repre-
sentation learning by predicting image rotations. In ICLR (2018).

[61] Gionis, Aristides, Indyk, Piotr, Motwani, Rajeev, et al. Similarity search in
high dimensions via hashing. In VLDB (1999), vol. 99, pp. 518–529.

[62] Girdhar, R., Fouhey, D.F., Rodriguez, M., and Gupta, A. Learning a predictable
and generative vector representation for objects. In ECCV (2016).

177

[63] Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley,
David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems (NIPS)
(2014).

[64] Gori, Giorgio, Sheffer, Alla, Vining, Nicholas, Rosales, Enrique, Carr, Nathan,
and Ju, Tao. Flowrep: Descriptive curve networks for free-form design shapes.
ACM Transaction on Graphics 36, 4 (2017).

[65] Goyal, Priya, Mahajan, Dhruv, Gupta, Abhinav, and Misra, Ishan. Scaling
and benchmarking self-supervised visual representation learning. arXiv preprint
arXiv:1905.01235 (2019).

[66] Graham, Benjamin, and van der Maaten, Laurens. Submanifold sparse convo-
lutional networks. arXiv preprint arXiv:1706.01307 (2017).

[67] Gretton, Arthur, Borgwardt, Karsten M, Rasch, Malte, Schölkopf, Bernhard,
and Smola, Alex J. A kernel method for the two-sample-problem. In Advances
in Neural Information Processing Systems (NIPS) (2006).

[68] Groueix, Thibault, Fisher, Matthew, Kim, Vladimir G., Russell, Bryan, and
Aubry, Mathieu. AtlasNet: A Papier-Mâché Approach to Learning 3D Sur-
face Generation. In Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (2018).

[69] Hadsell, Raia, Chopra, Sumit, and LeCun, Yann. Dimensionality reduction by
learning an invariant mapping. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06) (2006), vol. 2, IEEE,
pp. 1735–1742.

[70] Häne, Christian, Tulsiani, Shubham, and Malik, Jitendra. Hierarchical surface
prediction for 3d object reconstruction. In International Conference on 3D
Vision (3DV) (2017).

[71] Hartley, Richard, and Zisserman, Andrew. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[72] Hassani, Kaveh, and Haley, Mike. Unsupervised multi-task feature learning on
point clouds. In Proceedings of the IEEE International Conference on Computer
Vision (2019), pp. 8160–8171.

[73] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Spatial pyramid
pooling in deep convolutional networks for visual recognition. In European
Conference on Computer Vision (2014), Springer, pp. 346–361.

[74] Henderson, Paul, and Ferrari, Vittorio. Learning to Generate and Reconstruct
3D Meshes with only 2D Supervision. In British Machine Vision Conference
(BMVC) (2018).

178

[75] Hoffman, Donald D, and Richards, Whitman. Parts of recognition.

[76] Hoiem, Derek, Efros, Alexei A, and Hebert, Martial. Geometric context from a
single image. In International Conference on Computer Vision (ICCV) (2005).

[77] Huang, Haibin, Kalogerakis, Evangelos, Chaudhuri, Siddhartha, Ceylan,
Duygu, Kim, Vladimir G., and Yumer, Ersin. Learning local shape descrip-
tors from part correspondences with multiview convolutional networks. ACM
Transactions on Graphics 37, 1 (2018).

[78] Huang, Jian, Yagel, Roni, Filippov, Vassily, and Kurzion, Yair. An accurate
method for voxelizing polygon meshes. IEEE Symposium on Volume Visualiza-
tion (Oct 1998).

[79] Huang, Jing, and You, Suya. Point cloud labeling using 3d convolutional neural
network. In ICPR (2016), pp. 2670–2675.

[80] Huang, Qi-Xing, and Guibas, Leonidas. Consistent shape maps via semidefinite
programming. In Computer Graphics Forum (2013), vol. 32, Wiley Online
Library, pp. 177–186.

[81] Ioffe, Sergey, and Szegedy, Christian. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning -
Volume 37 (2015), ICML’15.

[82] Jaderberg, Max, Simonyan, Karen, Zisserman, Andrew, and kavukcuoglu, ko-
ray. Spatial Transformer Networks. In Advances in Neural Information Pro-
cessing Systems (NIPS) (2015).

[83] Ji, Zhongping, Liu, Ligang, and Wang, Yigang. B-mesh: A modeling system for
base meshes of 3d articulated shapes. Computer Graphics Forum 29, 7 (2010),
2169–2177.

[84] Jiang, Huaizu, Larsson, Gustav, Maire Greg Shakhnarovich, Michael, and
Learned-Miller, Erik. Self-supervised relative depth learning for urban scene
understanding. In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pp. 19–35.

[85] Kaick, Oliver Van, Fish, Noa, Kleiman, Yanir, Asafi, Shmuel, and Cohen-OR,
Daniel. Shape segmentation by approximate convexity analysis. ACM Trans.
Graph. 34, 1 (2014).

[86] Kalogerakis, Evangelos, Averkiou, Melinos, Maji, Subhransu, and Chaudhuri,
Siddhartha. 3D shape segmentation with projective convolutional networks. In
Proc. CVPR (2017).

179

[87] Kanazawa, Angjoo, Tulsiani, Shubham, Efros, Alexei A., and Malik, Jiten-
dra. Learning category-specific mesh reconstruction from image collections. In
ECCV (2018).

[88] Kar, Abhishek, Tulsiani, Shubham, Carreira, Jo?o, and Malik, Jitendra.
Category-specific object reconstruction from a single image. In Computer Vi-
sion and Pattern Recognition (CVPR) (2015).

[89] Kato, Hiroharu, Ushiku, Yoshitaka, and Harada, Tatsuya. Neural 3d mesh
renderer. In Computer Vision and Pattern Recognition (CVPR) (2018).

[90] Kazhdan, Michael, Funkhouser, Thomas, and Rusinkiewicz, Szymon. Rotation
invariant spherical harmonic representation of 3d shape descriptors. In Pro-
ceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing (2003), pp. 156–164.

[91] Kazhdan, Michael, and Hoppe, Hugues. Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (ToG) 32, 3 (2013), 29.

[92] Ke, Tsung-Wei, Maire, Michael, and Yu, Stella X. Multigrid neural architec-
tures. In CVPR (2017).

[93] Kingma, Diederik P, and Ba, Jimmy. ADAM: a method for stochastic opti-
mization. In International Conference on Learning Representations (2014).

[94] Kingma, Diederik P., and Welling, Max. Auto-encoding variational bayes.
CoRR abs/1312.6114 (2013).

[95] Kingma, Durk P, and Dhariwal, Prafulla. GLOW: Generative flow with invert-
ible 1x1 convolutions. In Advances in Neural Information Processing Systems
(2018), pp. 10236–10245.

[96] Klokov, Roman, and Lempitsky, Victor. Escape from cells: Deep kd-networks
for the recognition of 3d point cloud models. In ICCV (2017).

[97] Klokov, Roman, and Lempitsky, Victor. Escape from cells: Deep Kd-Networks
for the recognition of 3D point cloud models. In Proc. ICCV (2017).

[98] Kolesnikov, Alexander, Zhai, Xiaohua, and Beyer, Lucas. Revisiting self-
supervised visual representation learning. arXiv preprint arXiv:1901.09005
(2019).

[99] Kulkarni, Tejas D, Whitney, William F, Kohli, Pushmeet, and Tenenbaum,
Josh. Deep convolutional inverse graphics network. In Advances in Neural
Information Processing Systems (NIPS) (2015).

[100] Land, Edwin H, and McCann, John J. Lightness and retinex theory. JOSA 61,
1 (1971), 1–11.

180

[101] Larsson, Gustav, Maire, Michael, and Shakhnarovich, Gregory. Learning rep-
resentations for automatic colorization. In European Conference on Computer
Vision (2016), Springer, pp. 577–593.

[102] Laurentini, Aldo. The visual hull concept for silhouette-based image under-
standing. IEEE Transactions on pattern analysis and machine intelligence 16,
2 (1994), 150–162.

[103] Li, Jiaxin, Chen, Ben M, and Hee Lee, Gim. So-net: Self-organizing network
for point cloud analysis. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2018), pp. 9397–9406.

[104] Li, Jun, Xu, Kai, Chaudhuri, Siddhartha, Yumer, Ersin, Zhang, Hao, and
Guibas, Leonidas. Grass: Generative recursive autoencoders for shape struc-
tures. ACM Transactions on Graphics (Proc. of SIGGRAPH 2017) 36, 4 (2017),
to appear.

[105] Li, Tzu-Mao, Aittala, Miika, Durand, Frédo, and Lehtinen, Jaakko. Differen-
tiable monte carlo ray tracing through edge sampling. ACM Transactions on
Graph (SIGGRAPH Asia) (2018).

[106] Li, Yangyan, Pirk, Soeren, Su, Hao, Qi, Charles R., and Guibas, Leonidas J.
Fpnn: Field probing neural networks for 3d data. In NIPS (2016).

[107] Lien, Jyh-Ming, and Amato, Nancy M. Approximate convex decomposition of
polyhedra. In Proceedings of the 2007 ACM Symposium on Solid and Physical
Modeling (2007), SPM ’07.

[108] Lin, Chen-Hsuan, Kong, Chen, and Lucey, Simon. Learning efficient point cloud
generation for dense 3d object reconstruction. In AAAI Conference on Artificial
Intelligence (AAAI) (2018).

[109] Lin, Tsung-Yi, Dollár, Piotr, Girshick, Ross, He, Kaiming, Hariharan, Bharath,
and Belongie, Serge. Feature pyramid networks for object detection. In CVPR
(2017).

[110] Liu, Hsueh-Ti Derek, Tao, Michael, and Jacobson, Alec. Paparazzi: Surface
editing by way of multi-view image processing. ACM Transactions on Graphcs.
(2018).

[111] Lun, Zhaoliang, Gadelha, Matheus, Kalogerakis, Evangelos, Maji, Subhransu,
and Wang, Rui. 3D Shape Reconstruction from Sketches via Multi-view Con-
volutional Networks. International Conference on 3D Vision (3DV) (2017),
67–77.

[112] Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y. Rectifier nonlinear-
ities improve neural network acoustic models. In International Conference on
Machine Learning (ICML) (2013).

181

[113] Maggioni, Matteo, Katkovnik, Vladimir, Egiazarian, Karen, and Foi, Alessan-
dro. Nonlocal transform-domain filter for volumetric data denoising and recon-
struction. IEEE transactions on image processing 22, 1 (2013), 119–133.

[114] Mamou, Khaled. Volumetric approximate convex decomposition. In Game
Engine Gems 3, Eric Lengyel, Ed. A K Peters / CRC Press, 2016, ch. 12,
pp. 141–158.

[115] Masci, Jonathan, Boscaini, Davide, Bronstein, Michael M., and Vandergheynst,
Pierre. Geodesic convolutional neural networks on riemannian manifolds.

[116] Maturana, Daniel, and Scherer, Sebastian. Voxnet: A 3d convolutional neural
network for real-time object recognition. In IROS (2015), pp. 922–928.

[117] Meagher, Donald. Geometric modeling using octree encoding. Computer graph-
ics and image processing 19, 2 (1982), 129–147.

[118] Mehra, Ravish, Zhou, Qingnan, Long, Jeremy, Sheffer, Alla, Gooch, Amy, and
Mitra, Niloy J. Abstraction of man-made shapes. In ACM SIGGRAPH Asia
2009 Papers (2009), SIGGRAPH Asia ’09, ACM.

[119] Mescheder, Lars, Oechsle, Michael, Niemeyer, Michael, Nowozin, Sebastian, and
Geiger, Andreas. Occupancy networks: Learning 3D reconstruction in function
space. In The IEEE Conference on Computer Vision and Pattern Recognition
(2019).

[120] Miller, A. T., Knoop, S., Christensen, H. I., and Allen, P. K. Automatic grasp
planning using shape primitives. In 2003 IEEE International Conference on
Robotics and Automation (Cat. No.03CH37422) (2003), vol. 2, pp. 1824–1829
vol.2.

[121] Mo, Kaichun, Guerrero, Paul, Yi, Li, Su, Hao, Wonka, Peter, Mitra, Niloy,
and Guibas, Leonidas. Structurenet: Hierarchical graph networks for 3d shape
generation. ACM Transactions on Graphics (TOG), Siggraph Asia 2019 38, 6
(2019), Article 242.

[122] Mo, Kaichun, Zhu, Shilin, Chang, Angel X., Yi, Li, Tripathi, Subarna, Guibas,
Leonidas J., and Su, Hao. Partnet: A large-scale benchmark for fine-grained
and hierarchical part-level 3d object understanding. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2019).

[123] Müllner, Daniel, et al. fastcluster: Fast hierarchical, agglomerative clustering
routines for r and python. Journal of Statistical Software 53, 9 (2013), 1–18.

[124] Muralikrishnan, Sanjeev, Kim, Vladimir G., and Chaudhuri, Siddhartha.
Tags2Parts: Discovering semantic regions from shape tags. In Proc. CVPR
(2018), IEEE.

182

[125] Nalbach, Oliver, Arabadzhiyska, Elena, Mehta, Dushyant, Seidel, Hans-Peter,
and Ritschel, Tobias. Deep shading: Convolutional neural networks for screen-
space shading. arXiv preprint arXiv:1603.06078 (2016).

[126] Neal, Radford M. Bayesian learning for neural networks. PhD thesis, University
of Toronto, 1995.

[127] Nehari, Zeev. Conformal mapping. Courier Corporation, 2012.

[128] Nguyen-Phuoc, Thu, Li, Chuan, Balaban, Stephen, and Yang, Yong-Liang.
Rendernet: A deep convolutional network for differentiable rendering from 3d
shapes. In Advances in Neural Information Processing Systems 31 (2018).

[129] Nguyen-Phuoc, Thu, Li, Chuan, Theis, Lucas, Richardt, Christian, and Yang,
Yong-Liang. HoloGAN: Unsupervised learning of 3D representations from nat-
ural images. In International Conference on Computer Vision (ICCV) (2019).

[130] Niu, Chengjie, Li, Jun, and Xu, Kai. Im2struct: Recovering 3d shape structure
from a single rgb image. In Computer Vision and Pattern Regognition (CVPR)
(2018).

[131] Noroozi, Mehdi, and Favaro, Paolo. Unsupervised learning of visual represen-
tations by solving jigsaw puzzles. In European Conference on Computer Vision
(2016), Springer, pp. 69–84.

[132] Noroozi, Mehdi, Vinjimoor, Ananth, Favaro, Paolo, and Pirsiavash, Hamed.
Boosting self-supervised learning via knowledge transfer. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2018),
pp. 9359–9367.

[133] Odena, Augustus, Dumoulin, Vincent, and Olah, Chris. Deconvolution and
checkerboard artifacts. Distill (2016).

[134] Öztireli, A Cengiz, Guennebaud, Gael, and Gross, Markus. Feature preserving
point set surfaces based on non-linear kernel regression. In Computer Graphics
Forum (2009), vol. 28, Wiley Online Library, pp. 493–501.

[135] Park, Jeong Joon, Florence, Peter, Straub, Julian, Newcombe, Richard, and
Lovegrove, Steven. DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation. In The IEEE Conference on Computer Vision and
Pattern Recognition (2019).

[136] Paschalidou, Despoina, Ulusoy, Ali Osman, and Geiger, Andreas. Superquadrics
revisited: Learning 3d shape parsing beyond cuboids. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2019).

[137] Pathak, Deepak, Girshick, Ross, Dollár, Piotr, Darrell, Trevor, and Hariha-
ran, Bharath. Learning features by watching objects move. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2017),
pp. 2701–2710.

183

[138] Pathak, Deepak, Krahenbuhl, Philipp, Donahue, Jeff, Darrell, Trevor, and
Efros, Alexei A. Context encoders: Feature learning by inpainting. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(2016), pp. 2536–2544.

[139] Prasad, Mukta, Fitzgibbon, Andrew, Zisserman, Andrew, and Van Gool, Luc.
Finding nemo: Deformable object class modelling using curve matching. In
Computer Vision and Pattern Recognition (CVPR) (2010).

[140] Qi, Charles R, Su, Hao, Mo, Kaichun, and Guibas, Leonidas J. PointNet: Deep
learning on point sets for 3D classification and segmentation. In Proc. CVPR
(2017).

[141] Qi, Charles R., Yi, Li, Su, Hao, and Guibas, Leonidas. PointNet++: Deep
hierarchical feature learning on point sets in a metric space. In Proc. NIPS
(2017).

[142] Qi, Charles Ruizhongtai, Su, Hao, Nießner, Matthias, Dai, Angela, Yan,
Mengyuan, and Guibas, Leonidas. Volumetric and multi-view cnns for object
classification on 3d data. In Computer Vision and Pattern Recognition (CVPR)
(2016).

[143] Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[144] Radon, J. On the determination of functions from their integral values along
certain manifolds. IEEE Transactions on Medical Imaging 5, 4 (Dec 1986),
170–176.

[145] Rezende, Danilo Jimenez, Eslami, SM, Mohamed, Shakir, Battaglia, Peter,
Jaderberg, Max, and Heess, Nicolas. Unsupervised learning of 3D structure
from images. In Advances in Neural Information Processing Systems (NIPS)
(2016).

[146] Richter, Stephan R., and Roth, Stefan. Matryoshka Networks: Predicting 3D
Geometry via Nested Shape Layers. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (2018).

[147] Riegler, Gernot, Ulusoys, Ali Osman, and Geiger, Andreas. Octnet: Learning
deep 3D representations at high resolutions. In Proc. CVPR (2017).

[148] Ronneberger, O., P.Fischer, and Brox, T. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI) (2015), LNCS, pp. 234–241.

[149] Roweis, Sam T, and Saul, Lawrence K. Nonlinear dimensionality reduction by
locally linear embedding. science 290, 5500 (2000), 2323–2326.

184

[150] Rudin, Leonid I, Osher, Stanley, and Fatemi, Emad. Nonlinear total varia-
tion based noise removal algorithms. Physica D: nonlinear phenomena 60, 1-4
(1992), 259–268.

[151] Salimans, Tim, Goodfellow, Ian J., Zaremba, Wojciech, Cheung, Vicki, Rad-
ford, Alec, and Chen, Xi. Improved techniques for training gans. CoRR
abs/1606.03498 (2016).

[152] Sánchez, Jorge, Perronnin, Florent, Mensink, Thomas, and Verbeek, Jakob.
Image classification with the fisher vector: Theory and practice. International
journal of computer vision 105, 3 (2013), 222–245.

[153] Savarese, Silvio, and Fei-Fei, Li. 3d generic object categorization, localization
and pose estimation. In International Conference on Computer Vision (ICCV)
(2007).

[154] Saxe, Andrew M, Koh, Pang Wei, Chen, Zhenghao, Bhand, Maneesh, Suresh,
Bipin, and Ng, Andrew Y. On random weights and unsupervised feature learn-
ing. In ICML (2011), vol. 2, p. 6.

[155] Saxena, Ashutosh, Chung, Sung H, and Ng, A. Learning depth from single
monocular images. In Advances in Neural Information Processing Systems
(NIPS) (2005).

[156] Schwing, Alexander G, and Urtasun, Raquel. Efficient exact inference for
3d indoor scene understanding. In European Conference on Computer Vision
(ECCV) (2012).

[157] Sharma, Abhishek, Grau, Oliver, and Fritz, Mario. Vconv-dae: Deep volumetric
shape learning without object labels. In European Conference on Computer
Vision (2016), Springer, pp. 236–250.

[158] Sharma, Gopal, Kalogerakis, Evangelos, and Maji, Subhransu. Learning
point embeddings from shape repositories for few-shot segmentation. CoRR
abs/1910.01269 (2019).

[159] Shepard, Donald. A two-dimensional interpolation function for irregularly-
spaced data. In Proceedings of the 1968 23rd ACM national conference (1968),
ACM, pp. 517–524.

[160] Shepp, Lawrence A, and Logan, Benjamin F. The Fourier reconstruction of a
head section. IEEE Transactions on nuclear science 21, 3 (1974), 21–43.

[161] Shi, Jianbo, and Malik, Jitendra. Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelligence 22, 8 (2000),
888–905.

[162] Simonovsky, Martin, and Komodakis, Nikos. Dynamic edge-conditioned filters
in convolutional neural networks on graphs. In CVPR (2017).

185

[163] Simonyan, Karen, and Zisserman, Andrew. Very deep convolutional networks
for large-scale image recognition.

[164] Sitzmann, Vincent, Thies, Justus, Heide, Felix, Nießner, Matthias, Wetzstein,
Gordon, and Zollhöfer, Michael. DeepVoxels: Learning Persistent 3D Feature
Embeddings. In Computer Vision and Pattern Recognition (CVPR) (2019).

[165] Solak, Ercan, Murray-Smith, Roderick, Leithead, William E, Leith, Douglas J,
and Rasmussen, Carl E. Derivative observations in gaussian process models of
dynamic systems. In Advances in neural information processing systems (2003).

[166] Soltani, Amir Arsalan, Huang, Haibin, Wu, Jiajun, Kulkarni, Tejas, and Tenen-
baum, Joshua. Synthesizing 3d shapes via modeling multi-view depth maps and
silhouettes with deep generative networks. In CVPR (2017).

[167] Su, Hang, Jampani, Varun, Su, Deqing, Maji, Subhransu, Kalogerakis, Evan-
gelos, Yang, Ming-Hsuan, and Kautz, Jan. SPLATNet: Sparse lattice networks
for point cloud processing. arXiv preprint arXiv:1802.08275 (2018).

[168] Su, Hang, Maji, Subhransu, Kalogerakis, Evangelos, and Learned-Miller,
Erik G. Multi-view convolutional neural networks for 3d shape recognition.
In ICCV (2015).

[169] Su, Hao, Qi, Charles, Mo, Kaichun, and Guibas, Leonidas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In CVPR (2017).

[170] Su, Hao, Qi, Charles R, Li, Yangyan, and Guibas, Leonidas J. Render for
CNN: Viewpoint estimation in images using cnns trained with rendered 3d
model views. In International Conference on Computer Vision (ICCV) (2015).

[171] Su, Jong-Chyi, Maji, Subhransu, and Hariharan, Bharath. When does self-
supervision improve few-shot learning? arXiv preprint arXiv:1910.03560
(2019).

[172] Sussmann, Héctor J. Orbits of families of vector fields and integrability of
distributions. Transactions of the American Mathematical Society 180 (1973),
171–188.

[173] Tatarchenko, Maxim, Dosovitskiy, Alexey, and Brox, Thomas. Multi-view 3D
models from single images with a convolutional network. In European Confer-
ence on Computer Vision (ECCV) (2016).

[174] Tatarchenko, Maxim, Dosovitskiy, Alexey, and Brox, Thomas. Octree gen-
erating networks: Efficient convolutional architectures for high-resolution 3d
outputs. arXiv preprint arXiv:1703.09438 (2017).

[175] Tatarchenko, Maxim, Park, Jaesik, Koltun, Vladlen, and Zhou., Qian-Yi. Tan-
gent convolutions for dense prediction in 3D. CVPR (2018).

186

[176] Tenenbaum, Joshua B, De Silva, Vin, and Langford, John C. A global geometric
framework for nonlinear dimensionality reduction. science 290, 5500 (2000),
2319–2323.

[177] Thabet, Ali, Alwassel, Humam, and Ghanem, Bernard. MortonNet: Self-
Supervised Learning of Local Features in 3D Point Clouds. arXiv (Mar 2019).

[178] Thiery, Jean-Marc, Guy, Emilie, and Boubekeur, Tamy. Sphere-meshes: Shape
approximation using spherical quadric error metrics. ACM Transaction on
Graphics (Proc. SIGGRAPH Asia 2013) 32, 6 (2013), Art. No. 178.

[179] Thiery, Jean-Marc, Guy, Émilie, Boubekeur, Tamy, and Eisemann, Elmar. An-
imated mesh approximation with sphere-meshes. ACM Trans. Graph. (2016),
30:1–30:13.

[180] Tipping, Michael E, and Bishop, Christopher M. Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 61, 3 (1999), 611–622.

[181] Tkach, Anastasia, Pauly, Mark, and Tagliasacchi, Andrea. Sphere-meshes for
real-time hand modeling and tracking. ACM Trans. Graph. 35, 6 (2016).

[182] Tomasi, Carlo, and Manduchi, Roberto. Bilateral filtering for gray and color
images. In International Conference on Computer Vision (ICCV) (1998).

[183] Trinh, Trieu H, Luong, Minh-Thang, and Le, Quoc V. Selfie: Self-supervised
pretraining for image embedding. arXiv preprint arXiv:1906.02940 (2019).

[184] Tulsiani, Shubham, Carreira, Joao, and Malik, Jitendra. Pose induction for
novel object categories. In International Conference on Computer Vision
(ICCV) (2015).

[185] Tulsiani, Shubham, Efros, Alexei A., and Malik, Jitendra. Multi-view consis-
tency as supervisory signal for learning shape and pose prediction. In Computer
Vision and Pattern Regognition (CVPR) (2018).

[186] Tulsiani, Shubham, Su, Hao, Guibas, Leonidas J., Efros, Alexei A., and Malik,
Jitendra. Learning shape abstractions by assembling volumetric primitives. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(July 2017).

[187] Tulsiani, Shubham, Zhou, Tinghui, Efros, Alexei A., and Malik, Jitendra. Multi-
view supervision for single-view reconstruction via differentiable ray consistency.
In Computer Vision and Pattern Regognition (CVPR) (2017).

[188] Ulyanov, Dmitry, Vedaldi, Andrea, and Lempitsky, Victor. Deep image prior.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2018).

187

[189] Van Kaick, Oliver, Zhang, Hao, Hamarneh, Ghassan, and Cohen-Or, Daniel. A
survey on shape correspondence. In Computer Graphics Forum (2011), vol. 30,
Wiley Online Library, pp. 1681–1707.

[190] Vincent, Pascal, Larochelle, Hugo, Lajoie, Isabelle, Bengio, Yoshua, and Man-
zagol, Pierre-Antoine. Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion. Journal of
Machine Learning Research 11, Dec (2010), 3371–3408.

[191] Vinh, Nguyen Xuan, Epps, Julien, and Bailey, James. Information theoretic
measures for clusterings comparison: Variants, properties, normalization and
correction for chance. Journal of Machine Learning Research 11, Oct (2010),
2837–2854.

[192] Von Luxburg, Ulrike. A tutorial on spectral clustering. Statistics and computing
17, 4 (2007), 395–416.

[193] Wang, Nanyang, Zhang, Yinda, Li, Zhuwen, Fu, Yanwei, Liu, Wei, and Jiang,
Yu-Gang. Pixel2mesh: Generating 3d mesh models from single rgb images. In
ECCV (2018).

[194] Wang, Peng-Shuai, Liu, Yang, Guo, Yu-Xiao, Sun, Chun-Yu, and Tong, Xin. O-
CNN: Octree-based convolutional neural networks for 3d shape analysis. ACM
Transactions on Graphics (SIGGRAPH) 36, 4 (2017).

[195] Wang, Peng-Shuai, Sun, Chun-Yu, Liu, Yang, and Tong, Xin. Adaptive o-cnn:
A patch-based deep representation of 3d shapes. ACM Trans. Graph. 37, 6
(2018).

[196] Wang, Xiaolong, and Gupta, Abhinav. Unsupervised learning of visual repre-
sentations using videos. In Proceedings of the IEEE International Conference
on Computer Vision (2015), pp. 2794–2802.

[197] Wang, Xiaolong, He, Kaiming, and Gupta, Abhinav. Transitive invariance
for self-supervised visual representation learning. In Proceedings of the IEEE
international conference on computer vision (2017), pp. 1329–1338.

[198] Wang, Yue, Sun, Yongbin, Liu, Ziwei, Sarma, Sanjay E, Bronstein, Michael M,
and Solomon, Justin M. Dynamic graph cnn for learning on point clouds. ACM
Transactions on Graphics (TOG) 38, 5 (2019), 1–12.

[199] Weller, René. A Brief Overview of Collision Detection. SpringerLink (2013),
9–46.

[200] Welling, Max, and Teh, Yee W. Bayesian learning via stochastic gradient
langevin dynamics. In International Conference on Machine Learning (ICML)
(2011).

188

[201] Williams, Christopher KI. Computing with infinite networks. In Advances in
neural information processing systems (1997), pp. 295–301.

[202] Williams, Francis, Schneider, Teseo, Silva, Claudio, Zorin, Denis, Bruna, Joan,
and Panozzo, Daniele. Deep geometric prior for surface reconstruction. In The
IEEE Conference on Computer Vision and Pattern Recognition (2019).

[203] Woodham, Robert J. Photometric method for determining surface orientation
from multiple images. Optical engineering 19, 1 (1980), 191139–191139.

[204] Wu, Jiajun, Zhang, Chengkai, Xue, Tianfan, Freeman, William T, and Tenen-
baum, Joshua B. Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling. In Advances in Neural Information Processing
Systems (2016), pp. 82–90.

[205] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. 3d
shapenets: A deep representation for volumetric shapes. In Computer Vision
and Pattern Recognition (2015).

[206] Wu, Zhirong, Song, Shuran, Khosla, Aditya, Yu, Fisher, Zhang, Linguang,
Tang, Xiaoou, and Xiao, Jianxiong. 3d shapenets: A deep representation for
volumetric shapes. In Conference on Computer Vision and Pattern Recognition
(CVPR) (2015).

[207] Xian, Chuhua, Lin, Hongwei, and Gao, Shuming. Automatic cage generation
by improved obbs for mesh deformation. The Visual Computer 28, 1 (2012),
21–33.

[208] Xie, Junyuan, Xu, Linli, and Chen, Enhong. Image denoising and inpaint-
ing with deep neural networks. In Advances in neural information processing
systems (NIPS) (2012).

[209] Xie, Qizhe, Hovy, Eduard, Luong, Minh-Thang, and Le, Quoc V. Self-
training with noisy student improves imagenet classification. arXiv preprint
arXiv:1911.04252 (2019).

[210] Xu, Li, Lu, Cewu, Xu, Yi, and Jia, Jiaya. Image smoothing via L0 gradient
minimization. ACM Transactions on Graphics (TOG) 30, 6 (2011), 174.

[211] Yan, Xinchen, Yang, Jimei, Yumer, Ersin, Guo, Yijie, and Lee, Honglak. Per-
spective transformer nets: Learning single-view 3d object reconstruction with-
out 3d supervision. In Advances in Neural Information Processing Systems
(2016).

[212] Yang, Guandao, Huang, Xun, Hao, Zekun, Liu, Ming-Yu, Belongie, Serge, and
Hariharan, Bharath. Pointflow: 3d point cloud generation with continuous
normalizing flows. In Proceedings of the IEEE International Conference on
Computer Vision (2019), pp. 4541–4550.

189

[213] Yang, Yan, Sun, Jian, Li, Huibin, and Xu, Zongben. Deep ADMM-Net for Com-
pressive Sensing MRI. In Advances in Neural Information Processing Systems
(NIPS). 2016.

[214] Yang, Yaoqing, Feng, Chen, Shen, Yiru, and Tian, Dong. Foldingnet: Point
cloud auto-encoder via deep grid deformation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2018), pp. 206–215.

[215] Yi, Li, Guibas, Leonidas, Hertzmann, Aaron, Kim, Vladimir G., Su, Hao, and
Yumer, Ersin. Learning hierarchical shape segmentation and labeling from
online repositories. ACM Trans. Graph. 36 (July 2017).

[216] Yi, Li, Kim, Vladimir G., Ceylan, Duygu, Shen, I-Chao, Yan, Mengyan, Su,
Hao, Lu, Cewu, Huang, Qixing, Sheffer, Alla, and Guibas, Leonidas. A scalable
active framework for region annotation in 3d shape collections. SIGGRAPH
Asia (2016).

[217] Yi, Li, Su, Hao, Guo, Xingwen, and Guibas, Leonidas. SyncSpecCNN: synchro-
nized spectral cnn for 3d shape segmentation. In CVPR (2017).

[218] Yu, Fisher, and Koltun, Vladlen. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122 (2015).

[219] Zhang, Richard, Isola, Phillip, and Efros, Alexei A. Colorful image colorization.
In European conference on computer vision (2016), Springer, pp. 649–666.

[220] Zhang, Richard, Isola, Phillip, and Efros, Alexei A. Split-brain autoencoders:
Unsupervised learning by cross-channel prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017), pp. 1058–
1067.

[221] Zhao, Yongheng, Birdal, Tolga, Deng, Haowen, and Tombari, Federico. 3d point
capsule networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), pp. 1009–1018.

[222] Zhou, Tinghui, Tulsiani, Shubham, Sun, Weilun, Malik, Jitendra, and Efros,
Alexei A. View synthesis by appearance flow. In European Conference on
Computer Vision (ECCV) (2016).

[223] Zhou, Yang, Yin, Kangxue, Huang, Hui, Zhang, Hao, Gong, Minglun, and
Cohen-Or, Daniel. Generalized cylinder decomposition. ACM Trans. Graph.
34, 6 (2015).

[224] Zhou, Yi, Barnes, Connelly, Jingwan, Lu, Jimei, Yang, and Hao, Li. On the con-
tinuity of rotation representations in neural networks. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2019).

190

[225] Zhou Ren, Junsong Yuan, Chunyuan Li, and Wenyu Liu. Minimum near-
convex decomposition for robust shape representation. In 2011 International
Conference on Computer Vision (Nov 2011).

[226] Zhu, Chenyang, Xu, Kai, Chaudhuri, Siddhartha, Yi, Li, Guibas, Leonidas J.,
and Zhang, Hao. Cosegnet: Deep co-segmentation of 3d shapes with group
consistency loss. CoRR abs/1903.10297 (2019).

[227] Zoran, Daniel, and Weiss, Yair. From learning models of natural image patches
to whole image restoration. In International Conference on Computer Vision
(ICCV) (2011).

191

	3D Shape Understanding and Generation
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Shape Generation using Spatially Partitioned Point Clouds
	Related Work
	Method
	Experiments
	Conclusion

	Multiresolution Tree Networks for 3D Point Cloud Processing
	Related Work
	Method
	Experimental Results and Discussions
	Shape classification
	Single-image shape inference
	Unsupervised Learning of Point Clouds
	Discussions

	Conclusion

	Learning Generative Models of Shape Handles
	Related work
	Method
	Similarity between shape handles
	Generating sets with varying cardinality

	Experiments
	Datasets
	Shape Parsing
	Ablation studies
	Applications

	Conclusion

	Label-Efficient Learning on Point Clouds using Approximate Convex Decompositions
	Related Work
	Method
	Approximate Convex Decomposition
	Self-supervision with ACD

	Experiments
	Shape classification on ModelNet
	Few-shot segmentation on ShapeNet
	Analysis of ACD

	Conclusions

	Deep Manifold Prior
	Related Work
	Method
	Limiting GP for the Deep Manifold Prior
	Discussion and Analysis

	Experiments
	Denoising and Interpolation
	Learning from data

	Conclusion

	Shape Reconstruction using Differentiable Projections and Deep Priors
	Related work
	Method
	Radon Projection (TR)
	Silhouette Projection (TS)
	Depth Image Projection (TD)

	Experiments
	Tomography Reconstruction
	Shape-from-Silhouette 3D Reconstruction
	Shape-from-Depth Images 3D Reconstruction

	Conclusion

	Inferring 3D Shapes from Image Collections using Adversarial Networks
	Related work
	Method
	Experiments
	Results
	Varying the number of views per model
	Shape interpolation
	Unsupervised shape and viewpoint prediction
	Visualizations across categories

	Failure cases

	Improving PrGAN with richer supervision
	Higher-resolution models
	Using multiple cues for shape reasoning
	Experiments

	Conclusion and Future Work

	Conclusion and Future Work
	Multiresolution Tree Networks - Additional Experiments
	Shape segmentation model
	Image-to-Shape Inference: Additional Results
	Unsupervised Shape Generation (MR-VAE): Additional Results

	Learning Generative Models of Shape Handles - Extra Results
	Additional Completion results

	Deep Manifold Prior - Convolutional Parametrizations and Additional Analysis
	Convolutional Parametrizations
	Denoising
	Single-view Reconstruction

	Limiting distribution for the curvature

	Bibliography

