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Abstract

Visual contents, such as movies, animations, computer games, videos and photos, are

massively produced and consumed nowadays. Most of these contents are the combination

of materials captured from real-world and contents synthesized by computers. Particularly,

computer-generated visual contents are increasingly indispensable in modern entertainment

and production. The generation of visual contents by computers is typically conditioned on

real-world materials, driven by the imagination of designers and artists, or a combination

of both. However, creating visual contents manually are both challenging and labor in-

tensive. Therefore, enabling computers to automatically or semi-automatically synthesize

needed visual contents becomes essential. Among all these efforts, a stream of research

is to generate novel images based on given image priors, e.g., photos and sketches. This

research direction is known as image-conditional image generation, which covers a wide

range of topics such as image stylization, image completion, image fusion, sketch-to-image

generation, and extracting image label maps. In this thesis, a set of novel approaches for

image-conditional image generation are presented.

The thesis starts with an exemplar-based method for facial image stylization in Chapter

2. This method involves a unified framework for facial image stylization based on a single

style exemplar. A two-phase procedure is employed, where the first phase searches a dense

and semantic-aware correspondence between the input and the exemplar images, and the

second phase conducts edge-preserving texture transfer. While this algorithm has the merit

of requiring only a single exemplar, it is constrained to face photos. To perform generalized

image-to-image translation, Chapter 3 presents a data-driven and learning-based method.
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Inspired by the dual learning paradigm designed for natural language translation [115], a

novel dual Generative Adversarial Network (DualGAN) mechanism is developed, which

enables image translators to be trained from two sets of unlabeled images from two do-

mains. This is followed by another data-driven method in Chapter 4, which learns multi-

scale manifolds from a set of images and then enables synthesizing novel images that mimic

the appearance of the target image dataset. The method is named as Branched Generative

Adversarial Network (BranchGAN) and employs a novel training method that enables un-

conditioned generative adversarial networks (GANs) to learn image manifolds at multiple

scales. As a result, we can directly manipulate and even combine latent manifold codes

that are associated with specific feature scales. Finally, to provide users more control over

image generation results, Chapter 5 discusses an upgraded version of iGAN [126] (iGAN-

HD) that significantly improves the art of manipulating high-resolution images through

utilizing the multi-scale manifold learned with BranchGAN.
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Chapter 1

Introduction

1.1 Overview

Human brains are wired for visual content. They typically process visual information

60,000 times faster than text. Every day, people watch videos, play digital games and share

photos on social media for entertainments. In the meantime, professionals employ visual

contents to exchange ideas and boost productivity. However, the creation of visual contents

typically require professional skills and laborious operation. In this scenario, computer-

generated visual contents play an increasingly important role in satisfying human needs for

visual contents.

Image synthesis is a highly broad area. Specifically, image synthesis could be con-

ditioned on prior materials such as texts, images, 3D geometric models, categories or

manifolds. This thesis only discusses about image-conditional image synthesis. Image-

conditional image generation involves creating images through restructuring, retouching
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or manipulating input digital images. The study includes a wide range of topics such as

artistic stylization, image fusion, image completion, sketch-to-image generation, and im-

age segmentation (converting image to label maps). It is also referred to as image-to-image

translation in scenarios where the prior is a single image.

In this thesis, a series of approaches are presented for image-conditional image syn-

thesis. In Chapter 2, a rule-based approach is presented for facial image stylization. The

method enables generating different styles, whereas it is heuristically defined for facial im-

ages only. The following chapter discusses a general-purpose learning paradigm for image-

to-image translation, assuming that sufficient data are available for training. It achieves

great success in a wide range of applications including converting aerial images to maps,

day scenes to night scenes, sketches to photos and label maps to real images. Whereas

the limitation is that the results image are mostly low resolution: see Chapter 3. The third

method, BranchGAN, aims at high-resolution image synthesis with a multi-scale process.

It enables generation of high-resolution images, scale-aware image fusion and coarse-to-

fine image synthesis: see Chapter 4. On the basis of BranchGAN, an approach that allows

users to interactively manipulating image priors for image generation is presented: see

Chapter 5. Figure 1.1 illustrates the frameworks of the presented methods.

1.2 Related Work in Image-Conditional Image Synthesis

The last two decades have seen the proliferation of a number of image-conditional image

synthesis algorithms, which could be categorized through different properties.

2



Figure 1.1: A simplified illustration of the frameworks of image-conditional image syn-

thesis approaches presented in each of the chapters. The method presented in Chapter 2

conditions image generation on a content image (A) and a style image (B). Chapter 3 de-

scribes a method for cross-domain image-to-image translation (A to B, or B to A). Chap-

ter 4 discusses a method for scale-aware image fusion, which synthesizes a novel image

(C) by selectively combining the scale-disentangled manifolds (MA and MB) of two input

images (A and B). Chapter 5 presents a method for interactive image generation which

conditions image generation on user-manipulated image priors such as a color map (A), a

color map mask (A’) and/or an edge map (B).
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1.2.1 Photorealistic and non-photorealistic

Based on whether the synthesized images are photorealistic or non-photorealistic, image-

conditional image synthesis methods could be divided into photorealistic or non-photorealistic

methods. Photorealistic methods typically involve pure color transformation or low-level

filtering [55, 14, 91]. A special type of photorealistic methods, photorealistic rendering

aims to simulate images (usually rendered from 3D graphic models) that looks exactly like

the real-world objects. Synthesizing naturalistic images by directly simulating the lighting

and imaging process of physical world with computational techniques such as photon-

mapping or radiation, is widely used for this purpose. Nonetheless, in recent years, in-

creasing number of researchers endeavor to achieve this goal through manipulations in 2D

domain only. An example is to transform non-photorealistic images to natural images [93].

Non-photorealistic (NPR) focuses on converting photographs into painterly or artistic

stylized images, which is an area of computer graphics that aims at enabling various ex-

pressive styles for digital art. In contrast to photorealism, NPR is motivated by artistic

styles (e.g., drawing, painting), technical visualization and animated cartoons [112, 100,

73, 64, 87, 28, 110, 59, 124]. NPR is widely used in video games and movies, scientific

visualization, architectural illustration and experimental animation.

1.2.2 Low-level, middle-level and high-level methods

Low-level algorithms employ low-level image processing operators such as Gamma cor-

rection, color adjustment, placement of marks (e.g., strokes, hatches and stipples) or simple

filtering operators [100, 64, 14]. For stylized video generation, low-level methods based

on optical flow are used [95]. Early in the last decade, mid-level operators such as super-

4



pixel segmentor, perceptual saliency estimators and other sophisticated filtering operators

yielded improved style diversity and robustness [112, 73, 87, 28, 110, 82]. As the field ma-

tures, it sees a increased fusion of higher-level operators such as image parser for content-

based and semantic-aware image synthesis [42, 91, 55, 59, 124].

1.2.3 Exemplar-based, data-driven and expert-tuned methods

Exemplar-based image synthesis eases the careful design of application-specific operators

and enables multiple styles in a single paradigm. In this way, exemplar-based image synthe-

sis facilitates the functionality extension of an image synthesis system [42, 100, 28, 110].

As a special case of example-based image synthesis, data-driven image synthesis usually

requires significant amounts of templates, examples, or elements [55, 59, 124]. Expert-

tuned methods do not explicitly employ an exemplar. Instead, they involve a complex

pipeline that is designed, established and fine-tuned with expertise knowledge [112, 73, 88,

64, 87, 91, 14], most of which are application-specific.

1.2.4 Semi-automatic and fully-automatic methods

Semi-automatic methods require users’ assistance during image synthesis and convention-

ally provide carefully-designed user interface, soliciting user’s marking, clicking, circling,

dragging, or touching [42, 88, 87, 28]. Most methods intend to function without human as-

sistance and provide fully automated procedure [112, 100, 73, 64, 110, 91, 55, 14, 59, 124].

5



1.2.5 Rule-based and learning-based methods

Rule-based methods for image synthesis normally involve a sequence of manipulations and

can be unified as a workflow of processing units, where each processing unit is deliberately

designed or considerately fine-tuned for specific applications [88, 87, 28, 112, 100, 73, 64,

110, 55, 14, 59, 124]. However, Deep Neural Networks, especially the recently-prevalent

FCN and GAN, are end-to-end architectures that directly condition image synthesis on

priors, and learn to synthesize images. In addition, image synthesis can also benefit from

the advanced cognitive power and modeling potent of Deep Neural Networks.

Since 2014, academic predecessors have started to experiment deep learning for im-

age synthesis. Leon et al. proposed a novel method to synthesize images of target style,

through optimizing a sophisticated loss objective adding up the content loss and the style

loss. The content loss measures the difference of contents between the synthesized and the

content prior, whereas the style loss measures the disparity of styles between the synthe-

sized and the style exemplar. The computation of loss function relies upon a pre-trained

Convolutional Neural Network (CNN) for image classification [23]. The method turns

out to be effective in generating stylized images that mimics world-famous painting art-

works. As a result, the paper triggered an upsurge of research on learning-based image

synthesis. In 2015, Justin et al. proposed a novel framework based on Fully Convolutional

Network (FCN) [68] known as perceptive loss, enabling synthesizing stylized images in

real-time [41].

On the other hand, the invention of Generative Adversarial Network (GAN) in 2014 [79]

motivated a hot wave for image representation learning [79, 107] and high-quality natural

image synthesis [96, 80]. In 2015, the emergence of FCN [68] further empowered GAN for

6



end-to-end image translation, or conditional image synthesis, achieving record-breaking re-

sults for texture synthesis [58, 102], portrait stylization [98] and general-purpose image-to-

image translation[39]. FCN is also used separately for end-to-end image translation tasks

such as portrait segmentation, super-resolution, stylization [91] and sketch synthesis [121].

Another stream of research for image representation learning and image synthesis,

known as PixelRNN, was started by Oord et al. [75]. PixelRNN takes the advantage of the

modeling power of Long-Short-Term-Memory (LSTM) networks and attempts to model

image distribution in a pixelwise manner. In specific, a two-dimensional multi-layer LSTM

network is employed to predict the color of each pixel based on all the top-left pixels it has

scanned.

1.3 Deep Neural Networks for Image Synthesis

Deep Neural Network is a branch of machine learning that endeavors to learn highly ab-

stractive representation of data. Typically, Deep Neural Network involves multiple neuron

layers other than the input layer and output layer. In a deep network, the signals are taken

by the input layer and then pass through multiple processing layers before reaching the

output, thus allowing sophisticated function modeling. Various deep neural architectures

have been proposed and applied to challenging tasks such as image classification, object

detection, image parsing and video analysis, including Deep Belief Networks (DBN) [34],

Convolutional Neural Networks (CNN) [53] and Recurrent Neural Networks (RNN). Con-

siderable improvements have been made over previous non-neural-network-based methods.

In last few years, Deep Neural Networks prove to be highly effective in learning represen-

tations of image structures and play an increasingly essential role in image synthesis.
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In the following paragraphs, I will present a few generative neural models related to

end-to-end image synthesis. They include Deep Belief Network, Fully Convolutional Net-

work, PixelRNN, Generative Adversarial Network and Variational Auto-Encoder.

1.3.1 Deep Belief Network (DBN)

DBN is a probabilistic, generative model composed of multiple layers of hidden units. It

can be considered to be stacked with multiple learning modules that are typically made

of Restricted Boltzmann Machines (RBM). An RBM is an undirected, generative energy-

based model with a "visible" input layer and a hidden layer, and connections between the

layers but not within layers.

A DBN can be efficiently trained in a layer-by-layer and unsupervised manner. The

training method for RBMs, known as contrastive divergence learning, is first proposed by

Geoffrey Hinton et al. [34] and provides an approximation to the maximum likelihood

method. As a generative model, it can be used to learn embeddings of any vectorized meta

data such as facial images [97], hand-writing digits [34] and speech [44].

1.3.2 Fully Convolutional Network (FCN)

CNN, first proposed by Yann Lecun et al. [53], consists of one or more convolutional layers

and pooling layers with prediction layer on top. This architecture allows CNNs to take ad-

vantage of the 2D structure of input data. CNN is normally trained with back-propagation.

In comparison with other deep architectures, CNNs are easier to train and have many fewer

parameters to estimate, making them a highly effective architecture to use. CNN has been

the primary method chosen to process visual and other two-dimensional data. CNN has
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shown superior results in a wide variety of topics like image classification/localization [49],

object detection, image parsing and image generation.

FCN, first developed by Long et al. [68], is a type of “fully convolutional” networks

that take input of arbitrary size and produce correspondingly-sized output with efficient

inference and learning. FCN is suitable for spatially dense prediction tasks like image

segmentation, image colorization and image stylization. FCN normally involves a skip

architecture that combines semantic information from a deep, coarse layer with appearance

information from a shallow, fine layer to produce accurate and detailed prediction.

1.3.3 PixelRNN

Long Short-Term Memory (LSTM) network, first published in 1997 [36], is a branch of

Recurrent Neural Network (RNN). LSTM prevents back-propagated errors from vanishing

or exploding, by introducing a recurrent gate known as forget gate, thus enabling errors to

propagate backwards through unlimited numbers of discrete time steps. In this case, LSTM

can learn tasks that require both long-term and short-term memories. LSTM is typically

trained using Connectionist Temporal Classification (CTC). LSTM has demonstrated its

considerable power for sequential-data-related tasks like handwriting recognition, speech

recognition, text-to-speech synthesis, currently holding the best records of those tasks.

As a branch of LSTM, PixelRNN is a generative model for pixelwise color prediction.

PixelRNN attempts to model images from a specific domain using a bi-dimensional multi-

layer LSTM network to predict the color of a pixel based on all the scanned pixels in

top-left [75].
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1.3.4 Generative Adversarial Network (GAN)

GAN is first introduced by Goodfellow et al. in 2014 [79]. GAN is a system made up

of two neural networks, a generator and a discriminator, competing against each other in

a zero-sum game framework [79]. Normally, the generator maps from a latent space to a

particular data distribution of interest. In particular, the discriminator learns to differentiate

between real instances and the synthesized “fake” instances, while the generative network

learns to “fool” the discriminator by synthesizing “fake” instances that mimic real data. As

a result, the generator can effectively learn the distribution of real data and reverse engineer

the target dataset.

1.3.5 Variational Auto-Encoder (VAE)

Variational Auto-Encoder models inherit Auto-Encoder architecture, but make strong as-

sumptions concerning the distribution of latent variables. They use variational approach for

latent representation learning, which results in an additional loss component and specific

training algorithm called Stochastic Gradient Variational Bayes (SGVB) [48]. It assumes

that the data is generated by a directed graphical model p(x|z) and that the encoder is

learning an approximation qφ(z|x) to the posterior distribution pθ(z|x) where φ and θ de-

note the parameters of the encoder (recognition model) and decoder (generative model)

respectively.
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1.4 Contributions of the Thesis

This thesis aims at general-purpose solutions for image-conditional image generation, with

the attempt to assure the high-quality of the outputs and relieve the requirements for mas-

sive data resources. The method presented in Chapter 2 can transfer multiple styles and

only requires a single style exemplar for each style. DualGAN, described in Chapter 3,

is a general-purpose solution for image-to-image translation and yet it does not require

any paired data. BranchGAN (Chapter 4) learns to disentangle image representations by

scales with unsupervised data only, while assuring the “high-resolution” property. Sim-

ilar to BranchGAN, iGAN-HD (Chapter 5)) can generate high-quality results and only

requires a collection of unsupervised data of the same category. The latter three methods

are all learning-based and GAN-family methods. More information about the novelty of

each method and their relations to prior works will be explained separately in each of the

chapters.

Two of the presented methods have been published and well recognized by peer re-

searchers. The method presented in Chapter 2 was published on The Visual Computer

in 2016 with the title of “Artistic stylization of face photos based on a single exemplar”,

and that presented in Chapter 3 was published on the International Conference on Com-

puter Vision (ICCV) in 2017 with the title of “DualGAN: Unsupervised Dual Learning for

Image-to-Image Translation”. Google scholar indicates that DualGAN has attracted over

130 citations in no more than 18 months. The methods presented in Chapter 4 and Chap-

ter 5 will also be submitted to related conference or journals for publication.
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1.5 Organization of the Dissertation

The rest of this thesis is organized as the following. It starts with an exemplar-based method

for facial image stylization in Chapter 2. While this algorithm has the merit of requiring

only a single exemplar, it is constrained to facial images. To perform generalized image-

to-image translation, Chapter 3 presents a data-driven and learning-based method, referred

as DualGAN. This is followed by another data-driven method, BranchGAN, in Chapter 4,

which learns multi-scale manifolds from a set of images. To provide users more control

over image generation results, Chapter 5 discusses an upgraded version of iGAN, referred

as iGAN-HD, that significantly improves the art of manipulating high-resolution images.

Finally Chapter 6 summarizes the achievements of the thesis work and discusses several

future directions in image synthesis.
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Chapter 2

Exemplar-based Facial Image

Stylization

In this Chapter, we propose a rule-based algorithm for fully automatic face photo styliza-

tion based on a single style exemplar. Constrained by the “single-exemplar” condition,

where the numbers and varieties of patch samples are limited, we introduce flexibility in

sample selection while preserving identity and content of the input photo. Based on the ob-

servation that many styles are characterized by unique color selections and texture patterns,

we employ a two-phase procedure. The first phase searches a dense and semantic-aware

correspondence between the input and the exemplar images so that colors in the exemplar

can be transferred to the input. The second phase conducts edge-preserving texture transfer,

which preserves edges and contours of the input and mimics the textures of the exemplar

at multiple scales. Experimental results demonstrate compelling visual effects and notable

improvements over other state-of-the-art methods which are adapted for the same task.

13



2.1 Overview

Faces are common objects in artworks and paintings. Compared with manual painting or

drawing of faces, which requires laborious operation and advanced technique, automated

artistic face synthesis by computers is fast and inexpensive. Previous algorithms, which

stylize a given face photo automatically or semi-automatically [60, 62, 69, 57, 25, 122, 61],

are mostly style-specific. Different styles convey different visual features and entail dif-

ferent aesthetic standards. However, styles differ among time, nations, regions, media and

artists. There exist great numbers of artistic styles in historical and modern art, thus mak-

ing it impractical to implement a style-specific rendering algorithm for each style. In this

case, exemplar-based face stylization becomes important. By using exemplar-based face

stylization, the algorithm can be easily expanded by importing one or multiple available

“style” exemplars. This advantage on convenience makes a general-purpose face styliza-

tion method very useful in a number of scenarios, even though the stylization results may

not be as fine-tuned as certain style-specific approaches.

Three factors make face stylization a challenging task. First, error tolerance is small

since human eyes are exceptionally sensitive to facial information. Secondly, the geometry

and appearance of faces vary by race, individual, expression, age, and pose. Other factors,

such as glasses, also result in variation. A robust stylization algorithm should work well for

varieties of inputs even when the input and the exemplar are severely disparate. Thirdly,

artists often apply different treatments to different facial parts (e.g., the mouth, nose, eyes,

eyebrows, chin and hair) to achieve compelling visual effects. As a result, the stylization

algorithm needs to be semantic-aware.

To address these challenges, we propose a novel two-phase style transfer procedure.
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(a) (b) (c) (d)

Figure 2.1: The overall process of our approach: (a) the exemplar (pyrography style), (b)

the input, (c) result of semantic-aware color transfer, (d) result of edge-preserving texture

transfer.

The first phase processes the image with a semantic-aware color transfer (SACT) technique,

which considers both the global color space alignment and local semantic correspondences.

The second phase employs an edge-preserving texture transfer (EPTT) scheme, which at-

tempts to preserve edges and contours of the input while mimicking the target texture at

multiple scales. As a result, the algorithm can automatically stylize the input into an image

of the exemplar style, while keeping the identity, content and large-scale structure of the

input; see Figure 2.1.

Focusuing on painterly and artistic stylization of face images with a single exemplar,

our method makes the following three contributions:

• Our algorithm can stylize an artistic face using a single exemplar image, which differs

from many existing data-driven face synthesis approaches that require large-scale

datasets [124, 92, 59].
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• We find a method to combine the local and global constraints for color style transfer.

Previous algorithms for color style transfer are either local [92] or global [69], which

are not suitable for face stylization.

• We propose an edge-preserving texture transfer algorithm for effective texture trans-

fer, which plays a key role in achieving compelling visual effects for our task.

We discuss related research in Section 2.2 and present our algorithm in Section 2.3.

Section 2.4 shows our experiment results and compares them with those of previous meth-

ods. The chapter concludes in Section 2.5, with potential future directions identified.

2.2 Related Work

2.2.1 Non-Photorealistic Rendering (NPR)

Non-photorealistic rendering is an active field in computer graphics. Motivated by the Art

and history of Art, the main objective of this field is to either simulate traditional media or

simplify an image in an illustrative form. Previous algorithms mostly focus on a specific

art-style, e.g., pencil drawing [122, 69], tessellation [61], halftoning [60], stippling [63], oil

painting [25, 43] and water color painting [57]. Each style involves unique sets of colors,

tones, dots, sketches and textures. Unlike these style-specific rendering algorithms, our

method intends to cover a large range of non-photorealistic styles by using exemplar-based

style transfer techniques.

Our work is similar to existing face synthesis approaches, such as [124, 59, 108].

Zhang. et al. [124] propose a data-driven cartoon face synthesis approach by using a large

set of pre-designed face elements (e.g., mouth, nose, eye, chin line, eyebrow and hair). Li.
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et al. [59] synthesize animated faces by searching across a set of exemplars and extract-

ing best-matched patches. Wang et al. propose a novel data-driven face sketch synthesis

method using a multiscale Markov Random Fields (MRF) model [108]. Different from

ours, these approaches require large sets of exemplar photos.

2.2.2 Style transfer

The assessment of an artwork depends on two factors: content and form. In a style transfer

system, the content is provided in the input image and the form (or style) is defined by

an exemplar. The task is to combine the content of the input photo and the style of the

exemplar to generate a novel piece of artwork. The problem to solve in this chapter is

basically a style transfer problem.

Our objective is similar to the style-transfer approach by Shin et al. [92], which targets

on photograph style transfer for headshot portraits based on multiple stylized exemplars.

However, the difference is that we aim at non-photorealistic style transfer based on a single

exemplar. Greater variation among non-photorealistic styles makes the task more challeng-

ing.

2.2.3 Color style transfer

Color is a key element in artistic and painterly stylization. Endowing an image with a

specified color style defined by an exemplar is an essential technique in stylization. Previ-

ous color modification algorithms include histogram equalization, histogram specification

and color histogram matching [72, 14]. Neumann et al. [72] propose a lightness, hue and

saturation histogram match scheme for color style transfer. The method proposed by Ha-
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Cohen et al. can automatically transfer color styles across images that share contents, in

which semantic information is used as guidance [29]. The method proposed by Cohen-Or

et al. [14] enhances the color harmony among pixels in an image by optimizing a cost func-

tion that seeks neighboring coherency while remaining faithful to original colors as much as

possible. Motivated by their work, in the first color transfer phase, we optimize a cost func-

tion that considers both global color distribution (intensity histogram) and local geometry

correspondences. An additional constraint in our method is the color consistency among

semantically identical regions and we do not explicitly pursue a targeted color distribution.

2.2.4 Texture synthesis/transfer

Texture synthesis aims to synthesize a customized size of texture given a finite sample of

texture. Sophisticated synthesis algorithms such as image quilting [21], non-parametric

sampling [22] and optimization-based texture synthesis [46] are widely used. One task of

texture synthesis is to avoid unnatural artifacts introduced by the synthesis. As for texture

transfer, an additional constraint is that the synthesized texture should be consistent with

the color variation of the input image. Image quilting [17, 21] can be applied to texture

transfer but does not maintain the structures in the input image very well. To preserve facial

structures during the second texture transfer phase, we extend upon image melding [17].

2.3 Single Exemplar Stylization

Our approach is based on the following key observation: many artistic styles can be gener-

ated through color and texture transfer, except for the ones that highlight edges or exagger-

ate shapes. In our approach, color and texture are transferred in two separate phases, where
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(a) original input image (b) cropped input image (c) semantic label map

Figure 2.2: Automatic cropping and semantic label map generation: (a) original input

image, (b) cropped input image obtained by automatic cropping and scaling based on 68

detected face landmarks (shown as red dots), (c) semantic label map obtained by fitting

landmarks.

color transfer is performed first and then followed by texture transfer.

We assume that both the input and the exemplar are images of fixed size (500x700 in

our implementation) and are mostly covered by frontal faces. When the images supplied by

users do not satisfy this condition, an automatic pre-processing step is applied first, which

crops and resizes the images with the guidance of 68 face landmarks detected using an

open-source face landmark detection library [128, 13]; see Figure 2.2.

2.3.1 Semantics-Aware Color Transfer

Semantics-Aware Color Transfer (SACT) assigns a color for each pixel in the input image

by finding a dense correspondence between the input and the exemplar. For pixel p =

(px, py) in the input image I , its correspondence qp in the exemplar image E is found by
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minimizing a cost function that consists of three terms: semantic term esem, geometry term

egeo and color term eclr.

qp = arg min
q∈E

(
α1esem(lp, lq) + α2egeo(p,q) + α3eclr(p,q)

)
, (2.1)

where αi, (i = 1, 2, 3) are weights of these energy terms. lp (or lq) is the label assigned

for pixel p (or q), which specifies the region that the pixel belongs to (e.g., mouth, nose,

eye, eyebrow, face, hair and background). To assign these labels, each region is approxi-

mated using an ellipse, which is computed by fitting the corresponding face landmarks; see

Figure 2.2.

esem(·, ·) evaluates the incompatibility between two labels. For example, nose and eye

are considered highly incompatible since they have distinct colors and features, whereas

nose and face are compatible. To specify these semantic relations, a look up table is heuris-

tically defined; see Table 2.1.

egeo(p,q) measures the geometric cost between the pixel coordinates of p and q. Di-

rectly using the Euclidean distantance between p and q as the cost does not tolerate the

pose and shape differences between the input and the exemplar faces, nor does it take into

account the bilateral symmetry of faces. Hence, before measuring the distance, we first

warp the exemplar to align with the input face based on extracted facial landmarks. The

warping is performed by first constructing a set of displacement vectors from facial land-

marks and then warping the exemplar with the feature-based warping algorithm [10]; see

Figure 2.3 (c), (d). This warping operation ensures that the facial landmarks of the warped

exemplar align with those of the input image. Furthermore, to utilize bilateral symmetry,

we also generate a mirrored version of the exemplar, which is also warp-aligned to the in-

put for computing the second distance value. The final cost is set to the smaller of the two
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Table 2.1: The look up table for semantic cost function esem(lp, lq). There is no penalty for

transferring colors within the same semantic regions and hence the corresponding costs are

zero. The infinity cost values can forbid color transfer between the incompatible regions.

lq

lp mouth eye eyebrow nose face hair background

mouth 0 +∞ +∞ +∞ 1 +∞ +∞

eye +∞ 0 +∞ +∞ 1 +∞ +∞

eyebrow +∞ +∞ 0 +∞ 1 +∞ +∞

nose +∞ +∞ +∞ 0 0 +∞ +∞

face 1 +∞ +∞ 1 0 1 +∞

hair +∞ +∞ +∞ +∞ 0 0 +∞

background +∞ +∞ +∞ +∞ 1 1 0
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distances, i.e.:

egeo(p,q) = min
(
‖p−Warp(q)‖, ‖p−Warp(Mirror(q))‖

)
, (2.2)

where function Warp(q) outputs the coordinates of q after warping and ‖ · ‖ computes the

L2 norm.

The last term eclr(p,q) measures the color cost between pixels p and q. To accommo-

date the overall intensity differences between the two images, we first apply histogram

equalization based on the pixel intensities and then compute the color cost term using

Eq. 2.3:

eclr(p,q) = tan
(π

2
· |I

equ(p)− Eequ(q)|
256

)
, (2.3)

where Iequ and Eequ denote the equalized grayscale version of the input and exemplar

images, respectively. The tangent function is applied to boost penalty for large intensity

disparity.

With the cost function defined, the best correspondence of pixel p that minimizes Eq.

2.1 is searched through enumerating and testing all pixels in the exemplar E. Once found,

its color is assigned to pixel p, i.e., T (p) = E(qp), where T refers the color transfer

result. Since the cost function takes into account both local semantic information and

global intensity histogram alignment, the above procedure can effectively transfer the color

style of the exemplar image to the input image in a pixelwise manner.

Figure 2.3 shows the results of color transfer and the impacts of individual terms. It

shows that, when using the geometry term without bilateral symmetry, the result is the

same as warping the exemplar to the input image. After adding the color term, the result
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Results of Semantic Aware Color Transfer: (a) Input image. (b) Exemplar. (c)

Control lines (as shown in blue) constructed from landmarks for the input. (d) Control lines

(as shown in blue) constructed for the exemplar. (e) Result obtained using geometry term

only and without bilateral symmetry, (f) using geometry (without bilateral symmetry) and

color terms, (g) using geometry (with symmetry) and color terms, (h) using all three terms.

Note that the light directions are different in input and exemplar photos, where the input

has shadow on the right cheek and the exemplar has shadow on the left.
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resembles the input image, but still cannot accommodate the lighting direction difference

between the input and the exemplar. Utilizing bilateral symmetry addresses this problem.

The result obtained using all three terms achieves the best visual effects and ensures that

colors are transferred from semantically compatible regions. Nevertheless, it does not have

the same texture style as in the exemplar image. In addition, color bleeding artifacts along

the boundaries of the face can be spotted: see Figure 2.3 (h). They are mainly caused

by two reasons: 1) there are no suitable correspondence in the warped exemplar or the

mirror-warped exemplar for certain pixels; 2) the automatically constructed control line

segments are not precise enough to perfectly align the high contrast contours in the input

and exemplar images, and hence some pixels may be mapped to the background or to a

wrong region. It is noteworthy that these artifacts become less noticeable after the patch-

based texture transfer step.

2.3.2 Edge-Preserving Texture Transfer

From a signal processing viewpoint, the synthesis of paintings and artworks can be con-

sidered as a texture synthesis problem. One thing to be noted is that texture details may

be evident at many scales, and the textures at each scale may have distinct characteris-

tics. Hence, we need a texture synthesis approach that can deal with texture structures at

multiple scales.

The problem gets more complicated for texture synthesis on face portraits since the

geometry and structure of human faces introduce additional constrains. Edges such as chin

line, hairline, eye/eyebrow boundaries, and mouth/nose curves are essential for keeping

face identities. Previous texture synthesis/transfer approaches mainly focus on avoiding
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(a) (b) (c)

(d)

(e)

Figure 2.4: Illustration of Edge-Preserving Texture Synthesis: (a) Exemplar image; (b)

color transfer result, which is used to initialize S; (c) edge map; (d) edge mask pyramid

at different levels; (e) the corresponding synthesis results (masked pixels are marked with

blue). Note how texture details in the hair region are generated at coarse levels.
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artifacts and minimizing intensity differences between the input and the exemplar, but not

so on preserving edges and contours [22, 21, 65]. Hence, we here introduce an edge-

preserving texture synthdge-preserving texture synthesis approach, which is extended from

Image Melding [17].

We begin with a brief explanation of the optimization-based texture synthesis [50],

which both Image Melding [17] and our Edge-Preserving Texture Transfer (EPTT) are

based on. This approach optimizes an objective function that measures the similarity be-

tween the synthesized texture S and the exemplarE over a set of overlapping local patches.

This objective function takes the following form:

S∗ = arg min
S

∑
si∈S

(
min
ej∈E

(
D(si, ej) + λD(∆si,∆ej)

))
, (2.4)

where si refers to the square patch (10 × 10 pixels in our implementation) in S whose

top-left corner is at pixel i. ej is a patch of the same size in E. Distance between two

patches, D(·, ·) is measured as the sum of squared color difference and D(∆·,∆·) mea-

sures the sum of squared gradient differences. λ is the coefficient for the gradient term,

typically set as 1.0. The color difference is measured in the CIELAB color space since

it approximates human perception. Two additional gradient channels for horizontal and

vertical gradients based on the L value are computed using Sobel operator.

As shown in Eq. 2.4, to evaluate the quality of a given synthesized image S, we need

to enumerate all overlapping patches si in S, find their nearest neighbors in the exemplar

E, and sum together the total distances between the corresponding patches. The image S∗

that yields the smallest total distance is the desired synthesis result. To optimize this ob-

jective function, two steps are alternatively performed. The first step finds the approximate
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nearest neighbors for all patches in S using the Generalized PatchMatch algorithm [9]. The

second step, referred to as voting, updates S by averaging together the overlapping nearest

neighbor patches found from exemplar E [111]. The above two steps are repeated until the

termination condition is met.

In our practice, we use the result of color transfer T to initialize S, which guides the

synthesis result to follow the shape of the input face. Since the original texture synthesis

approach does not preserve important facial contours very well, we modified the procedure

to make it better preserving edges during the synthesis. In addition, a coarse-to-fine pro-

cessing scheme is employed so that structures at different scales can be properly handled.

As shown in Figure 2.4, given the input image, we first compute an edge map using

Canny Edge Detector with automatically selected thresholds [32]. An edge mask pyramid

is then generated by downsizing the edge map by a factor of two each time. During the

downsizing, a pixel in the coarse level is labeled as an edge pixel, as long as one of the

four corresponding pixels in the finer level is an edge pixel. Texture synthesis is then

performed at the coarsest level first for non-edge pixels only. Once the synthesis process

converges, we move to the next finer level to repeat the synthesis process; see Algorithm 1.

As shown in Figure 2.4, such a coarse-to-fine processing scheme brings two benefits: 1)

texture pattens at different scales can be properly synthesized; and 2) areas close to facial

contours are processed at finer levels only and hence the edge structured in the input image

can be properly preserved.

The overall algorithm is given in Algorithm 1. It shows that within each resolution

level, the nearest neighbor searching and voting are repeated alternatively to update Sk. Af-

ter each iteration, T k is used to reset Sk for areas masked by Mk and Poisson blending [77]

is employed. Specifically, we view masked regions of T k as destination and unmasked
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Algorithm 1 Edge Preserving Texture Synthesis
Input: color transfer result T , edge map M , exemplar E;

Output: texture synthesis result S;

for each scale k = 1 to n do

downsample T k−1, Ek−1, and Mk−1 by a factor of 2 to obtain T k, Ek, and Mk;

end for

for each scale k = n to 0 do

if k equals n then

initialize Sn using Tn;

else

initialize Sk by scaling Sk+1;

end if

repeat

compute the nearest neighbor field between Sk and Ek;

update Sk by voting for areas not masked by Mk;

set Sk to T k for areas masked by Mk;

apply Poisson blending to remove seams between the two areas;

until the changes to Sk is below a threshold or a specific number of repetitions is reached;

end for

Synthesize the edge pixels using the inverse of the edge map M as mask;
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(a) (b) (c) (d)

Figure 2.5: Experiment results by our approach. Top row are input images. For other

rows, each represents an exemplar (a) and the corresponding stylized results (b-d). (b-d)

illustrates the original input image at the top and corresponding stylized results below it.

In specific, (b) demonstrates a face with cluttered background. (c) shows a face wearing

glasses. (d) illustrates a non-frontal face. 29



regions of Sk as source, then seamlessly clone the source to the destination by interpolat-

ing destination pixels with a guidance gradient field directly taken from the source. As a

result, details along edge structures captured in T k and the synthesized texture in Sk can be

seamlessly blended together.

2.4 Experiment Results

Figure 2.5 shows our style transfer for common art styles. The input images are selected

from public dataset supplied by Shih et al. [92]. They are of numerous sources (captured

under uncontrolled lightening condition and with different devices) and of various sub-

jects (gender, race, beards, age, glasses, pose, facial expression and hair style). Further,

the photos could be noisy, and the background can be cluttered which makes the dataset

challenging. The exemplar images are collected from the Internet. They are various in col-

ors, tone and texture; and the styles range across oil painting, water color painting, mosaic

style, pencil drawing and stippling. The stylization results demonstrate that our approach

successfully transfers the color, texture and tone from the exemplars to the inputs. The

visual effects are convincing even when the input and the exemplar are significantly dis-

parate, e.g., a face wearing glasses (Figure 2.5(c)) and a non-frontal face (Figure 2.5(d))

are properly stylized by frontal exemplar faces without glasses. Nevertheless, limitations

can be found in some synthesis results, e.g. texture structures are not well preserved in the

third row of Figure 2.5, especially for Figure 2.5(d), where artifacts are shown.

In addition, we located two wood pyrography and the photos that the artist based on [1].

Through using the pyrography of A to stylize the photo of B, we can compare our exemplar-

based stylization results with the real artworks, which can be treated at the “ground truth”.
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(a) A (b) A′ (c) S(A,B′) (d) A∗ (e) S(A,B∗)

(f) B (g) B′ (h) S(B,A′) (i) B∗ (j) S(B,A∗)

Figure 2.6: Comparison between our automatic stylization results with real artworks and

the results of style-specific approaches. A and B are input images. A′ and B′ are wood

pyrography created by the same artist based on A and B [1]. A∗ and B∗ are automatically

stylized using Rollip [2]. S(x, y) denotes the output of our algorithm using image x as

input and image y as exemplar.
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(a) (b) (c) (d) (e) (f)

Figure 2.7: Comparison to other methods. (a) Exemplars. (b) Input image, which is the

same for all three rows. (c) Image Melding [17] initiated with our SACT. (d) Shih et al. [92]

(e) Our SACT + Image Quilting [21]. (f) Ours.
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Similarly, we can compare our outputs with those of a style-specific synthesis approach [2].

Figure 2.6 shows that in both cases, our results resemble those created by the artist and the

style-specific algorithm, even though our approach uses a different image with the same

style as the exemplar. However, it could be spotted that fine edges and detailed textures are

not very well preserved, which is due to the voting procedure during texture synthesis.

Figure 2.7 further compares our method with related work in style transfer [21, 92, 17].

Image quilting is originally applied to texture transfer [21]. We ran their code directly on

our task (Figure 2.7 (e)). The method proposed by Shih et al. [92] is initially designed

for photorealistic style transfer. Here we implement their approach and apply it for our

non-photorealistic style transfer. Image Melding can be applied to numerous tasks, such

as image completion, texture interpolation, image blending and texture preserving warp-

ing [17]. We adapted it for our style transfer task by viewing our task as a single-source

image synthesis problem, in which the exemplar also serves as the source (please refer to

[92] for details). Here the color transfer result T is set as the initial solution.

As shown in Figure 2.7, our method achieved visually pleasing results, whereas others

either lost the identity of the input face or entail apparent artifacts. For example, Image

Melding [17] severely distorted the face. The method by Shih et al. [92] blurred the edges

and failed to transfer the texture properly. In Image Quilting result, the majority of face

contours were broken.

2.5 Summary

A novel algorithm is presented for single-exemplar face stylization. The algorithm can

maintain the identity, content and structure of the input face, while imposing the style of
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(a) (b) (c)

Figure 2.8: Limitations of our approach: (a) Input. (b) Exemplar. (c) Results by our

method. Red rectangles highlight zones where textures are poorly transferred. The detailed

strokes featured in rectangular zones are not transferred due to lack of color variation in

the corresponding hair regions of the input image. Circular zones are featured with sharp

edges strokes, which are lost in the stylized results since the corresponding contours in the

input images have much lower color contrast.
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the exemplar. The robustness of our method is tested using inputs of varieties of subjects.

We achieve visually convincing effects for a variety of art styles, which include certain

styles of pencil drawing, oil painting, mosaic, sand painting, stippling, water color paint-

ing, and pyrography. Even though at fine level, textures such as brush stokes or stipple

dots generated by our approach may not be as clean or precisely structured as those ob-

tained by style-specific approaches, our approach has its merits in terms of flexibility and

extendability. Qualitative evaluation is performed using both real artworks and outputs of a

style-specific synthesis algorithm. The comparison with related methods also demonstrates

the advantage of our approach on face stylization tasks.

Whereas, our method fails to transfer styles with sharp lines or curves. As shown in

Figure 2.8, the sharp lines and edges alone the chin or from the hair region are not success-

fully transferred. These are probably due to nature of optimized-based texture synthesis,

which attempts to mix all the nearest neighbors.
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Chapter 3

Unsupervised Learning for

Image-to-Image Translation

While the algorithm presented in the previous Chapter has the merit of requiring only a

single exemplar, it is constrained to face photos. To perform generalized image-to-image

translation, here a learning-based method is presented based on Conditional Generative

Adversarial Networks (conditional GANs). Conditional GANs for cross-domain image-to-

image translation have made much progress recently [54, 58, 107, 70, 39, 98]. Depending

on the task complexity, thousands to millions of labeled image pairs are needed to train

a conditional GAN. However, human labeling is expensive, even impractical, and large

quantities of data may not always be available. Inspired by dual learning from natural lan-

guage translation [115], we develop a novel dual-GAN mechanism, which enables image

translators to be trained from two sets of unlabeled images from two domains. In our archi-

tecture, the primal GAN learns to translate images from domain U to those in domain V ,
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while the dual GAN learns to invert the task. The closed loop made by the primal and dual

tasks allows images from either domain to be translated and then reconstructed. Hence

a loss function that accounts for the reconstruction error of images can be used to train

the translators. Experiments on multiple image translation tasks with unlabeled data show

considerable performance gain of DualGAN over a single GAN. For some tasks, Dual-

GAN can even achieve comparable or slightly better results than conditional GAN trained

on fully labeled data.

3.1 Overview

Many image processing and computer vision tasks, e.g., image segmentation, stylization,

and abstraction, can be posed as image-to-image translation problems [39], which convert

one visual representation of an object or scene into another. Conventionally, these tasks

have been tackled separately due to their intrinsic disparities [54, 58, 107, 70, 39, 98]. It is

not until the past two years that general-purpose and end-to-end deep learning frameworks,

most notably those utilizing fully convolutional networks (FCNs) [68] and conditional gen-

erative adversarial nets (cGANs) [39], have been developed to enable a unified treatment

of these tasks.

Up to date, these general-purpose methods have all been supervised and trained with

a large number of labeled and matching image pairs . In practice however, acquiring such

training data can be time-consuming (e.g., with pixelwise or patchwise labeling) and even

unrealistic. For example, while there are plenty of photos or sketches available, photo-

sketch image pairs depicting the same people under the same pose are scarce. In other

image translation settings, e.g., converting daylight scenes to night scenes, even though
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labeled and matching image pairs can be obtained with stationary cameras, moving objects

in the scene often cause varying degrees of content discrepancies.

In this chapter, we aim to develop an unsupervised learning framework for general-

purpose image-to-image translation, which only relies on unlabeled image data, such as

two sets of photos and sketches for the photo-to-sketch conversion task. The obvious

technical challenge is how to train a translator without any data characterizing correct

translations. Our approach is inspired by dual learning from natural language process-

ing [115]. Dual learning trains two “opposite” language translators (e.g., English-to-

French and French-to-English) simultaneously by minimizing the reconstruction loss re-

sulting from a nested application of the two translators. The two translators represent a

primal-dual pair and the nested application forms a closed loop, allowing the application

of reinforcement learning. Specifically, the reconstruction loss measured over monolingual

data (either English or French) would generate informative feedback to train a bilingual

translation model.

Our work develops a dual learning framework for image-to-image translation for the

first time and differs from the original NLP dual learning method of Xia et al. [115] in two

main aspects. First, the NLP method relied on pre-trained (English and French) language

models to indicate how confident the the translator outputs are natural sentences in their

respective target languages. With general-purpose processing in mind and the realization

that such pre-trained models are difficult to obtain for many image translation tasks, our

work develops GAN discriminators [26] that are trained adversarially with the translators

to capture domain distributions. Hence, we call our learning architecture DualGAN . Fur-

thermore, we employ FCNs as translators which naturally accommodate the 2D structure

of images, rather than sequence-to-sequence translation models such as LSTM or Gated
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Recurrent Unit (GUT).

Taking two sets of unlabeled images as input, each characterizing an image domain,

DualGAN simultaneously learns two reliable image translators from one domain to the

other and hence can operate on a wide variety of image-to-image translation tasks. The ef-

fectiveness of DuanGAN is validated through comparison with both GAN (with an image-

conditional generator and the original discriminator) and conditional GAN [39]. The com-

parison results demonstrate that, for some applications, DualGAN can outperform super-

vised methods trained on labeled data.

3.2 Related Work

Since the seminal work by Goodfellow et al. [26] in 2014, a series of GAN-family methods

have been proposed for a wide variety of problems. The original GAN can learn a gen-

erator to capture the distribution of real data by introducing an adversarial discriminator

that evolves to discriminate between the real data and the fake [26]. Soon after, various

conditional GANs (cGAN) have been proposed to condition the image generation on class

labels [71], attributes [76, 117], texts [80], and images [54, 58, 107, 70, 39, 98].

Most image-conditional models were developed for specific applications such as super-

resolution [54], texture synthesis [58], style transfer from normal maps to images [107],

and video prediction [70], whereas few others were aiming for general-purpose process-

ing [39, 98]. The general-purpose solution for image-to-image translation proposed by

Isola et al. [39] requires significant number of labeled image pairs. The unsupervised

mechanism for cross-domain image conversion presented by Taigman et al. [98] can train

an image-conditional generator without paired images, but relies on a sophisticated pre-

39



trained function that maps images from either domain to an intermediate representation,

which requires labeled data in other formats.

Dual learning was first proposed by Xia et al. [115] to reduce the requirement on la-

beled data in training English-to-French and French-to-English translators. The French-to-

English translation is the dual task to English-to-French translation, and they can be trained

side-by-side. The key idea of dual learning is to set up a dual-learning game which involves

two agents, each of whom only understands one language, and can evaluate how likely the

translated are natural sentences in targeted language and to what extent the reconstructed

are consistent with the original. Such a mechanism is played alternatively on both sides,

allowing translators to be trained from monolingual data only.

Despite of a lack of parallel bilingual data, two types of feedback signals can be gener-

ated: the membership score which evaluates the likelihood of the translated texts belonging

to the targeted language, and the reconstruction error that measures the disparity between

the reconstructed sentences and the original. Both signals are assessed with the assis-

tance of application-specific domain knowledge, i.e., the pre-trained English and French

language models.

In our work, we aim for a general-purpose solution for image-to-image conversion and

hence do not utilize any domain-specific knowledge or pre-trained domain representations.

Instead, we use a domain-adaptive GAN discriminator to evaluate the membership score of

translated samples, whereas the reconstruction error is measured as the mean of absolute

difference between the reconstructed and original images within each image domain.

In CycleGAN, a concurrent work by Zhu et al. [125], the same idea for unpaired image-

to-image translation is proposed, where the primal-dual relation in DualGAN is referred to

as a cyclic mapping and their cycle consistency loss is essentially the same as our recon-
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struction loss. Superiority of CycleGAN has been demonstrated on several tasks where

paired training data hardly exist, e.g., in object transfiguration and painting style and sea-

son transfer.

Recent work by Liu and Tuzel [67], which we refer to as coupled GAN or CoGAN,

also trains two GANs together to solve image translation problems without paired training

data. Unlike DualGAN or CycleGAN, the two GANs in CoGAN are not linked to en-

force cycle consistency. Instead, CoGAN learns a joint distribution over images from two

domains. By sharing weight parameters corresponding to high level semantics in both gen-

erative and discriminative networks, CoGAN can enforce the two GANs to interpret these

image semantics in the same way. However, the weight-sharing assumption in CoGAN and

similar approaches, e.g., [7, 66], does not lead to effective general-purpose solutions as its

applicability is task-dependent, leading to unnatural image translation results, as shown in

comparative studies by CycleGAN [125].

DualGAN and CycleGAN both aim for general-purpose image-to-image translations

without requiring a joint representation to bridge the two image domains. In addition,

DualGAN trains both primal and dual GANs at the same time, allowing a reconstruction

error term to be used to generate informative feedback signals.

3.3 Method

Given two sets of unlabeled and unpaired images sampled from domains U and V , respec-

tively, the primal task of DualGAN is to learn a generator GA : U → V that maps an image

u ∈ U to an image v ∈ V , while the dual task is to train an inverse generator GB : V → U .

To realize this, we employ two GANs, the primal GAN and the dual GAN. The primal
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Figure 3.1: Network architecture and data flow chart of DualGAN for image-to-image

translation.

GAN learns the generator GA and a discriminator DA that discriminates between GA’s

fake outputs and real members of domain V . Analogously, the dual GAN learns the gen-

erator GB and a discriminator DB. The overall architecture and data flow are illustrated in

Figure 3.1.

As shown in Figure 3.1, image u ∈ U is translated to domain V using GA. How well

the translation GA(u, z) fits in V is evaluated by DA, where z is random noise, and so is z′

that appears below. GA(u, z) is then translated back to domain U using GB, which outputs

GB(GA(u, z), z′) as the reconstructed version of u. Similarly, v ∈ V is translated to U

as GB(v, z′) and then reconstructed as GA(GB(v, z′), z). The discriminator DA is trained

with v as positive samples and GA(u, z) as negative examples, whereas DB takes u as

positive and GB(v, z′) as negative. Generators GA and GB are optimized to emulate “fake”

outputs to blind the corresponding discriminators DA and DB, as well as to minimize the

two reconstruction losses ‖GA(GB(v, z′), z)− v‖ and ‖GB(GA(u, z), z′)− u‖.
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3.3.1 Objective

As in the traditional GAN, the objective of discriminators is to discriminate the generated

fake samples from the real ones. Nevertheless, here we use the loss format advocated

by Wasserstein GAN (WGAN) [5] rather than the sigmoid cross-entropy loss used in the

original GAN [26]. It is proven that the former performs better in terms of generator con-

vergence and sample quality, as well as in improving the stability of the optimization [5].

The corresponding loss functions used in DA and DB are defined as:

ldA(u, v) = DA(GA(u, z))−DA(v), (3.1)

ldB(u, v) = DB(GB(v, z′))−DB(u), (3.2)

where u ∈ U and v ∈ V .

The same loss function is used for both generators GA and GB as they share the same

objective. Previous works on conditional image synthesis found it beneficial to replace L2

distance with L1, since the former often leads to blurriness [52, 115]. Hence, we adopt L1

distance to measure the recovery error, which is added to the GAN objective to force the

translated samples to obey the domain distribution:

lg(u, v) = λU‖u−GB(GA(u, z), z′)‖+

λV ‖v −GA(GB(v, z′), z)‖

−DB(GB(v, z′))−DA(GA(u, z)),

(3.3)

where u ∈ U , v ∈ V , and λU , λV are two constant parameters. Depending on the applica-

tion, λU and λV are typically set to a value within [100.0, 1, 000.0]. If U contains natural

images and V does not (e.g., aerial photo-maps), we find it more effective to use smaller

λU than λV .
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3.3.2 Network configuration

DualGAN is constructed with identical network architecture forGA andGB. The generator

is configured with equal number of downsampling (pooling) and upsampling layers. In ad-

dition, we configure the generator with skip connections between mirrored downsampling

and upsampling layers as in [83, 39], making it a U-shaped net. Such a design enables low-

level information to be shared between input and output, which is beneficial since many

image translation problems implicitly assume alignment between image structures in the

input and output (e.g., object shapes, textures, clutter, etc.). Without the skip layers, infor-

mation from all levels has to pass through the bottleneck, typically causing significant loss

of high-frequency information. Furthermore, similar to [39], we did not explicitly provide

the noise vectors z, z′. Instead, they are provided only in the form of dropout and applied

to several layers of our generators at both training and test phases.

For discriminators, we employ the Markovian PatchGAN architecture as explored in [58],

which assumes independence between pixels distanced beyond a specific patch size and

models images only at the patch level rather than over the full image. Such a configuration

is effective in capturing local high-frequency features such as texture and style, but less

so in modeling global distributions. It fulfills our needs well, since the recovery loss en-

courages preservation of global and low-frequency information and the discriminators are

designated to capture local high-frequency information. The effectiveness of this config-

uration has been verified on various translation tasks [115]. Similar to [115], we run this

discriminator convolutionally across the image, averaging all responses to provide the ulti-

mate output. An extra advantage of such a scheme is that it requires fewer parameters, runs

faster, and has no constraints over the size of the input image. The patch size at which the

44



discriminator operates is fixed at 70×70, and the image resolutions were mostly 256×256,

same as pix2pix [39].

3.3.3 Training procedure

To optimize the DualGAN networks, we follow the training procedure proposed in WGAN [5];

see Algorithm 2. We train the discriminators ncritic steps, then one step on generators. We

employ mini-batch Stochastic Gradient Descent and apply the RMSProp solver, as momen-

tum based methods such as Adam would occasionally cause instability [5], and RMSProp

is known to perform well even on highly non-stationary problems [99, 5]. We typically

set the number of critic iterations per generator iteration ncritic to {2, 3, 4} and assign batch

size to 1-4, without noticeable differences on effectiveness in the experiments. The clipping

parameter c is normally set in [0.01, 0.1], varying by application.

Training for traditional GANs needs to carefully balance between the generator and

the discriminator, since, as the discriminator improves, the sigmoid cross-entropy loss is

locally saturated and may lead to vanishing gradients. Unlike in traditional GANs, the

Wasserstein loss is differentiable almost everywhere, resulting in a better discriminator. At

each iteration, the generators are not trained until the discriminators have been trained for

ncritic steps. Such a procedure enables the discriminators to provide more reliable gradient

information [5].

3.4 Experimental Results and Evaluation

To assess the capability of DualGAN in general-purpose image-to-image translation, we

conduct experiments on a variety of tasks, including photo-sketch conversion, label-image
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Algorithm 2 DualGAN training procedure
Require: Image set U , image set V , GANAwith generator parameters θA and discrimina-

tor parameters ωA, GANB with generator parameters θB and discriminator parameters

ωB, clipping parameter c, batch size m, and ncritic

1: Randomly initialize ωi, θi, i ∈ {A,B}

2: repeat

3: for t = 1, . . . , ncritic do

4: sample images {u(k)}mk=1 ⊆ U , {v(k)}mk=1 ⊆ V

5: update ωA to minimize 1
m

∑m
k=1 l

d
A(u(k), v(k))

6: update ωB to minimize 1
m

∑m
k=1 l

d
B(u(k), v(k))

7: clip(ωA,−c, c), clip(ωB,−c, c)

8: end for

9: sample images {u(k)}mk=1 ⊆ U , {v(k)}mk=1 ⊆ V

10: update θA, θB to minimize 1
m

∑m
k=1 l

g(u(k), v(k))

11: until convergence
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translation, and artistic stylization.

To compare DualGAN with GAN and cGAN [39], four labeled datasets are used:

PHOTO-SKETCH [108, 123], DAY-NIGHT [51], LABEL-FACADES [101], and AERIAL-

MAPS, which was directly captured from Google Map [39]. These datasets consist of cor-

responding images between two domains; they serve as ground truth (GT) and can also

be used for supervised learning. However, none of these datasets could guarantee accurate

feature alignment at the pixel level. For example, the sketches in SKETCH-PHOTO dataset

were drawn by artists and do not accurately align with the corresponding photos, moving

objects and cloud pattern changes often show up in the DAY-NIGHT dataset, and the labels

in LABEL-FACADES dataset are not always precise. This highlights, in part, the difficulty

in obtaining high quality matching image pairs.

DualGAN enables us to utilize abundant unlabeled image sources from the Web. Two

unlabeled and unpaired datasets are also tested in our experiments. The MATERIAL

dataset includes images of objects made of different materials, e.g., stone, metal, plastic,

fabric, and wood. These images were manually selected from Flickr and cover a variety

of illumination conditions, compositions, color, texture, and material sub-types [90]. This

dataset was initially used for material recognition, but is applied here for material transfer.

The OIL-CHINESE painting dataset includes artistic paintings of two disparate styles: oil

and Chinese. All images were crawled from search engines and they contain images with

varying quality, format, and size. We reformat, crop, and resize the images for training and

evaluation. In both of these datasets, no correspondence is available between images from

different domains.
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Input GT DualGAN GAN cGAN [39]

Figure 3.2: Results of day→night translation. cGAN [39] is trained with labeled data,

whereas DualGAN and GAN are trained in an unsupervised manner. DualGAN success-

fully emulates the night scenes while preserving textures in the inputs, e.g., see differences

over the cloud regions between our results and the ground truth (GT). In comparison, results

of cGAN and GAN contain much less details.
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Input GT DualGAN GAN cGAN [39]

Figure 3.3: Results of label→facade translation. DualGAN faithfully preserves the struc-

tures in the label images, even though some labels do not match well with the corresponding

photos in finer details. In contrast, results from GAN and cGAN contain many artifacts.

Over regions with label-photo misalignment, cGAN often yields blurry output (e.g., the

roof in second row and the entrance in third row).
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3.4.1 Qualitative evaluation

Using the four labeled datasets, we first compare DualGAN with GAN and cGAN [39]

on the following translation tasks: day→night (Figure 3.2), labels↔facade (Figures 3.3

and 3.10), face photo↔sketch (Figures 3.4 and 3.5), and map↔aerial photo (Figures 3.8

and 3.9). In all these tasks, cGAN was trained with labeled (i.e., paired) data, where we ran

the model and code provided in [39] and chose the optimal loss function for each task: L1

loss for facade→label and L1 + cGAN loss for the other tasks (see [39] for more details).

In contrast, DualGAN and GAN were trained in an unsupervised way, i.e., we decouple

the image pairs and then reshuffle the data. The results of GAN were generated using our

approach by setting λU = λV = 0.0 in Eq. (3.3), noting that this GAN is different from the

original GAN model [26] as it employs a conditional generator.

All three models were trained on the same training datasets and tested on novel data that

does not overlap those for training. All the training were carried out on a single GeForce

GTX Titan X GPU. At test time, all models ran in well under a second on this GPU.

Compared to GAN, in almost all cases, DualGAN produces results that are less blurry,

contain fewer artifacts, and better preserve content structures in the inputs and capture

features (e.g., texture, color, and/or style) of the target domain. We attribute the improve-

ments to the reconstruction loss, which forces the inputs to be reconstructable from outputs

through the dual generator and strengthens feedback signals that encodes the targeted dis-

tribution.

In many cases, DualGAN also compares favorably over the supervised cGAN in terms

of sharpness of the outputs and faithfulness to the input images; see Figures 3.2, 3.3, 3.4, 3.5,

and 3.8. This is encouraging since the supervision in cGAN does utilize additional im-
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age and pixel correspondences. On the other hand, when translating between photos and

semantic-based labels, such as map↔aerial and label↔facades, it is often impossible to

infer the correspondences between pixel colors and labels based on targeted distribution

alone. As a result, DualGAN may map pixels to wrong labels (see Figures 3.9 and 3.10) or

labels to wrong colors/textures (see Figures 3.3 and 3.8).

Figures 3.6 and 3.7 show image translation results obtained using the two unlabeled

datasets, including oil↔Chinese, plastic→metal, metal→stone, leather→fabric, as well as

wood↔plastic. The results demonstrate that visually convincing images can be generated

by DualGAN when no corresponding images can be found in the target domains. As well,

the DualGAN results generally contain less artifacts than those from GAN.

More results could be found in Figures 3.11, 3.13, 3.15, 3.14, 3.12, 3.16, 3.17.

3.4.2 Quantitative evaluation

To quantitatively evaluate DualGAN, we set up two user studies through Amazon Mechan-

ical Turk (AMT). The “material perceptual” test evaluates the material transfer results, in

which we mix the outputs from all material transfer tasks and let the Turkers choose the

best match based on which material they believe the objects in the image are made of. For a

total of 176 output images, each was evaluated by ten Turkers. An output image is rated as

a success if at least three Turkers selected the target material type. Success rates of various

material transfer results using different approaches are summarized in Table 3.1, showing

that DualGAN outperforms GAN by a large margin.

In addition, we run the AMT “realness score” evaluation for sketch→photo, label

map→facades, maps→aerial photo, and day→night translations. To eliminate potential
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Input GT DualGAN GAN cGAN [39]

Figure 3.4: Photo→sketch translation for faces. Results of DualGAN are generally sharper

than those from cGAN, even though the former was trained using unpaired data, whereas

the latter makes use of image correspondence.
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Input GT DualGAN GAN cGAN [39]

Figure 3.5: Results for sketch→photo translation of faces. More artifacts and blurriness

are showing up in results generated by GAN and cGAN than DualGAN.
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Input DualGAN GAN

Figure 3.6: Experimental results for translating Chinese paintings to oil paintings (without

GT available). The background grids shown in the GAN results imply that the outputs of

GAN are not as stable as those of DualGAN.
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Figure 3.7: Experimental results for various material transfer tasks. From top to bottom,

plastic→metal, metal→stone, leather→fabric, and plastic↔wood.
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Input GT DualGAN GAN cGAN [39]

Figure 3.8: Map→aerial photo translation. Without image correspondences for training,

DualGAN may map the orange-colored interstate highways to building roofs with bright

colors. Nevertheless, the DualGAN results are sharper than those from GAN and cGAN.
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Input GT DualGAN GAN) cGAN [39]

Figure 3.9: Results for aerial photo→map translation. DualGAN performs better than

GAN, but not as good as cGAN. With additional pixel correspondence information, cGAN

performs well in terms of labeling local roads, but still cannot detect interstate highways.

57



Input GT DualGAN GAN) cGAN [39]

Figure 3.10: Facades→label translation. While cGAN correctly labels various bulding

components such as windows, doors, and balconies, the overall label images are not as

detailed and structured as DualGAN’s outputs.
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U GA(U) GB(GA(U)) V GB(V ) GA(GB(V ))

Figure 3.11: day scenes→night scenes translation results by DualGAN
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V GB(V ) GA(GB(V )) V GB(V ) GA(GB(V ))

Figure 3.12: label map→photo translation results by DualGAN
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U GA(U) GB(GA(U)) U GA(U) GB(GA(U))

Figure 3.13: photo→label map translation results by DualGAN
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V GB(V ) GA(GB(V )) V GB(V ) GA(GB(V ))

Figure 3.14: Photo→sketch translation results by DualGAN
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U GA(U) GB(GA(U)) U GA(U) GB(GA(U))

Figure 3.15: sketch→photo translation results by DualGAN
63



V GB(V ) GA(GB(V )) V GB(V ) GA(GB(V ))

Figure 3.16: Chinese paintings→oil paintings translation results by DualGAN
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U GA(U) GB(GA(U)) U GA(U) GB(GA(U))

Figure 3.17: Oil painting→Chinese painting translation results by DualGAN
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bias, for each of the four evaluations, we randomly shuffle real photos and outputs from

all three approaches before showing them to Turkers. Each image is shown to 20 Turk-

ers, who were asked to score the image based on to what extent the synthesized photo

looks real. The “realness” score ranges from 0 (totally missing), 1 (bad), 2 (acceptable),

3 (good), to 4 (compelling). The average score of different approaches on various tasks

are then computed and shown in Table 3.2. The AMT study results show that DualGAN

outperforms GAN on all tasks and outperforms cGAN on two tasks as well. This indicates

that cGAN has little tolerance to misalignment and inconsistency between image pairs, but

the additional pixel-level correspondence does help cGAN correctly map labels to colors

and textures.

Finally, we compute the segmentation accuracies for facades→label and aerial→map

tasks, as reported in Tables 3.3 and 3.4. The comparison shows that DualGAN is outper-

formed by cGAN, which is expected as it is difficult to infer proper labeling without image

correspondence information from the training data.

3.5 Summary

We propose DualGAN, a novel unsupervised dual learning framework for general-purpose

image-to-image translation. The unsupervised characteristic of DualGAN enables many

real world applications, as demonstrated in this work, as well as in the concurrent work

CycleGAN [125]. Experimental results suggest that the DualGAN mechanism can signif-

icantly improve the outputs of GAN for various image-to-image translation tasks. With

unlabeled data only, DualGAN can generate comparable or even better outputs than condi-

tional GAN [39] which is trained with labeled data providing image and pixel-level corre-
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Task DualGAN GAN

plastic→wood 2/11 0/11

wood→plastic 1/11 0/11

metal→stone 2/11 0/11

stone→metal 2/11 0/11

leather→fabric 3/11 2/11

fabric→leather 2/11 1/11

plastic→metal 7/11 3/11

metal→plastic 1/11 0/11

Table 3.1: Success rates of various material transfer tasks based on the AMT “material

perceptual” test. There are 11 images in each set of transfer result, with noticeable im-

provements of DualGAN over GAN.
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Avg. “realness” score

Task DualGAN cGAN[39] GAN GT

sketch→photo 1.87 1.69 1.04 3.56

day→night 2.42 1.89 0.13 3.05

label→facades 1.89 2.59 1.43 3.33

map→aerial 2.52 2.92 1.88 3.21

Table 3.2: Average AMT “realness” scores of outputs from various tasks. The results show

that DualGAN outperforms GAN in all tasks. It also outperforms cGAN for sketch→photo

and day→night tasks, but still lag behind for label→facade and map→aerial tasks. In the

latter two tasks, the additional image correspondence in training data would help cGAN

map labels to the proper colors/textures.

Per-pixel acc. Per-class acc. Class IOU

DualGAN 0.27 0.13 0.06

cGAN [39] 0.54 0.33 0.19

GAN 0.22 0.10 0.05

Table 3.3: Segmentation accuracy for the facades→label task. DualGAN outperforms

GAN, but is not as accurate as cGAN. Without image correspondence (for cGAN), even if

DualGAN segments a region properly, it may not assign the region with a correct label.
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Per-pixel acc. Per-class acc. Class IOU

DualGAN 0.42 0.22 0.09

cGAN [39] 0.70 0.46 0.26

GAN 0.41 0.23 0.09

Table 3.4: Segmentation accuracy for the aerial→map task, for which DualGAN performs

less than satisfactorily.

spondences. Source codes of DualGAN have been released on duxingren14/DualGAN on

github.

On the other hand, our method is outperformed by conditional GAN or cGAN [39] for

certain tasks which involve semantics-based labels. This is due to the lack of pixel and label

correspondence information, which cannot be inferred from the target distribution alone.

In the future, we intend to investigate whether this limitation can be lifted with the use of a

small number of labeled data as a warm start.
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Chapter 4

Learning Multi-Scale Image Manifold

for Scale-Aware Image Fusion

This Chapter presents another learning-based approach: BranchGAN. It is a novel training

method that enables unconditioned generative adversarial networks (GANs) to learn im-

age manifolds at multiple scales. What is unique about BranchGAN is that it is trained in

multiple branches , progressively covering both the breadth and depth of the network, as

resolutions of the training images increase to reveal finer-scale features. Specifically, each

noise vector, as input to the generator network, is explicitly split into several sub-vectors,

each corresponding to and trained to learn image representations at a particular scale. Dur-

ing training, we progressively “de-freeze” the sub-vectors, one at a time, as a new set of

higher-resolution images is employed for training and more network layers are added. A

consequence of such an explicit sub-vector designation is that we can directly manipulate

and even combine latent (sub-vector) codes that are associated with specific feature scales.
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Experiments demonstrate the effectiveness of our training method in multi-scale, disen-

tangled learning of image manifolds and synthesis, without any extra labels and without

compromising quality of the synthesized high-resolution images. We further demonstrate

two new applications enabled by BranchGAN.

4.1 Overview

In recent years, unconditioned generative adversarial networks (GANs) [26] have been in-

tensively studied as a means for unsupervised representation learning and data synthesis.

Compared to their conditional counterparts [71, 117, 74, 80, 120, 40, 127], unconditioned

GANs place less burden on the training data but are less steerable at the same time. In un-

conditional GAN, a well-trained generator could synthesize novel data by sampling a ran-

dom noise vector from the learned manifold as input and altering values “parameterizing”

the dimensions of the manifold. However, this synthesis process is typically uncontrollable

and counterintuitive, since we have little understanding how each manifold dimension im-

pacts the synthesized output.

For manifold learning of images or other visual forms, the notion of feature scales is

of paramount importance. The ability to learn multi-scale or scale-invariant features often

leads to a deeper and richer understanding of representations and distributions of images.

In the last few years, scale-aware unconditioned GANs have been developed, e.g., Stack-

GAN [120], Laplacian Pyramid GAN [18] and progressively growing GAN [45], where

correlated GANs are trained in a coarse-to-fine manner, using lower- and then higher-

resolution images, with the goal of improving the quality of the final full-resolution im-

ages. However, factors which impact image features at various scales remain entangled
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in the networks. In a few most recent works, under the setting of conditional GANs, at-

tempts have been made to disentangle the latent codes which correspond to different image

attributes [19, 116, 117].

In this chapter, we introduce a novel training method that enables unconditioned GANs

to learn image manifolds at multiple scales. What is unique about our learning paradigm is

that each noise vector, as input to the generator, is explicitly split into a prescribed number

of sub-vectors, e.g., 5 for learning 256 × 256 images and 6 for 512 × 512 images, where

each sub-vector corresponds to and is trained to learn image representations at a particu-

lar scale. A direct consequence of such a sub-vector designation is that we can directly

manipulate and even combine latent (sub-vector) codes that are associated with specific

feature scales, leading to novel applications of unconditional adversarial learning that were

not possible before. Figure 4.1 shows an example of cross-scale image fusion , where we

intentionally synthesize an image by integrating the coarse-scale features of one image

with finer-scale features of another. At the high level, our learning method employs the

standard GAN framework which comes with an unconditioned generator and a discrimi-

nator, following the standard GAN training paradigm as described in [26, 79]. To achieve

multi-scale learning, our network is trained progressively, bearing some similarity to Kar-

ras et al. [45]. However, instead of progressing only on the number of network layers

and the resolutions of the training images, as in [45], our network training also progresses

over the sub-vectors corresponding to increasingly finer scales of the images. Specifically,

as shown in Figure 4.2, we start by only training for the sub-vector corresponding to the

coarsest level features, i.e., using the lowest-resolution images, while keeping the other sub-

vectors “frozen”. Then we progressively “de-freeze” the sub-vectors, one at a time, as a set

of higher-resolution images is employed for training and more network layers are added.
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Figure 4.1: Cross-scale image fusion by directly combining coarse-scale features in one

image with finer-scale features from another. Please note that x0(x ∈ {a,b}) encodes

image-wide structures and xt(t ∈ {1, 2, 3, 4}) encodes increasingly fine-scale features.

Given a pair of images, we compose new images by cross-combining coarse-scale struc-

tures and fine-scale features of the two, accomplishing expression transfer (a) and face

swap (b).
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When training for a particular scale, the network weights learned from previous trainings,

for coarser scales, are used to initialize the training. Note that after training, these weights

are often changed to adapt to the new training data. In contrast to previous works on scale-

aware unconditioned GANs that train multiple GANs [120, 18], our method trains only

one GAN. Unlike [45], our progressive training is not only over the network depth (adding

layers as image resolutions increase), but also over the dimensions of the image manifold,

explicitly designating dimensions to image scales. Another way to view the progression is

that it is over the “breadth” (and depth) of the network, leading to different scale-specific

“training branches”. Hence, we refer to our network as a BranchGAN .

What had motivated our key idea of branched GAN training and what made it work

effectively is a phenomenon we observed when experimenting with multi-branch data gen-

erators, which we coined “branch suppression”. Roughly speaking, we found that when

multiple noise vectors, with their respective training branches, are at play, GAN training

typically results in one dominant branch while the other branches are either fully or partially

suppressed ; see more details in Section 4.3.2. In other words, the already-trained weights

(branches) will have priority in maintaining their role in encoding the image structures that

are already encoded and suppress the other branches. When de-freezing one sub-vector

during progressive training, “branch suppression” helps inhibit the ability of the newly de-

frozen branch in the network to encode coarser-scale structures, thus “encouraging” it to

encode the finer-scale structures in the new set of higher-resolution training images. Note

that the inhibition or suppression is not absolute; the network weights in previously trained

branches are still altered.

For the first time, BranchGAN allows direct manipulation of scale-specific manifold

dimensions by disentangling multi-scale image representations, without introducing extra
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Figure 4.2: Training pipeline of BranchGAN. We start with both the generator (G) and

discriminator (D) having a low spatial resolution. During first training period, we feed z0

with random vectors of uniform distribution and zt ( t > 0) with zero vector 0, thus making

the linear-layer weights corresponding to zt ( t > 0) untrainable. As the training advances,

we incrementally add layers to G and D, thus increasing the spatial resolution of the gen-

erated images. Meanwhile, we “de-freeze” more z vectors for training by feeding them

with non-zero uniform-random vectors. This process is repeated until the target resolution

is reached.
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labels. We test our novel training method on several high-quality image datasets and verify

its effectiveness in learning multi-scale image representations. We also show that Branch-

GAN adds capabilities to GANs in coarse-to-fine image synthesis and scale-aware image

fusion. As a side contribution, we release one high-resolution (800× 600) image dataset to

boost research on high-quality image synthesis and manifold learning. Finally, we believe

that our observation on “branch suppression” may offer insight in other contexts of training

multi-branch convolutional and/or generative networks.

4.2 Related work

4.2.1 Multi-scale image representations

An inherent property of visual objects is that they only exist as meaningful entities over

certain ranges of scale in an image. How to describe image structures at multiple scales

remains an essential and challenging problem in image analysis, image compression, im-

age processing and image synthesis. Early methods for multi-scale image representing

such as Discrete Fourier Transformation (DFT) [3] and Discrete Wavelet Transformation

(DWT) [89] are widely used in disentangling small-scale details and large-scale structures.

Additionally, image quality metrics such as MS-SSIM [109] is widely used to evaluate im-

age structures by scales. In this chapter, DFT is employed to disentangle image structures

by frequencies (or scales).

Another scale-independent representation of images is the layer activations of a well-

trained Convolutional Neural Network (CNN) [53, 49, 94]. In CNN, top activation lay-

ers roughly represent large-scale image structures such as objects and scenes, and bot-
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tom activations represent small-scale details such as edges, colors or textures. Other than

CNN, stacked models such as Deep Belief Network (DBN) [34], Stacked AutoEncoders

(SAE) [105, 104] or multi-scale sparse Coding [86] can also be utilized to retrieve multi-

scale representations of images, though the effectiveness could be limited. In this chapter,

we employ a pre-trained V GG19 network [94] to extract image features at multiple scales.

4.2.2 Coarse-to-fine image synthesis

Scale-aware image synthesis has been explored in StackGAN [120], LAPGAN [18], and

Progressive GAN [45]. These methods attempt to synthesize higher-quality images, rather

than to learn multi-scale image manifolds. LAPGAN [18] attempts to add noise sepa-

rately/progressively to increase the variation of outputs, but the noise are added through

dropout layers (except for the first z vector); this is neither controllable nor explicit. Our

task is to explicitly learn scale-disentangled image representations, which differs from the

goal of these methods. Whereas, we extend the idea of progressive growing [45] from

progressively adding layers to progressively growing both layers and branches.

4.2.3 User-controllability in image synthesis

One stream to make image synthesis more controllable is conditional GANs or semi-

conditional GANs, which condition image synthesis on attributes [117, 19, 116], classes [74],

texts [80, 120], or images [40, 127]. These methods either require extra labels or paired im-

ages, or need strict inherent relations between priors and outputs. Our method, as a type of

unconditional GAN, conditions image generation on random noise of uniform distribution

and does not require any extra labels or priors.
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For unconditional GANs, the method known as iGAN [126] provides a way for users

to synthesize or manipulate realistic images in a more controllable way. In iGAN, users

could add certain constraints on the appearance of desired images (e.g., draw edges, add

color strokes or set up an exemplar image) and a manifold point is then optimized to satisfy

these constraints. Nonetheless, a sophisticated optimization method is required, as gradient

descent is particularly vulnerable to local minima. To resolve this issue, an extra network

that predicts manifold points from images is needed. Our method attempts to raise user-

controllability as iGAN [126] does, though we intend to improve the manifold itself rather

build a system on top of it. It is therefore possible to combine our method with iGAN.

Chen et al. proposed infoGAN that attempts to learn interpretable and disentangled latent

space with unlabeled data [12], though the latent space are not disentangled by scales.

4.2.4 Surround suppression

“Branch suppression” refers to a phenomenon observed in the training of unconditional

GANs when the generator propagates confidence from input to output through multiple

branches. We found that, under certain circumstance, one branch evolves to dominate the

output of the generator while other branches become suppressed. This observation reminds

us of another phenomenon known as “surround suppression” [15], which refers to obser-

vations that the relative firing rate of a neuron may under certain conditions decrease when

a particular stimulus is enlarged. The distinctness between the two is that “branch sup-

pression” is observed throughout the training of GANs, whereas surround suppression is

typically observed in biological neuron systems such as human brain and sensory neurons.

Limited by our knowledge on the subject matter, it remains unclear whether there are any
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meaningful links between the two forms of suppresions. Nevertheless, it is a curious ques-

tion whether “branch suppression” exists in other “multi-branch” neural networks, such as

ResNet [31], DenseNet [37], and capsule network [33].

4.3 Our method

4.3.1 Entangling of scales in traditional GAN

To examine how each dimension of the latent manifold space of unconditional GANs im-

pacts the output image, we did an investigation as shown in Figure 4.3. The metrics used to

evaluate the impact significance (IS) of each dimension on the output image are IS_DFT

and IS_V GG, which measure the variance of the output image when a given manifold

dimension is changed but other dimensions are fixed. In specific, IS_DFT measures im-

age variance within image frequency domain, whereas IS_V GG measures image variance

within V GG feature domain (the layers activations of V GG19 network). Since both DFT

and V GG network can extract multi-scale features, the two metrics can therefore evaluate

scale-wise impact significance. Note that layer poolx, x ∈ {1, 2, ..., 5} activations corre-

spond to increasingly large scale features, and higher frequency corresponds to smaller

spatial scale.

IS_DFTzx(f1, f2) =
∑
h,w,d

E
c∼U(−1,1)

σzx∼U(−1,1),zx←c

(
DFT f2f1 (G(z))

)
IS_DFTzx(f1, f2) = IS_DFTzx(f1, f2)/ E

zx∈z
IS_DFTzx(f1, f2)

(4.1)

and

IS_V GGzx(LV GG) =
∑
h,w,d

E
c∼U(−1,1)

σzx∼U(−1,1),zx←c

(
LV GG(G(z))

)
IS_V GGzx(LV GG) = IS_V GGzx(LV GG)/ E

zx∈z
IS_V GGzx(LV GG)

(4.2)
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where zx is the dimension set of z excluding zx. σzx∼U(−1.0,1.0),zx←cf(z) refers to the de-

viation of the value of f(z) when zx follows the uniform distribution U(−1.0, 1.0) and zx

is fixed as a constant vector c. G(z) is the output image of Generator G given z. h,w, d

are the height, width and depth of images (or layer activations). E(·) is the expectation

operator. In Eq. 4.1, DFT f2f1 (·) refers to the DFT of an image, and (f1, f2) is a frequency

range. In Eq. 4.2, LV GG(·) is the activation of LV GG layer of a pre-trained V GG19 net-

work [94] in terms of an input image (resized to 224× 224), where the candidate LV GG ∈

{pool1, pool2, pool3, pool4, pool5}. In order to avoid the impact of image size, IS_DFT

(or IS_V GG) is further normalized (divided by their expectation values). Greater value of

IS_DFT (or IS_V GG) means greater impact of a manifold dimension on the output.

To assess consistency of the two metrics with human perception, we conducted a user

study. We selected 48 pairs of images (18 for each dataset) with different level of varia-

tion. We hired 20 Turks to rate each pair in terms of level of variation. In the test, three

options with elaborate explanations were shown to the Turkers: (a) large-scale variation;

(b) median-scale variation; or (c) small-scale variation. The label with the most votes is

treated as ground-truth. Then we compare the human-labeled results with those estimated

by IS_DFT and IS_VGG (the scale level with highest score is used) and compute the per-

centages of agreements as shown in Table 4.1. The agreement rates of these metrics are

quite high from this preliminary study (significantly better than random). Though not per-

fect enough, the proposed metrics are the only metrics that we could think out to measure

image variation by scale.

Further, a traditional GAN is trained for evaluation. Without loss of generality, we

use the training loss and network architecture of dcgan [79] and train it with progressive
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IS_DFT & Human IS_VGG & Human IS_DFT & IS_VGG

41/48 36/48 39/48

Table 4.1: Agreement rate of different metrics.

growing methodology [45] on the celeba_hq_256× 256 dataset [45] (down-sampled from

the original 1024 × 1024 resolution). The generator takes a 100-dimensional z vector as

input.

To get overview of how each of the 100 manifold dimensions impacts the output image,

we compute the IS_DFT and IS_V GG of each dimension, summarize the number of

dimensions by value of impact significance and generate a few histograms: see Figure 4.4.

From Figure 4.3 and 4.4, we have three observations: First, the all-scale contributions

of different manifold dimensions to the output differ but do not differ much; Second, the

scale-wise contribution of a chosen manifold dimension does not vary much, which means

the manifold is far from being scale-disentangled; Third, the way in which each dimension

affects the output is neither attribute-specific nor scale-specific. BranchGAN is therefore

proposed to address these issues.

4.3.2 Branch suppression

We observed “branch suppression” in all kinds of multi-branch generators as shown in Fig-

ure 4.5, among which some are fully suppressed, some are partially suppressed. In “branch

suppression”, the already-trained weights (branches) will have priority in maintaining their

role in encoding the image structures that are already well encoded and suppress the other

branches. To explain it in more details, we present a few examples of branch suppression
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Figure 4.3: Column 1-5: G(z), given zxt ∈ {−0.8,−0.4, 0, 0.4, 0.8} and zxt ← c (c is

constant and t ∈ {1, 2, 3} is the Row number). Column 6: difference image σ(G(z)).

Column 7: IS_DFTzxt by frequencies. Column 8: IS_V GGzxt
by layers. Observing

from Column 7 and 8, we find that the value of impact significance of a specific dimension

vary no more than 0.15 by scales. (Please magnify the electronic page to get the figures

clearer.)

Figure 4.4: The statistic of dimension numbers by value of IS_DFT (upper) and IS_V GG

(lower). As shown, most dimensions have IS_DFT in (0.7, 1.3) and IS_V GG in

(0.6, 1.6). (Please magnify the electronic page to get the figures clearer.)
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in Figure 4.5.

4.3.3 BranchGAN

The architecture of the generator is the same as shown in the bottom row of Figure 4.5

except that we increase the number of z sub-vectors (each sub-vector is 30-dimensional).

For 256 × 256 image generation, we use 5 z sub-vectors. The number of z sub-vectors

is subject to change according to the resolution of output images. We use generator and

discriminator networks that are mirror images of each other and always grow in synchrony,

and use the sigmoid-cross-entropy loss as dcgan [79] for training (please find more details

in 4.3.4).

The overall training procedure of BranchGAN has been clearly and elaborately pre-

sented in Section 4.1. In brief, BranchGAN progressively adds the depth (or layers) and

broadth (or z sub-vector) to the generator, and then start training with images of higher-

resolution. During the process, “branch suppression” helps encourage the newly-added

sub-vector to encode the finer-scale structures: see Figure 4.2. At each scale, a two-staged

sub-procedure is used to avoid sudden shock to already well-trained, smaller-resolution

layers: see Figure 4.6. Note that all already-added layers of the discriminator are trainable

throughout the sub-procedure. Datasets will be made public.

4.3.4 Networks architecture and hyperparameters

Source codes of BranchGAN have been released on duxingren14/BranchGAN on github.

The detailed information about the networks architecture of generators and discriminators

are presented in Table 4.3, 4.2, 4.4, 4.5. The non-architecture hyper-parameters are listed
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Figure 4.5: Two examples of branch suppression in GANs. In these examples, we employ

the training loss and discriminator of dcgan [79]. Here we change the architecture of the

generator a bit by conditioning image generation on split z vectors (zt, t ∈ {1, 2, 3}). In

the upper row, the left branch is already well trained for image generation, and the middle

and right branches are initialized randomly (see more details about the initialization in

the 4.3.4). Then we train the GAN by following the standard GAN training procedure

as in [79]. After the training converges, the left branch dominates the output while the

other are fully suppressed, as seen from the difference image on the right. In the lower

row, the generator architecture is the same as traditional GAN except that the z vector is

split. We train the left branch till converging, then de-freeze the middle branch for training

till converging, and finally the right branch. Note that the number of training steps for

each stage are equal and the pre-trained weights (or branches) are not frozen even after

new branches are de-frozen. As a result, the middle branch is slightly suppressed and the

right branch is severely suppressed as seen from the rightmost difference images. (Please

magnify the electronic page to get the figures clearer.)
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Figure 4.6: The training sub-procedure at a specific scale level. After a new layer is added

to the generator, we first only train the last layer of the generator while holding other layers

untrainable (Stage I). After the last layer is well-trained, we then de-freeze all pre-trained

layers (the branches in green) plus the newly-added branch for training (Stage II). To avoid

sudden shock to already well-trained layers, we feed the newly de-frozen z sub-vector with

a random vector following uniform distribution U(−α, α), where α increases smoothly

from 0.0 to 1.0 throughout Stage II of the sub-procedure.
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activation size filter size

input [30], [30], [30], [30], [30] NA

concat [150] NA

linear [32768] [32768,150]

reshape [8,8,512] NA

deconv + instance_BN + lrelu [16,16,256] [5,5,512,256]

deconv + instance_BN + lrelu [32,32,128] [5,5,256,128]

deconv + instance_BN + lrelu [64,64,64] [5,5,128,64]

deconv + instance_BN + lrelu [128,128,64] [5,5,64,64]

deconv+sigmoid (output) [256,256,3] [5,5,64,3]

Table 4.2: Network architecture of the generator for 256× 256 image synthesis.

in Table 4.6. Please note that lrelu is leaky relu layer.

4.3.5 Initialization, “freeze” and “defreeze”

For the untrained linear or deconv/conv/linear layers, the filter weights are initialized with

normally random numbers N(µ, σ) and biases are initialized with 0. For instance normal-

ization layer, we initialize the scale with 1.0 and assign the center with 0.0.

We “freeze” certain branches (or weights) by feeding the corresponding z vector with
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activation size filter size

input [256,256,3] NA

conv + instance_BN + lrelu [128,128,64] [5,5,3,64]

conv + instance_BN + lrelu [64,64,64] [5,5,64,64]

conv + instance_BN + lrelu [32,32,128] [5,5,64,128]

conv + instance_BN + lrelu [16,16,256] [5,5,128,256]

conv + instance_BN + lrelu [8,8,512] [5,5,256,512]

reshape [32768] NA

linear [1] [32768,1]

Table 4.3: Network architecture of the discriminator for 256× 256 image synthesis.

activation size filter size

input [300,400,3] NA

conv + instance_BN + lrelu [150,200,64] [5,5,3,64]

conv + instance_BN + lrelu [75,100,64] [5,5,64,64]

conv + instance_BN + lrelu [38,50,64] [5,5,64,64]

conv + instance_BN + lrelu [19,25,128] [5,5,64,128]

conv + instance_BN + lrelu [10,13,256] [5,5,128,256]

conv + instance_BN + lrelu [5,7,512] [5,5,256,512]

conv + instance_BN + lrelu [17920] NA

linear [1] [17920,1]

Table 4.4: Network architecture of the discriminator for 400× 300 image synthesis.
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activation size filter size

input [30], [30], [30], [30], [30] NA

concat [150] NA

linear [17920] [17920,150]

reshape [5,7,512] NA

deconv + instance_BN + lrelu [10,13,256] [5,5,512,256]

deconv + instance_BN + lrelu [19,25,128] [5,5,256,128]

deconv + instance_BN + lrelu [37,50,64] [5,5,128,64]

deconv + instance_BN + lrelu [75,100,64] [5,5,64,64]

deconv + instance_BN + lrelu [150,200,64] [5,5,64,64]

deconv+sigmoid (output) [300,400,3] [5,5,64,3]

Table 4.5: Network architecture of the generator for 400× 300 image synthesis.
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name value notation

Optimizer AdamOptimizer

learning rate 0.0002 constant lr

beta1 0.5

beta2 0.999

#scale 5 for Celeb_hq_256× 256 and LSUNchurch_outdoor

6 for Celeb_hq_512× 512 and car_400× 300

#epoch/scale 20 for Celeb_hq_256× 256 and LSUNchurch_outdoor

12 for Celeb_hq_512× 512 and car_400× 300

#batch/epoch subject to dataset size and batch size

we use full dataset for each epoch

batch size 20 for Celeb_hq_256× 256 and LSUNchurch_outdoor limited by

12 for Celeb_hq_512× 512 and car_400× 300 GPU memory

Table 4.6: Non-architecture training hyperparameters.
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0. Here we intend to explain the reason why feeding zero vector makes the corresponding

weights untrainable.

Therefore, the activations of linear layer when fed with 0 are given by f(0) ≡ θ0 +

0 ≡ 0, where θ are the linear weights. The activations of conv/deconv layer are given by

f(0) ≡ θ ~ 0 + 0 ≡ 0 (or θ ~ 0 ≡ 0 after concatenation), where θ are filter weights. So

we have the gradients ∇fθ(0) ≡ 0. For instance normalization layer and leaky relu layer,

g(0) ≡ lrelu((0 − 0) · 1.0 + 0.0) ≡ 0. We have the gradients gβ(0) ≡ 0, where β is the

scale.

In this way, the branches (or weights) could be “frozen” when fed with 0. To “defreeze”

these branches (or weights), simply feed them with non-zero vectors.

4.4 Experimental Results and Evaluation

4.4.1 Evaluation

We evaluate our method on three datasets: LSUN church_outdoor [119], celeba_hq [45]

and car (prepared by us). The original car dataset has resolution of 800 × 600 pix-

els. To speed up the training, we use the downsampled version of celeba_hq and car

(celeba_hq_256 × 256 and car_400 × 300). All qualitative and quantitative evaluation

results are shown in Figures 4.7, 4.9, and 4.10. From these figures, we clearly observe

that our goal of scale-disentangling is well achieved, where each sub-vector learns image

representations at a particular scale. Figure 4.8 further shows the statistic results of impact

significance. We find that the value of IS_V GG and IS_DFT see much greater variance

than those of traditional GAN, which further proves the effectiveness of BranchGAN in
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r12cm

celeba_hq car church_outdoor

FID MRE FID MRE FID MRE

Layer+Branch growing (ours) 12.86 0.169 18.97 0.178 23.47 0.193

Layer-growing 12.56 0.181 19.15 0.183 23.29 0.204

Table 4.7: A comparison between BranchGAN and progressive GAN.

scale-disentangled manifold learning.

4.4.2 Experimental results on higher resolution datasets

We experiment our method on data of higher resolution: see results in Figure 4.11.

4.4.3 Comparison

We can add a comparison to progressive GAN. As shown in Table 4.7, we compute the

Frechet Inception Score (FID) and Minimum Reconstruction Error (MRE) [78] of models

trained with our branch+layer growing mechanism vs. those trained with layer growing

only. We apply the same experimental setting for both methods, e.g., # manifold dimen-

sions, # training steps, architectures of the discriminators and generators, and datasets.

The results show that their FIDs are comparable, whereas BranchGAN beats progressive

GAN in MRE, implying that the two compared GANs lead to similar image quality while

BranchGAN increases variation of the outputs. We would expect that by integrating with

techniques such as pixel normalization, WGAN-GP, minibatch standard deviation, and ad-

equate training steps for full convergence, BranchGAN can achieve better results.
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Figure 4.7: Experimental results on celeba_hq_256×256 dataset. Column 1-5: G(z), given

zzt ∈ {−0.8I,−0.4I, 0.0I, 0.4I, 0.8I} and zzt ← c (c is constant and t ∈ {0, 1, 2, 3, 4}).

Column 6: difference image σ(G(z)). Column 7: IS_DFTzt = Eztx∈zt IS_DFTztx . Col-

umn 8: IS_V GGzt = Eztx∈zt IS_V GGzx . Note that I = (1.0, 1.0, ..., 1.0). We find that

IS_DFTz0 (or IS_V GGz0) sees its maximum value in range (0, 1/16) (or pool5), which

corresponds to coarsest scale. Accordingly, IS_DFTzt (or IS_V GGzt) (t = 1, 2, 3, 4)

see their greatest value corresponding to increasingly small-scales. (Please magnify the

electronic page to get the figures clearer.)
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Figure 4.8: Statistic results of manifold (trained on celeba_hq_256 × 256 dataset) di-

mensions by value of impact significance. In contrast to those of traditional GAN as

shown in 4.4, our scale-disentangled manifolds see much greater variance of impact signif-

icance. The IS_DFT value varies in between (0.2, 3.0), and IS_V GG varies in between

(0.2, 3.5). (Please magnify the electronic page to get the figures clearer.)

4.4.4 Applications

The multi-scale image manifolds learnt with BranchGAN facilitate coarse-to-fine image

synthesis and scale-aware image fusion. For coarse-to-fine image synthesis, we develop

a UI-based application that enables users to synthesize desired images by interactively

selecting the image of interest: see Figure 4.12. The progressively-improved appearance of

the synthesized faces verifies the advantage of scale-disentangled manifolds in enhancing

user controllability. The results of scale-aware image fusion demonstrated in Figure 4.1

further highlights the amazing effectiveness of scale-disentangled manifolds learned with

BranchGAN.
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Figure 4.9: Experimental results on car_400 × 300 dataset. The notation set is the same

as the one used in Figure 4.7. IS_DFTzt (or IS_V GGzt) (t = 0, 1, 2, 3, 4, 5) see their

greatest value corresponding to increasingly small-scales. (Please magnify the electronic

page to get the figures clearer.)
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Figure 4.10: Experimental results on LSUN church_outdoor_256 × 256 dataset. The

notation set is the same as the one used in Figure 4.7. IS_DFTzt (or IS_V GGzt) (t =

0, 1, 2, 3, 4) also see their greatest value corresponding to increasingly small scales. (Please

magnify the electronic page to get the figures clearer.)
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Figure 4.11: Experimental results on celeba_hq_512 × 512 dataset. Column 1-5: G(z),

given zzt ∈ {−0.8I,−0.4I, 0.0I, 0.4I, 0.8I} and zzt ← c (c is constant and t ∈

{0, 1, 2, 3, 4, 5}). Column 6: difference image σ(G(z)). Column 7: IS_DFTzt =

Eztx∈zt IS_DFTztx . Column 8: IS_V GGzt = Eztx∈zt IS_V GGzx . Note that I =

(1.0, 1.0, ..., 1.0). We find that IS_DFTz0 (or IS_V GGz0) sees its maximum value in

range (0, 1/32) (or pool5), which corresponds to coarsest scale. Accordingly, IS_DFTzt

(or IS_V GGzt) (t = 1, 2, 3, 4, 5) see their greatest value corresponding to increasingly

small-scales. (Please magnify the electronic page to get the figures clearer.)
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Figure 4.12: Left: UI of the application. Right: images synthesized in coarse-to-fine man-

ner. With a target in mind, the user selects a most-matching face from a batch of randomly-

generated faces on the right. At coarse level, the batch of images are mapped from different

z0 values. If the user is satisfied with a coarse-level image, he or she selects it and move on

to the next scale. Then the value of z0 is fixed and a batch of images mapped from different

z1 values are displayed for selection. As a result, the user could progressively improve the

appearance of the synthesized face, as seen from the image sequences selected by the user

with the goal of synthesizing a female face on the right. The bounding box pair of the same

colors highlights image variance (yellow bbox → thinner face, red bbox → less dimple,

blue bbox→ red lip).
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4.5 Summary

Based on our observation of branch suppression when training multi-branch GANs, we

design a novel training procedure for unconditional GANs that enables multi-scale image

manifold learning. The experimental results on a couple of high-quality datasets verify

the effectiveness of our method in “partially” disentangling image manifolds by scales,

in which each manifold sub-vector encodes image structures of a specific scale. In the

future, we will boost our goal for the scale-independent image manifold learning, where

the manifold is fully scale-disentangled. Meanwhile, we will explore the potential value

of multi-scale image manifolds in tasks such as image compression, image filtering and

image denoising. A third application of multi-scale image manifold is to combine it with

iGAN [126] for scale-aware image editing. This would allow image structures of specific

scales to be manipulated, while maintaining features in other scales.
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Chapter 5

Interactively Manipulating Image Priors

for Image Generation

Approaches presented in the previous three chapters automatically synthesize result im-

ages based on conditional images. In some applications, however, it is desirable to provide

users the control on the output images. Nevertheless, unprofessional manipulations easily

produce artifacts and undermine the realism of natural images. One possible way to make

image manipulation easier for unprofessional users is to set user inputs as constraints for

optimization-based image generation, rather than “fully” accept the free-style inputs as the

final result. The previous method known as iGAN [126] serves this purpose quite well. In

specific, iGAN searches across the image manifold for the optimal manifold point that best

fits user inputs, and then infer the result from the optimal manifold point. In this way, the

user inputs are well satisfied on condition that the naturalism of the output is ensured. De-

spite the success achieved by iGAN, the output suffers poor quality and limited application.
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In this chapter, we develop an upgraded version of iGAN (iGAN-HD) that significantly

improves the state-of-the-art for manipulating high-resolution images. For high-resolution

image manipulation, the manifold learned with classic GANs does not satisfy the needs,

as the latent manifold space entangled global structures and local details (see Chapter 4).

As a result, any manipulation on local image patch will lead to global changes on image

appearance. In response to this issue, we choose and develop the multi-scale manifold

learned with BranchGAN (see Chapter 4) which well disentangles global structure and lo-

cal details. We enrich the edit operations on natural images, as well as integrating a few

techniques for GAN training that are recently developed for high-quality image generation.

We evaluate iGAN-HD on various tasks, and verify its effectiveness on manipulating im-

ages up to 512x512. Quantitative comparisons further validate the advantage of iGAN-HD

over other configurations.

5.1 Overview

Image editing/manipulation is a well established field in computer graphics. Whereas,

tools like Photoshop typically requires users to have expertise skills. For unprofessional

users, even a simple manipulation on natural images could exert artifacts and make the

edited image look fake. The major reason is that classic visual manipulations provided

in Photoshop do not place any constraints on user inputs, thus not ensuring the output

to stay close to natural image manifolds. Nonetheless, on the background of advanced

development of natural image manifold learning with Generative Adversarial Networks

(GANs) [26], it becomes doable to use the natural image manifold to limit the “free-style”

edits. The method known as iGAN [126] is the first model to do this. Specifically, rather
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than directly perform manipulations upon images, iGAN performs manipulations through

gradient-based optimization upon the image manifold, thus avoiding the output to “fall off”

the natural image manifold. iGAN provides a paradigm for manipulation on natural image

manifolds, which successfully enables free-style user manipulation while maintaining the

naturalism of outputs.

However, as iGAN uses the original DCGAN training procedure which get all layers of

the generator trained in a single decay, which proves to be incapable of generating images

larger than 256x256. To avoid loss of image quality (e.g., texture and details) after opti-

mization, a technique known as “edit transfer” is used, which performs interactive edits to

a newly generated image and then transfers the resulting changes of shape and color back

to the original image. The technique proves to be highly unstable in practice and tends to

exert poor results for images with cluttered background. In addition, the GAN model used

by iGAN only works well on structured datasets such as product images. Finally, the brush

tools provided in iGAN only allow rough changes in color and shape but do not enable

more complex manipulations.

To the end, we propose an upgraded version of iGAN which is named as iGAN-HD.

In iGAN-HD, we significantly boost the quality of output images using the “progressive

growing” training procedure (see [45] for more details) rather than the naive “all-in-one”

training procedure. For high-quality image manipulation, we find out that the classic scale-

entangled manifold does not work well in practice, as any patch-wise edits will result in

changes of the whole image. The primary reason is that the image manifold learned with

classic GANs does not disentangle representations of large-scale structures and finer-scale

details. In response, we utilize the multi-scale image manifolds learned with branched ad-

versarial learning (see Chapter 4) to relieve the effects of local edits upon global structures.
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Additionally, we significantly enrich the manipulations provided in the user interfaces. Ap-

plications of iGAN-HD include generation of images from scratch based on users scribbles

and editing of existing images.

5.2 Related Work

5.2.1 Image editing

Image editing is a well-established area in computer graphics, where an image is altered to

satisfy users’ needs. Previous editing operations such as color retouching [81, 56], sketch

drawing [11, 84] and liquifying [113] are mostly based on low-level principles, without

considering validness of global structures. More sophisticated editing methods such as

image warping [4, 6, 114], patch merging or blending [30, 77] and structural image edit-

ing [8] attempt to seek global harmonization. Nonetheless, these methods do not enforce

high-level validness about natural images and require professional skills to achieve im-

pressive results. Unprofessional edits easily produce artifacts like unrealistic colors, edge

distortion, oversmoothing or prominent repetitions [126].

5.2.2 Image manifold learning

For image manifold learning, the last decades have seen advanced development of ap-

proaches such as Restricted Boltzman Machine [35], Deep Belief Network [85], Auto-

Encoder [104], Variational Auto-Encoder [48] and GANs [26], among which the GAN-

family models are superior to others in terms of high-quality of images generated from

manifolds. While these approaches are setup to generate an image starting from a random
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vector, they do not provide interactive tools for users to control the generation process.

iGAN and the proposed iGAN-HD are methods that attempt to make image generation

from the image manifold more controllable.

Among the representation-learning GANs, info-GAN [12] and BranchGAN (see Chap-

ter 4) are specially designed to learn meaningful or interpretable manifolds. In specific,

info-GAN attempts to learn attribute-disentangled image manifold and BranchGAN aims

at learning multi-scale image manifolds. In iGAN-HD, we employ the multi-scale mani-

fold learned with BranchGAN as presented in Chapter 4. When the user only edits a local

patch, the multi-scale manifold will only optimize locally to fit the changes brought by

the edits, instead of modifying the output globally. We modify the BranchGAN a bit by

replacing the originally-used classic training method with WGAN-GP [27] to stablize the

training and avoid modal collapse.

Another stream of research attempts to increase the resolution of generated images.

Hierarchical GANs [120, 18, 38] define a generator and discriminator for each level of an

image pyramid. Durugkar et al. [20] and Wang et al. [106] use one generator and multiple

discriminators concurrently. Ghosh et al. [24] do the opposite with multiple generators and

one discriminator. The most recent work by Karras et al. [45] introduces progressively-

growing training procedure for GANs and they only use one generator and discriminator to

generate images up to 1024x1024. In this work, we adopt the progressive-growing training

mechanism for image manifold learning.
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5.2.3 Manipulation on image manifold

iGAN is proposed by Zhu et al. for interactive manipulation on image manifold [126].

However, iGAN suffers from issues such as poor image quality, inflexible manipulations

and limited generality as discussed. In iGAN-HD, we adopt the idea of performing all

manipulations through gradient-based optimization and train a network that maps images

to latent vectors. Nevertheless, the major differences are, (1) we abandon the technique of

“edit transfer”, (2) employ multi-scale image manifolds rather than classic manifolds, (3)

use more sophisticated training techniques like progressive growing and WGAN-GP, and

(4) provide additional interaction tools to facilitate users’ editing operations.

5.3 Method

5.3.1 Overview

Figure 5.1 illustrates the overall process of our approach. The operations provided in the

user interface include color brushing, edge drawing, image warping, liquifying, and patch

blending. Each of the manipulations will produce a temporary editing result. Given a well-

trained GAN generator G which takes a manifold vector z as input and outputs an image,

the final editing results are inferred from the optimal manifold point z∗ that best mimics the

temporary editing result. We discover that all manipulations could be grouped into three

paradigms, which respectively produces an image based on a masked color map (a), an

edge map (b) or a complete color map (c). The workflow of each paradigm is shown in Fig.

5.1 (a), (b), and (c). Note that Paradigm (c) differs from Paradigm (a) and (b) in terms of the

initialization of manifold point z0. In specific, Paradigm (c) initializes z0 with a pretrained

104



Figure 5.1: Overview of our approach.

encoder that maps an image to z, while Paradigm (a) and (b) initialize z0 randomly. The

objective losses of three paradigms are respectively defined as follows.

z∗mask(C,M) = argmin |C−G(z)| ·M/|M| (5.1)

where C refers to color map and M is the mask. |M| denotes the number of non-masked

pixels
∑

h,wM(h,w) (h, w are the row and column of the mask).

Z∗edge(E) = arg min |HOG(G(z))−HOG(E)| (5.2)

where E is the edge map and HOG(·) is the differentiable HOG operator [16] which

extracts a HOG descriptor from an image.
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z∗color(C) = arg min |C−G(z)| (5.3)

where C is the color map.

5.3.2 Learning multi-scale image manifold

We employ BranchGAN (see Chapter 4) that allows learning scale-disentangled image

representations without introducing extra labels. The generator used by BranchGAN is a

multi-branch generator which takes multiple scale-separate manifold vectors as input. The

principle of “branch suppression” during the process of layer-and-branch growing helps

enforce each latent vector to encode structure of separate scale (please see more detials

in [118]). To simplify the notation, we concatenate all the latent vectors and refer to the

concatenated vector as z. In addition, we replace the original training loss and per-step

training mechanism with WGAN-GP [27] to avoid modal collapse.

5.3.3 Predicting manifold vectors from priors

For Paradigm (c), we use a hybrid method to predict latent vector from priors. We trained

a network P that predicts the manifold vector based on an input image, by minimizing the

training loss l(θP ) as shown in Eq. 5.4. A well-trained Network P can only predict the near-

optimal manifold vector z0 of a given image. We then set z0 as the initial value of z and

start optimizing the objective described in Eq.5.3 to gain a finer approximation of z∗. The

two-phase hybrid method proves to be more effective than separate settings [126]. During

optimization, the gradient is generated by the objective loss and propagated backward to

the latent vector.
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l(θP ) = |G(P (C, θP ))−C)| (5.4)

where θP are weights of network P , and C is the image used for training.

For Paradigm (a) and (b), we initialize the z with a random noise vector. It is probable

that different initial values of z generate disparate results. To avoid being trapped in local

minima, the user could re-initialize z and redo the optimization. The optimization is played

the same way as Paradigm (c).

The paradigms could be joined when multiple constraints are placed. For example, the

prior could be an edge map plus a masked color map. In these cases, the latent vector is

optimized to satisfy multiple constraints. The objective is set as Eq. 5.5, where α is used to

balance between terms. We set α = 10 in our experiment.

z∗(C,M,E) = arg min |C−G(z)| ·M/|M|+ α|HOG(G(z))−HOG(E)|

z∗(C,E) = arg min |C−G(z)|+ α|HOG(G(z))−HOG(E)|
(5.5)

5.3.4 User interface

Fig. 5.2 illustrates the user interface of iGAN-HD. It consists of a main window showing

the edit zone (left) and the display zone (right). The edit zone provides various editing

operations for drawing edges, producing color strokes or manipulating an existing image.

It uses a canvas to facilitate and visualize the edits, whereas the display zone presents

the result generated based on the priors. Two types of manipulation tools are provided:

Color tools for manipulating the color map & mask and edge tools to produce the edge

map. Color tools consist of warping (point-based warping and grid warping), patch editing

(loading patch from external or selecting a patch in the current color map), color adjustment
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Figure 5.2: The user interface of iGAN-HD.

(lightening, darkening, colorizing or blending), liquify and brush. The user can undo an

edit at any time. Erasers are provided for both the color and edge manipulation.

In our experiment settings, we generate images with 256x256 resolution or larger, using

a TITAN XP GPU. As higher-resolution images require much more computing resources

and GPU memory, real-time response is not enabled. Therefore, we setup a “generate”

button which computes and display the result based on the current edits. In addition, we

generate only one result at a time. If the user is not satisfied with the result, he/she could

re-press the “generate” button to obtain a different result. Due to randomly sampled vector

z, the results generated using the same set of constraints can be different.
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Figure 5.3: The edge maps and color maps drawn by users and the corresponding image

generation results.

5.4 Experimental Results and Evaluation

We experiment iGAN-HD on three high-resolution datasets: celeba_hq (512x512 and

256x256) [45], car (400x300) (see Chapter 4), lsun church_outdoor (256x256) [119].

All the training and tests are upon a TITAN XP GPU. Limited by GPU memory, we can

only set the image size up to 512x512. Fig. 5.3, 5.4, 5.7, 5.5 and 5.6 illustrate the image

generation and editing results based various user inputs.

5.4.1 Comparison

To verify the advantage of multi-scale manifolds learned with BranchGAN (see Chapter

4) over classic manifolds, we did a controlled experiment on various manifold learning

methods. We trained four unsupervised GAN models using different training mechanism.

We unify all experimental conditions except for the training method, such as the number
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Figure 5.4: Edits by users and the corresponding results. (a) face erased. (b) face slimmed.

(c) mouth replaced with a patch from another image. (d) hair darkened. (e) mouth shut. (f)

hair brownified. (g) hair brownified & eyeshadowed & lips reddened. (h) face lightened &

lips reddened.

of manifold dimensions, the architecture of discriminator and generator, and the dataset for

training. The architecture of discriminator and generator used in the control experiment

are shown in Table 5.1 and Table 5.2. Note that instance-norm refers to Instance Normal-

ization [103]. We use celebahq (256x256) for the experiment and the number of manifold

dimensions is set as 150. For all the training, we use Adam Optimizer [47] with constant

learning rate of 0.0001 and set beta1=0.5, beta2=0.99.

The training methods for each model are DCGAN [79] (used by iGAN), WGAN-GP

110



Figure 5.5: Car image generation and editing results. (a)-(b), results based on edge maps.

(c)-(d), results based on masked color maps. (e)-(h), image editing results. (e) license plate

erased. (f) car lightened. (g) extra edge map added. (h) .

[27], WGAN-GP+layer growing and WGAN-GP+layer&branch growing (please see [45]

and [118] for more details about the technique of layer growing and branch growing). To

evaluate these methods, we use the minimum loss that measures to what extent the latent

manifold vector could be optimized to minimize the objective loss as defined in Eq. 5.3,

5.2 and 5.1. We test each model by feeding a fixed set of user inputs and compute the

average minimum loss: see Table 5.3. We find that without using layer growing, DCGAN

and WGAN-GP performs equally bad. The technique of layer growing helps improve the

results, as it enables GAN to generate high-resolution images. The technique of branch

growing further improves the results, as it enables multi-scale manifold learning.
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Figure 5.6: Church image generation and editing results. (a)-(b), results based on edge

maps. (c)-(d), results based on masked color maps. (e)-(h), image editing results.

5.5 Summary

We presented iGAN-HD, the upgraded version of iGAN, which enables unprofessional

users to manipulate natural images with free-style inputs while maintaining the naturalism

of the results. We improve iGAN on three major aspects. First, we take advantages of

a few sophisticated techniques to increase the resolution and quality of generated results.

In addition, we use multi-scale manifolds learned with BranchGAN instead of the classic

manifold by DCGAN and prove its advantages in our experiments. Finally, we significantly

enrich the interactive operations to enable more complex edits in color, shape and structure.

The codes will be made public on Github.
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Figure 5.7: Face image (512x512) generation and editing results. (a)-(b), results based on

edge maps. (c)-(d), results based on masked color maps. (e)-(h), image editing results.
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Activation Size Filter Size

input (256,256,3) –

conv+instance-norm+lrelu (128,128,64) (5,5,3,64)

conv+instance-norm+lrelu (64,64,64) (5,5,64,64)

conv+instance-norm+lrelu (32,32,128) (5,5,64,128)

conv+instance-norm+lrelu (16,16,256) (5,5,128,256)

conv+instance-norm+lrelu (8,8,512) (5,5,256,512)

reshape (32768) –

linear (1) (32768,1)

Table 5.1: The architecture of the discriminator.

Activation Size Filter Size

input (30), (30), (30), (30), (30) or (150) –

linear (32768) (32768,150)

reshape (8,8,512) –

deconv+instance-norm+lrelu (16,16,256) (5,5,512,256)

deconv+instance-norm+lrelu (32,32,128) (5,5,256,128)

deconv+instance-norm+lrelu (64,64,64) (5,5,128,64)

deconv+instance-norm+lrelu (128,128,64) (5,5,64,64)

deconv+sigmoid (output) (256,256,3) (5,5,64,3)

Table 5.2: The architecture of the generator.
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dataset celeba_hq car church_outdoor

image size 256x256 512x512 400x300 256x256

DCGAN [79] (used by iGAN) 0.24 0.26 0.29 0.27

WGAN-GP [27] 0.25 0.28 0.27 0.26

WGAN-GP + Layer Growing [45] 0.18 0.17 0.19 0.22

WGAN-GP + Layer Growing 0.15 0.14 0.17 0.18

+ Branch Growing [118]

Table 5.3: Average minimum loss when using different GAN manifolds.

115



Chapter 6

Conclusions and Future Work

This thesis presents one rule-based method and three learning-based methods for image-

conditional image synthesis. In specific, the first method is rule-based and exemplar-based

mechanism for content-specific image generation, whereas the others are learning-based

and data-driven for general-purpose image generation. As a results, the first approach

can only generate non-photorealistic (artistic-stylized) images, whereas the others do not

have such constraints. In terms of demand for user interactions, the first these methods

can synthesize images in a fully-automated manner, whereas the last approach is semi-

automated. It is notable that all four approaches are high-level methods that take content-

level image structures into consideration. Compared to previous methods, the presented

approaches can either produce more visually appealing results, or require less resources

(e.g., paired images, labeled data) and involve less assumptions (e.g., style-specific). Our

algorithms have also enabled some novel visual effects, unachievable by any prior works.

In the future, research on image-conditional image synthesis will focus on properties
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including “higher-resolution”, “self-quality-assured”, “greater flexibility about inquiries”

and “increasing novelty and diversity”. Below, we discuss several potential future direc-

tions, building on our current image-conditional image synthesis algorithms.

“Self-quality-assured image synthesis”. Current image synthesis models such as per-

ceptual loss, VAE, GAN and pixelRNN all suffer from unexpectable failure products. Fail-

ure products is a primary reason preventing fully-automated image synthesis system to be

accepted by users. In this scenario, an extra quality-assuring system or quality assessment

system is needed to guarantee the outputs to be semantically valid, aesthetically compelling

or naturalism-preserved. In the future, we would like to explore how to effectively train

image-quality assessors with unlabeled data only.

“Conditioning image synthesis on multi-modal inputs”. Enabling users to inter-

act with an image synthesis system in various manners including speech, posture, texts,

drawing and even mental image is a long-term goal. The first step would be develop-

ing algorithms that condition image synthesis on multi-modal inputs (e.g., texts+drawing,

speech+posture). In the future, we would like to investigate novel neural architectures that

could effectively generate images based on multi-modal priors.
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