36,726 research outputs found

    Brain-Controlled Multi-Robot at Servo-Control Level Based on Nonlinear Model Predictive Control

    Get PDF
    Using a brain-computer interface (BCI) rather than limbs to control multiple robots (i.e., brain-controlled multi-robots) can better assist people with disabilities in daily life than a brain-controlled single robot. For example, one person with disabilities can move by a brain-controlled wheelchair (leader robot) and simultaneously transport objects by follower robots. In this paper, we explore how to control the direction, speed, and formation of a brain-controlled multi-robot system (consisting of leader and follower robots) for the first time and propose a novel multi-robot predictive control framework (MRPCF) that can track users' control intents and ensure the safety of multiple robots. The MRPCF consists of the leader controller, follower controller, and formation planner. We build a whole brain-controlled multi-robot physical system for the first time and test the proposed system through human-in-the-loop actual experiments. The experimental results indicate that the proposed system can track users' direction, speed, and formation control intents when guaranteeing multiple robots’ safety. This paper can promote the study of brain-controlled robots and multi-robot systems and provide some novel views into human-machine collaboration and integration

    Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm

    Get PDF
    In this paper we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties of the robot’s body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators, and the compliance of its actuated joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate control rules

    Welcoming Robots into the Moral Circle: A Defence of Ethical Behaviourism

    Get PDF
    Can robots have significant moral status? This is an emerging topic of debate among roboticists and ethicists. This paper makes three contributions to this debate. First, it presents a theory – ‘ethical behaviourism’ – which holds that robots can have significant moral status if they are roughly performatively equivalent to other entities that have significant moral status. This theory is then defended from seven objections. Second, taking this theoretical position onboard, it is argued that the performative threshold that robots need to cross in order to be afforded significant moral status may not be that high and that they may soon cross it (if they haven’t done so already). Finally, the implications of this for our procreative duties to robots are considered, and it is argued that we may need to take seriously a duty of ‘procreative beneficence’ towards robots

    Benchmarking Cerebellar Control

    Get PDF
    Cerebellar models have long been advocated as viable models for robot dynamics control. Building on an increasing insight in and knowledge of the biological cerebellum, many models have been greatly refined, of which some computational models have emerged with useful properties with respect to robot dynamics control. Looking at the application side, however, there is a totally different picture. Not only is there not one robot on the market which uses anything remotely connected with cerebellar control, but even in research labs most testbeds for cerebellar models are restricted to toy problems. Such applications hardly ever exceed the complexity of a 2 DoF simulated robot arm; a task which is hardly representative for the field of robotics, or relates to realistic applications. In order to bring the amalgamation of the two fields forwards, we advocate the use of a set of robotics benchmarks, on which existing and new computational cerebellar models can be comparatively tested. It is clear that the traditional approach to solve robotics dynamics loses ground with the advancing complexity of robotic structures; there is a desire for adaptive methods which can compete as traditional control methods do for traditional robots. In this paper we try to lay down the successes and problems in the fields of cerebellar modelling as well as robot dynamics control. By analyzing the common ground, a set of benchmarks is suggested which may serve as typical robot applications for cerebellar models

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    BCI-Based Navigation in Virtual and Real Environments

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de AndalucĂ­a (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF
    • …
    corecore