19 research outputs found

    Emergence of a stable cortical map for neuroprosthetic control.

    Get PDF
    Cortical control of neuroprosthetic devices is known to require neuronal adaptations. It remains unclear whether a stable cortical representation for prosthetic function can be stored and recalled in a manner that mimics our natural recall of motor skills. Especially in light of the mixed evidence for a stationary neuron-behavior relationship in cortical motor areas, understanding this relationship during long-term neuroprosthetic control can elucidate principles of neural plasticity as well as improve prosthetic function. Here, we paired stable recordings from ensembles of primary motor cortex neurons in macaque monkeys with a constant decoder that transforms neural activity to prosthetic movements. Proficient control was closely linked to the emergence of a surprisingly stable pattern of ensemble activity, indicating that the motor cortex can consolidate a neural representation for prosthetic control in the presence of a constant decoder. The importance of such a cortical map was evident in that small perturbations to either the size of the neural ensemble or to the decoder could reversibly disrupt function. Moreover, once a cortical map became consolidated, a second map could be learned and stored. Thus, long-term use of a neuroprosthetic device is associated with the formation of a cortical map for prosthetic function that is stable across time, readily recalled, resistant to interference, and resembles a putative memory engram

    Brain-CAVE Interface Based on Steady-State Visual Evoked Potential

    Get PDF

    Characterizing Motor System to Improve Training Protocols Used in Brain-Machine Interfaces Based on Motor Imagery

    Get PDF
    Motor imagery (MI)-based brain-machine interface (BMI) is a technology under development that actively modifies users’ perception and cognition through mental tasks, so as to decode their intentions from their neural oscillations, and thereby bringing some kind of activation. So far, MI as control task in BMIs has been seen as a skill that must be acquired, but neither user conditions nor controlled learning conditions have been taken into account. As motor system is a complex mechanism trained along lifetime, and MI-based BMI attempts to decode motor intentions from neural oscillations in order to put a device into action, motor mechanisms should be considered when prototyping BMI systems. It is hypothesized that the best way to acquire MI skills is following the same rules humans obey to move around the world. On this basis, new training paradigms consisting of ecological environments, identification of control tasks according to the ecological environment, transparent mapping, and multisensory feedback are proposed in this chapter. These new MI training paradigms take advantages of previous knowledge of users and facilitate the generation of mental image due to the automatic development of sensory predictions and motor behavior patterns in the brain. Furthermore, the effectuation of MI as an actual movement would make users feel that their mental images are being executed, and the resulting sensory feedback may allow forward model readjusting the imaginary movement in course

    Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    Get PDF
    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics.We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5[plus-over-minus sign]0.5 s (mean[plus-over-minus sign]s.d.) . The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25[plus-over-minus sign]3 single units by a factor of 7.0[plus-over-minus sign]0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.National Institutes of Health (U.S.) (Grant R01 DC009899)National Institutes of Health (U.S.) (Grant RC1 HD063931)National Institutes of Health (U.S.) (Grant N01 HD053403)National Institutes of Health (U.S.) (Grant 5K01 NS057389)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385)United States. Dept. of Veterans Affairs (Office of Research and Development, Rehabilitation R&D Service)Massachusetts General Hospital (Deane Institute for Integrated Research on Atrial Fibrillation and Stroke)Doris Duke Charitable FoundationSpaulding Rehabilitation Hospita

    Cyber-Workstation for Computational Neuroscience

    Get PDF
    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface

    A Symbiotic Brain-Machine Interface through Value-Based Decision Making

    Get PDF
    BACKGROUND: In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC). METHODOLOGY: The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1) and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. CONCLUSIONS: Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward interdependency in the brain

    The Design and Implementation of an Extensible Brain-Computer Interface

    Get PDF
    An implantable brain computer interface: BCI) includes tissue interface hardware, signal conditioning circuitry, analog-to-digital conversion: ADC) circuitry and some sort of computing hardware to discriminate desired waveforms from noise. Within an experimental paradigm the tissue interface and ADC hardware will rarely change. Recent literature suggests it is often the specific implementation of waveform discrimination that can limit the usefulness and lifespan of a particular BCI design. If the discrimination techniques are implemented in on-board software, experimenters gain a level of flexibility not currently available in published designs. To this end, I have developed a firmware library to acquire data sampled from an ADC, discriminate the signal for desired waveforms employing a user-defined function, and perform arbitrary tasks. I then used this design to develop an embedded BCI built upon the popular Texas Instruments MSP430 microcontroller platform. This system can operate on multiple channels simultaneously and is not fundamentally limited in the number of channels that can be processed. The resulting system represents a viable platform that can ease the design, development and use of BCI devices for a variety of applications

    Low-noise Amplifier for Neural Recording

    Get PDF
    With a combination of engineering approaches and neurophysiological knowledge of the central nervous system, a new generation of medical devices is being developed to link groups of neurons with microelectronic systems. By doing this, researchers are acquiring fundamental knowledge of the mechanisms of disease and innovating treatments for disabilities in patients who have a failure of communication along neural pathways. A low-noise and low-power analog front-end circuit is one of the primary requirements for neural recording. The main function for the front-end amplifier is to provide gain over the bandwidth of neural signals and to reject undesired frequency components. The chip developed in this thesis is a field-programmable analog front-end amplifier consisting of 16 programmable channels with tunable frequency response. A capacitively coupled two-stage amplifier is used. The first-stage amplifier is a Low-Noise Amplifier (LNA), as it directly interfaces with the neural recording micro-electrodes; the second stage is a high gain and high swing amplifier. A MOS resistor in the feedback path is used to get tunable low-cut-off frequency and reject the dc offset voltage. Our design builds upon previous recording chips designed by two former graduate stu- dents in our lab. In our design, the circuits are optimized for low noise. Our simulations show the recording channel has a gain of 77.9 dB and input-referred noise of 6.95 µV rms(Root-Mean-Square voltage) over 750 Hz to 6.9 kHz. The chip is fabricated in AMS 0.35 µm CMOS technology for a total die area of 3 x 3 mm 2 and Total Power Dissipation (TPD) of 2.9 mW. To verify the functionality and adherence to the design specifications it will be tested on Printed-Circuit-Board
    corecore