4 research outputs found

    Brain oscillations in a random neural network

    Full text link
    [EN] It is well-known that rhythmic patterns of neural activity appear both in the normal and abnormal function of the brain. Apart from the standard bands of electric oscillations found in the electroencephalogram (EEG): from alpha (8-12 Hz) to delta waves (1-4 Hz), synchronized firing of neural populations characterize some complex cognitive functions such as memory, attention and consciousness. In the case of electrocardiogram (ECG) it is usually recognized that oscillations can be understood as the limit cycle of an underlying non-linear process in heart dynamics. However, the situation is not so clear for EEG and the origin and purpose of neural oscillations are still the subject of a heated debate. Our model is a version of the standard SIRS model from epidemiology in which susceptible, infected and recovered sites represent quiescent, firing and refractory neurons, respectively. Here we show that, in a SIRS random network epidemic model for neural activity, self-sustained oscillations appear in a restricted parameter region of the transition probabilities. This could explain the role of synchronized oscillations as a discriminant process for internal or external stimuli in brain dynamics. (C) 2011 Elsevier Ltd. All rights reserved.This work was supported by grant from the Universidad Politecnica de Valencia PAID-06-09 ref: 2588 and FIS Research Grant PI10/01433 from the Instituto de Salud Carlos III.Acedo Rodríguez, L.; Moraño Fernández, JA. (2013). Brain oscillations in a random neural network. Mathematical and Computer Modelling. 57(7-8):1768-1772. https://doi.org/10.1016/j.mcm.2011.11.02817681772577-

    Random Network Models to Predict the Long-Term Impact of HPV Vaccination on Genital Warts

    Full text link
    [EN] The Human papillomaviruses (HPV) vaccine induces a herd immunity effect in genital warts when a large number of the population is vaccinated. This aspect should be taken into account when devising new vaccine strategies, like vaccination at older ages or male vaccination. Therefore, it is important to develop mathematical models with good predictive capacities. We devised a sexual contact network that was calibrated to simulate the Spanish epidemiology of different HPV genotypes. Through this model, we simulated the scenario that occurred in Australia in 2007, where 12¿13 year-old girls were vaccinated with a three-dose schedule of a vaccine containing genotypes 6 and 11, which protect against genital warts, and also a catch-up program in women up to 26 years of age. Vaccine coverage were 73% in girls with three doses and with coverage rates decreasing with age until 52% for 20¿26 year-olds. A fast 59% reduction in the genital warts diagnoses occurred in the model in the first years after the start of the program, similar to what was described in the literature.We are grateful for the support from Sanofi Pasteur. The authors would also like to thank M. Diaz-Sanchis from the Institut Catala d'Oncologia (ICO) for her useful comments and the data provided on HPV prevalence. We would also like to thank the ICO for the HPV information centre at http://hpvcentre.net.Diez-Domingo, J.; Sánchez-Alonso, V.; Villanueva Micó, RJ.; Acedo Rodríguez, L.; Moraño Fernández, JA.; Villanueva-Oller, J. (2017). Random Network Models to Predict the Long-Term Impact of HPV Vaccination on Genital Warts. Viruses. 9(10). doi:10.3390/v9100300S91

    Cellular automata and artificial brain dynamics

    Full text link
    [EN] Brain dynamics, neuron activity, information transfer in brains, etc., are a vast field where a large number of questions remain unsolved. Nowadays, computer simulation is playing a key role in the study of such an immense variety of problems. In this work, we explored the possibility of studying brain dynamics using cellular automata, more precisely the famous Game of Life (GoL). The model has some important features (i.e., pseudo-criticality, 1/f noise, universal computing), which represent good reasons for its use in brain dynamics modelling. We have also considered that the model maintains sufficient flexibility. For instance, the timestep is arbitrary, as are the spatial dimensions. As first steps in our study, we used the GoL to simulate the evolution of several neurons (i.e., a statistically significant set, typically a million neurons) and their interactions with the surrounding ones, as well as signal transfer in some simple scenarios. The way that signals (or life) propagate across the grid was described, along with a discussion on how this model could be compared with brain dynamics. Further work and variations of the model were also examined.This work was partially supported by the European Union's Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement no 316165. This work was done with the support of the Czech Science Foundation, project 17-17921S.Fraile, A.; Panagiotakis, E.; Christakis, N.; Acedo Rodríguez, L. (2018). Cellular automata and artificial brain dynamics. Mathematical and Computational Applications (Online). 23(4):1-23. https://doi.org/10.3390/mca23040075S123234TURING, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236), 433-460. doi:10.1093/mind/lix.236.433Sarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys, 32(1), 80-107. doi:10.1145/349194.349202Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular Automata Approaches to Biological Modeling. Journal of Theoretical Biology, 160(1), 97-133. doi:10.1006/jtbi.1993.1007Boccara, N., Roblin, O., & Roger, M. (1994). Automata network predator-prey model with pursuit and evasion. Physical Review E, 50(6), 4531-4541. doi:10.1103/physreve.50.4531Gerhardt, M., & Schuster, H. (1989). A cellular automaton describing the formation of spatially ordered structures in chemical systems. Physica D: Nonlinear Phenomena, 36(3), 209-221. doi:10.1016/0167-2789(89)90081-xZhu, M. F., Lee, S. Y., & Hong, C. P. (2004). Modified cellular automaton model for the prediction of dendritic growth with melt convection. Physical Review E, 69(6). doi:10.1103/physreve.69.061610KANSAL, A. R., TORQUATO, S., HARSH, G. R., CHIOCCA, E. A., & DEISBOECK, T. S. (2000). Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton. Journal of Theoretical Biology, 203(4), 367-382. doi:10.1006/jtbi.2000.2000Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554-2558. doi:10.1073/pnas.79.8.2554TSOUTSOURAS, V., SIRAKOULIS, G. C., PAVLOS, G. P., & ILIOPOULOS, A. C. (2012). SIMULATION OF HEALTHY AND EPILEPTIFORM BRAIN ACTIVITY USING CELLULAR AUTOMATA. International Journal of Bifurcation and Chaos, 22(09), 1250229. doi:10.1142/s021812741250229xAcedo, L., Lamprianidou, E., Moraño, J.-A., Villanueva-Oller, J., & Villanueva, R.-J. (2015). Firing patterns in a random network cellular automata model of the brain. Physica A: Statistical Mechanics and its Applications, 435, 111-119. doi:10.1016/j.physa.2015.05.017Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics, 6(10), 744-750. doi:10.1038/nphys1803Priesemann, V. (2014). Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Frontiers in Systems Neuroscience, 8. doi:10.3389/fnsys.2014.00108Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena, 42(1-3), 12-37. doi:10.1016/0167-2789(90)90064-vFriedman, N., Ito, S., Brinkman, B. A. W., Shimono, M., DeVille, R. E. L., Dahmen, K. A., … Butler, T. C. (2012). Universal Critical Dynamics in High Resolution Neuronal Avalanche Data. Physical Review Letters, 108(20). doi:10.1103/physrevlett.108.208102Kello, C. T. (2013). Critical branching neural networks. Psychological Review, 120(1), 230-254. doi:10.1037/a0030970Werner, G. (2007). Metastability, criticality and phase transitions in brain and its models. Biosystems, 90(2), 496-508. doi:10.1016/j.biosystems.2006.12.001Bak, P., Chen, K., & Creutz, M. (1989). Self-organized criticality in the ’Game of Life". Nature, 342(6251), 780-782. doi:10.1038/342780a0Hemmingsson, J. (1995). Consistent results on ‘Life’. Physica D: Nonlinear Phenomena, 80(1-2), 151-153. doi:10.1016/0167-2789(95)90071-3Nordfalk, J., & Alstrøm, P. (1996). Phase transitions near the «game of Life». Physical Review E, 54(2), R1025-R1028. doi:10.1103/physreve.54.r1025Ninagawa, S., Yoneda, M., & Hirose, S. (1998). 1ƒ fluctuation in the «Game of Life». Physica D: Nonlinear Phenomena, 118(1-2), 49-52. doi:10.1016/s0167-2789(98)00025-6Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P., … Paradisi, P. (2009). Spontaneous brain activity as a source of ideal1/fnoise. Physical Review E, 80(6). doi:10.1103/physreve.80.061914Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700-711. doi:10.1038/nrn2201Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations. The Journal of Neuroscience, 21(4), 1370-1377. doi:10.1523/jneurosci.21-04-01370.2001Gilden, D., Thornton, T., & Mallon, M. (1995). 1/f noise in human cognition. Science, 267(5205), 1837-1839. doi:10.1126/science.7892611Bédard, C., Kröger, H., & Destexhe, A. (2006). Does the1/fFrequency Scaling of Brain Signals Reflect Self-Organized Critical States? Physical Review Letters, 97(11). doi:10.1103/physrevlett.97.118102Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), 601-644. doi:10.1103/revmodphys.55.601“Life Universal Computer”http://www.igblan.free-online.co.uk/igblan/ca/Bagnoli, F., Rechtman, R., & Ruffo, S. (1991). Some facts of life. Physica A: Statistical Mechanics and its Applications, 171(2), 249-264. doi:10.1016/0378-4371(91)90277-jGarcia, J. B. C., Gomes, M. A. F., Jyh, T. I., Ren, T. I., & Sales, T. R. M. (1993). Nonlinear dynamics of the cellular-automaton ‘‘game of Life’’. Physical Review E, 48(5), 3345-3351. doi:10.1103/physreve.48.3345Huang, S.-Y., Zou, X.-W., Tan, Z.-J., & Jin, Z.-Z. (2003). Network-induced nonequilibrium phase transition in the «game of Life». Physical Review E, 67(2). doi:10.1103/physreve.67.026107Blok, H. J., & Bergersen, B. (1999). Synchronous versus asynchronous updating in the «game of Life». Physical Review E, 59(4), 3876-3879. doi:10.1103/physreve.59.3876Schönfisch, B., & de Roos, A. (1999). Synchronous and asynchronous updating in cellular automata. Biosystems, 51(3), 123-143. doi:10.1016/s0303-2647(99)00025-8Reia, S. M., & Kinouchi, O. (2014). Conway’s game of life is a near-critical metastable state in the multiverse of cellular automata. Physical Review E, 89(5). doi:10.1103/physreve.89.052123De la Torre, A. C., & Mártin, H. O. (1997). A survey of cellular automata like the «game of life». Physica A: Statistical Mechanics and its Applications, 240(3-4), 560-570. doi:10.1016/s0378-4371(97)00046-0Beer, R. D. (2004). Autopoiesis and Cognition in the Game of Life. Artificial Life, 10(3), 309-326. doi:10.1162/1064546041255539Beer, R. D. (2014). The Cognitive Domain of a Glider in the Game of Life. Artificial Life, 20(2), 183-206. doi:10.1162/artl_a_00125Yuste, S. B., & Acedo, L. (2000). Number of distinct sites visited byNrandom walkers on a Euclidean lattice. Physical Review E, 61(3), 2340-2347. doi:10.1103/physreve.61.2340Lachaux, J.-P., Pezard, L., Garnero, L., Pelte, C., Renault, B., Varela, F. J., & Martinerie, J. (1997). Spatial extension of brain activity fools the single-channel reconstruction of EEG dynamics. Human Brain Mapping, 5(1), 26-47. doi:10.1002/(sici)1097-0193(1997)5:13.0.co;2-pMcDowell, J. E., Kissler, J. M., Berg, P., Dyckman, K. A., Gao, Y., Rockstroh, B., & Clementz, B. A. (2005). Electroencephalography/magnetoencephalography study of cortical activities preceding prosaccades and antisaccades. NeuroReport, 16(7), 663-668. doi:10.1097/00001756-200505120-00002Holsheimer, J., & Feenstra, B. W. . (1977). Volume conduction and EEG measurements within the brain: A quantitative approach to the influence of electrical spread on the linear relationship of activity measured at different locations. Electroencephalography and Clinical Neurophysiology, 43(1), 52-58. doi:10.1016/0013-4694(77)90194-8Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-544. doi:10.1113/jphysiol.1952.sp004764Porooshani, H., Porooshani, A. H., Gannon, L., & Kyle, G. M. (2004). Speed of progression of migrainous visual aura measured by sequential field assessment. Neuro-Ophthalmology, 28(2), 101-105. doi:10.1076/noph.28.2.101.23739Hutsler, J. J. (2003). The specialized structure of human language cortex: Pyramidal cell size asymmetries within auditory and language-associated regions of the temporal lobes. Brain and Language, 86(2), 226-242. doi:10.1016/s0093-934x(02)00531-xWilson, H. R., & Cowan, J. D. (1972). Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophysical Journal, 12(1), 1-24. doi:10.1016/s0006-3495(72)86068-5Conway’s Game of Life. Examples of patternshttps://en.wikipedia.org/wiki/Conway%27s_Game_of_Life#Examples_of_patternsGardner, M. (1970). Mathematical Games. Scientific American, 223(4), 120-123. doi:10.1038/scientificamerican1070-120Packard, N. H., & Wolfram, S. (1985). Two-dimensional cellular automata. Journal of Statistical Physics, 38(5-6), 901-946. doi:10.1007/bf01010423Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., … Smith, M. A. (2001). Oxidative Damage Is the Earliest Event in Alzheimer Disease. Journal of Neuropathology & Experimental Neurology, 60(8), 759-767. doi:10.1093/jnen/60.8.759Kitamura, T., Ogawa, S. K., Roy, D. S., Okuyama, T., Morrissey, M. D., Smith, L. M., … Tonegawa, S. (2017). Engrams and circuits crucial for systems consolidation of a memory. Science, 356(6333), 73-78. doi:10.1126/science.aam6808Anderson, P. W. (1972). More Is Different. Science, 177(4047), 393-396. doi:10.1126/science.177.4047.39

    Mathematical Modelling in Engineering & Human Behaviour 2018

    Get PDF
    This book includes papers in cross-disciplinary applications of mathematical modelling: from medicine to linguistics, social problems, and more. Based on cutting-edge research, each chapter is focused on a different problem of modelling human behaviour or engineering problems at different levels. The reader would find this book to be a useful reference in identifying problems of interest in social, medicine and engineering sciences, and in developing mathematical models that could be used to successfully predict behaviours and obtain practical information for specialised practitioners. This book is a must-read for anyone interested in the new developments of applied mathematics in connection with epidemics, medical modelling, social issues, random differential equations and numerical methods
    corecore