18,882 research outputs found

    Brain Natriuretic Peptide Levels Predict Morbidity and Mortality in Haemodialysis Patients

    Get PDF
    Background: Brain natriuretic peptide is a predictor of mortality in multiple cardiovascular diseases but its value in patients with chronic kidney disease is still a matter of debate. Patients and methods: We studied 48 haemodialysis patients with mean age 70.0±13.9 years,62.5% female, 43.8% diabetics, with a mean haemodialysis time of 38.1±29.3 months. To evaluate the role of brain natriuretic peptide as a prognostic factor in this population we performed a two-session evaluation of pre- and postmid-week haemodialysis plasma brain natriuretic peptide concentrations and correlated them with hospitalisation and overall and cardiovascular mortality over a two-year period. Results: There were no significant variations in pre– and post-haemodialysis plasma brain natriuretic peptide concentrations. Pre- and post-haemodialysis brain natriuretic peptide concentrations were significantly greater in patients who died from all causes(p=0.034 and p=0.001, respectively) and from cardiovascular causes (p=0.043 and p=0.001, respectively). Patients who were hospitalised in the two-year study period also presented greater pre- and posthaemodialysis brain natriuretic peptide concentrations(p=0.03 and p=0.036, respectively). Patients with mean brain natriuretic peptide concentrations ≥ 390 pg/mL showed a significantly lower survival at the end of the two-year study period. Conclusion: Brain natriuretic peptide was a good predictor of morbidity and mortality (overall and cardiovascular) in our population

    Plasma brain natriuretic peptide as a surrogate marker for cardioembolic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardioembolic stroke generally results in more severe disability, since it typically has a larger ischemic area than the other types of ischemic stroke. However, it is difficult to differentiate cardioembolic stroke from non-cardioembolic stroke (atherothrombotic stroke and lacunar stroke). In this study, we evaluated the levels of plasma brain natriuretic peptide in acute ischemic stroke patients with cardioembolic stroke or non-cardioembolic stroke, and assessed the prediction factors of plasma brain natriuretic peptide and whether we could differentiate between stroke subtypes on the basis of plasma brain natriuretic peptide concentrations in addition to patient's clinical variables.</p> <p>Methods</p> <p>Our patient cohort consisted of 131 consecutive patients with acute cerebral infarction who were admitted to Kagawa University School of Medicine Hospital from January 1, 2005 to December 31, 2007. The mean age of patients (43 females, 88 males) was 69.6 ± 10.1 years. Sixty-two patients had cardioembolic stroke; the remaining 69 patients had non-cardioembolic stroke (including atherothrombotic stroke, lacunar stroke, or the other). Clinical variables and the plasma brain natriuretic peptide were evaluated in all patients.</p> <p>Results</p> <p>Plasma brain natriuretic peptide was linearly associated with atrial fibrillation, heart failure, chronic renal failure, and left atrial diameter, independently (F<sub>4,126 </sub>= 27.6, p < 0.0001; adjusted R<sup>2 </sup>= 0.45). Furthermore, atrial fibrillation, mitral regurgitation, plasma brain natriuretic peptide (> 77 pg/ml), and left atrial diameter (> 36 mm) were statistically significant independent predictors of cardioembolic stroke in the multivariable setting (Χ<sup>2 </sup>= 127.5, p < 0.001).</p> <p>Conclusion</p> <p>It was suggested that cardioembolic stroke was strongly predicted with atrial fibrillation and plasma brain natriuretic peptide. Plasma brain natriuretic peptide can be a surrogate marker for cardioembolic stroke.</p

    Changes in Serum Natriuretic Peptide Levels after Percutaneous Closure of Small to Moderate Ventricular Septal Defects

    Get PDF
    Background. B-type natriuretic peptide has been shown to be a very sensitive and specific marker of heart failure. In this study, we aimed to investigate the effect of percutaneous closure of ventricular septal defects with Amplatzer septal occluders on brain natriuretic peptide levels. Methods. Between 2008 and 2011, 23 patients underwent successfully percutaneous ventricular septal defect closure in 4 cardiology centers. Brain natriuretic peptide levels were measured in nine patients (4 male, mean ages were 25.3 ± 14.3) who underwent percutaneous closure with Amplatzer occluders for membranous or muscular ventricular septal defects were enrolled in the study. Brain natriuretic peptide levels were measured one day before and one month after the closure. Patients were evaluated clinically and by echocardiography one month after the procedure. Results. Percutaneous closures of ventricular septal defects were successfully performed in all patients. There was not any significant adverse event in patients group during followup. Decrease in brain natriuretic peptide levels after closure were statistically significant (97.3 ± 78.6 versus 26.8 ± 15.6, P = 0.013). Conclusion. Brain Natriuretic Peptide levels are elevated in patients with ventricular septal defects as compared to controls. Percutaneous closure of Ventricular Septal Defect with Amplatzer occluders decreases the BNP levels

    N-Terminal Brain Natriuretic Peptide First Week After Burn Injury

    Get PDF
    B-type natriuretic peptide has shown promising results as a biomarker for acute kidney injury in general intensive care patients. It may also indirectly reflect fluid balance of the circulation. Among burn patients, it has been observed to indicate excessive fluid resuscitation and organ dysfunction, although its clinical use to indicate acute kidney injury or guide fluid resuscitation has not been validated. The aim of this study was to evaluate whether the N-terminal pro-brain natriuretic peptide values are related to the amount of fluids given after severe burn injury and whether it can act as a novel biomarker for acute kidney injury in these patients. Nineteen consecutive burn patients were included. Plasma N-terminal pro-brain natriuretic peptide was measured daily during 1 week from admission. Other variables such as laboratory values and intravenous infusions were also recorded. The association between acute kidney injury and N-terminal pro-brain natriuretic peptide values was analyzed with a multivariable panel regression model, adjusted for burned total body surface area, age, body mass index, and laboratory values. N-terminal pro-brain natriuretic peptide values varied between single patients, and even more between the patients who developed acute kidney injury. Older age, lower body mass index, and cumulative infusions were independently associated with higher N-terminal pro-brain natriuretic peptide values, whereas acute kidney injury was not. N-terminal pro-brain natriuretic peptide values correlated with cumulative infusions given during the first week. The authors could not validate the role of N-terminal probrain natriuretic peptide as a biomarker for acute kidney injury in burns.Peer reviewe

    Natriuretic Peptides, Diagnostic and Prognostic Biomarkers

    Get PDF
    In humans, the natriuretic peptide family consists of three different types of peptides: atrial natriuretic peptide (synonym: atrial natriuretic factor), B-type natriuretic peptide (synonym: brain natriuretic peptide) and C-natriuretic peptide.1 Atrial natriuretic peptide (ANP) was the fi rst natriuretic peptide to be discovered and in humans ANP is predominantly formed in the cardiomyocytes of the atria.2 B-type natriuretic peptide (BNP) was fi rst discovered in porcine brain hence its original name brain natriuretic peptide.3 In humans, the majority of BNP is formed in ventricular cardiomyocytes, and mRNA levels in brain are negligible. Therefore, brain natriuretic peptide is now recognized as B-type natriuretic peptide. C-type natriuretic peptide (CNP) is basically a neuropeptide, found in brain and vascular endothelial cells

    Transcription of brain natriuretic peptide and atrial natriuretic peptide genes in human tissues

    Get PDF
    We have compared the expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) genes in various human tissues using a quantitative polymerase chain reaction technique. Tissues of three human subjects, obtained at autopsy, were analyzed. BNP transcripts could be detected in the central nervous system, lung, thyroid, adrenal, kidney, spleen, small intestine, ovary, uterus, and striated muscle. ANP transcripts could also be demonstrated in various human extracardiac tissues including several endocrine organs. In all peripheral tissues, the level of both natriuretic peptide transcripts was approximately 1-2 orders of magnitude lower than in cardiac ventricular tissues. This distribution is in marked contrast to the much lower level of ANP and BNP transcripts present in extracardiac rat tissues (generally less than 1/1000 of ventricles). These data suggest differential expression of the two natriuretic peptide genes in cardiac and extracardiac tissues in man. Furthermore, the presence of local synthesis of ANP and BNP in various peripheral organs suggests paracrine and/or autocrine function of these natriuretic peptides

    N-terminal pro-brain natriuretic peptide serum levels reflect attrition of the Fontan circulation

    Get PDF
    Objective: N-terminal pro-brain natriuretic peptide has an established role in the diagnosis and prognosis of heart failure. In Fontan patients, this peptide is often increased, but its diagnostic value in this particular non-physiologic, univentricular circulation is unclear. We investigated whether N-terminal pro-brain natriuretic peptide represents ventricular function or other key variables in Fontan patients.Methods and results: Ninety-five consecutive Fontan patients ≥10 years old who attended the outpatient clinic of the Center for Congenital Heart Diseases in 2012-2013 were included. Time since Fontan completion was 16 ± 9 years. Median N-terminal pro-brain natriuretic peptide was 114 (61-264) ng/l and was higher than gender-and age-dependent normal values in 54% of the patients. Peptide Z-scores were higher in patients in NYHA class III/IV compared to those in class I/II, but did not correlate with ventricular function assessed by MRI and echocardiography, nor with peak exercise capacity. Instead, peptide Z-scores significantly correlated with follow-up duration after Fontan completion (p < 0.001), right ventricular morphology (p = 0.004), indexed ventricular mass (p = 0.001), and inferior caval vein diameter (p < 0.001) (adjusted R= 0.615).Conclusions: N-terminal pro-brain natriuretic peptide levels in Fontan patients correlate with functional class, but do not necessarily indicate ventricular dysfunction. Increased peptide levels were associated with a longer existence of the Fontan circulation, morphologic ventricular characteristics, and signs of increased systemic venous congestion. Since the latter are known to be key determinants of the performance of the Fontan circulation, these findings suggest increase in N-terminal pro-brain natriuretic peptide levels to indicate attrition of the Fontan circulation, independent of ventricular function

    The Multi-Biomarker Approach for Heart Failure in Patients with Hypertension

    Get PDF
    We assessed the predictive ability of selected biomarkers using N-terminal pro-brain natriuretic peptide (NT-proBNP) as the benchmark and tried to establish a multi-biomarker approach to heart failure (HF) in hypertensive patients. In 120 hypertensive patients with or without overt heart failure, the incremental predictive value of the following biomarkers was investigated: Collagen III N-terminal propeptide (PIIINP), cystatin C (CysC), lipocalin-2/NGAL, syndecan-4, tumor necrosis factor-α (TNF-α), interleukin 1 receptor type I (IL1R1), galectin-3, cardiotrophin-1 (CT-1), transforming growth factor β (TGF-β) and N-terminal pro-brain natriuretic peptide (NT-proBNP). The highest discriminative value for HF was observed for NT-proBNP (area under the receiver operating characteristic curve (AUC) = 0.873) and TGF-β (AUC = 0.878). On the basis of ROC curve analysis we found that CT-1 > 152 pg/mL, TGF-β 2.3 ng/mL, NT-proBNP > 332.5 pg/mL, CysC > 1 mg/L and NGAL > 39.9 ng/mL were significant predictors of overt HF. There was only a small improvement in predictive ability of the multi-biomarker panel including the four biomarkers with the best performance in the detection of HF—NT-proBNP, TGF-β, CT-1, CysC—compared to the panel with NT-proBNP, TGF-β and CT-1 only. Biomarkers with different pathophysiological backgrounds (NT-proBNP, TGF-β, CT-1, CysC) give additive prognostic value for incident HF in hypertensive patients compared to NT-proBNP alone.The study was financed by JUVENTUS PLUS grant 2012 (No. IP2011003271) of the Polish Ministry of Science and Higher Education (MNiSW) and research grant of Medical University in Lodz and MNiSW No. 502-03/5-139-02/502-54-008

    In-hospital brain natriuretic peptide and N-terminal prohormone brain natriuretic peptide variations are predictors of short-term and long-term outcome in acute decompensated heart failure

    Get PDF
    Acute decompensated heart failure is one of the most important causes of hospitalisation worldwide. Natriuretic peptides have shown their usefulness in the diagnosis and management of heart failure. Their variations during hospitalisation also appear useful to predict outcomes. In particular, data from the literature demonstrate that reduction from admission to discharge of brain natriuretic peptide and N-terminal prohormone brain natriuretic peptide in these patients is a predictor of future cardiovascular events

    Transcription of Brain Natriuretic Peptide and Atria1 Natriuretic Peptide Genes in Human Tissues.

    Get PDF
    We have compared the expression of atria1 natriuretic peptide (ANP) and brain natriuretic peptide (BNP) genes in various human tissues using a quantitative polymerase chain reaction technique. Tissues of three human subjects, obtained at autopsy, were analyzed. BNP transcripts could be detected in the central nervous system, lung, thyroid, adrenal, kidney, spleen, small intestine, ovary, uterus, and striated muscle. ANP transcripts could also be demonstrated in various human extracardiac tissues including several endocrine organs. In all periphera1 tissues, the level of both natriuretic peptide transcripts was approximately l-2 orders of magnitude lower than in cardiac ventricular tissues. This distribution is in marked contrast to the much lower level of ANP and BNP transcripts present in extracardiac rat tissues (generally less than l/1000 of ventricles). These data suggest differential expression of the two natriuretic peptide genes in cardiac and extracardiac tissues in man. Furthermore, the presence of local synthesis of ANP and BNP in various peripheral organs su gests paracrine and/or autocrine function of these natriuretic peptides
    corecore