4 research outputs found

    Image Segmentation

    Get PDF
    Image segmentation is one of the important and useful techniques in medical image processing. As the image segmentation technique results robust and high degree of accuracy, it is very much useful for the analysis of different image modalities, such as computerized tomography (CT) and magnetic resonance imaging (MRI) in the medical field. CT imaging gives more importance than MRI because of its wider availability, inexpensive and sensitiveness. In most cases, CT offers information needed to make decisions during urgent situations

    Local Geometry Processing for Deformations of Non-Rigid 3D Shapes

    Get PDF
    Geometry processing and in particular spectral geometry processing deal with many different deformations that complicate shape analysis problems for non-rigid 3D objects. Furthermore, pointwise description of surfaces has increased relevance for several applications such as shape correspondences and matching, shape representation, shape modelling and many others. In this thesis we propose four local approaches to face the problems generated by the deformations of real objects and improving the pointwise characterization of surfaces. Differently from global approaches that work simultaneously on the entire shape we focus on the properties of each point and its local neighborhood. Global analysis of shapes is not negative in itself. However, having to deal with local variations, distortions and deformations, it is often challenging to relate two real objects globally. For this reason, in the last decades, several instruments have been introduced for the local analysis of images, graphs, shapes and surfaces. Starting from this idea of localized analysis, we propose both theoretical insights and application tools within the local geometry processing domain. In more detail, we extend the windowed Fourier transform from the standard Euclidean signal processing to different versions specifically designed for spectral geometry processing. Moreover, from the spectral geometry processing perspective, we define a new family of localized basis for the functional space defined on surfaces that improve the spatial localization for standard applications in this field. Finally, we introduce the discrete time evolution process as a framework that characterizes a point through its pairwise relationship with the other points on the surface in an increasing scale of locality. The main contribute of this thesis is a set of tools for local geometry processing and local spectral geometry processing that could be used in standard useful applications. The overall observation of our analysis is that localization around points could factually improve the geometry processing in many different applications

    Brain morphometry by probabilistic latent semantic analysis

    No full text
    The paper propses a new shape morphometry approach that combines advanced classification techniques with geometric features to identify morphological abnormalities on the brain surface. Our aim is to improve the classification accuracy in distinguishing between normal subjects and schizophrenic patients. The approach is inspired by natural language processing. Local brain surface geometric patterns are quantized to visual words, and their co-occurrences are encoded as visual topic. To do this, a generative model, the probabilistic. Latent Semantic Analysis is learned from quantized shape descriptors (visual words). Finally, we extract from the learned models a generative score, that is used as input of a Support Vector Machine (SVM), defining an hybrid generative/discriminative classification algorithm. An exhaustive experimental section is proposed on a dataset consisting of MRI scans from 64 patients and 60 control subjects. Promising results are reporting by observing accuracies up to 86.13%

    P.: Brain morphometry by probabilistic latent semantic analysis

    No full text
    Abstract. The paper proposes a new shape morphometry approach to combine advanced classification techniques with geometric features in order to identify morphological abnormalities on brain surface. The overall aim is to improve the classification accuracy in distinguishing between normal subjects and patients affected by Schizophrenia. Being inspired by the approaches for natural language processing, local surface geometric patterns are quantized to visual words, and their co-occurrences are encoded as visual topic. To this aim, a generative model is estimated for each of the two populations by employing the probabilistic Latent Semantic Analysis (pLSA) on shapes. Finally, the generative scores observed for each subject are the input of a Support Vector Machine (SVM), which is properly designed to implement a generative-discriminative classification paradigm. An exhaustive experimental section is proposed on a dataset consisting of MRI scans from 64 patients and 60 control subjects. Promising results are reporting by observing accuracies up to 86.13%.
    corecore