314 research outputs found

    Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder

    Get PDF
    Magnetic Resonance Imaging (MRI) is useful to provide detailed anatomical information such as images of tissues and organs within the body that are vital for quantitative image analysis. However, typically the MR images acquired lacks adequate resolution because of the constraints such as patients’ comfort and long sampling duration. Processing the low resolution MRI may lead to an incorrect diagnosis. Therefore, there is a need for super resolution techniques to obtain high resolution MRI images. Single image super resolution (SR) is one of the popular techniques to enhance image quality. Reconstruction based SR technique is a category of single image SR that can reconstruct the low resolution MRI images to high resolution images. Inspired by the advanced deep learning based SR techniques, in this paper we propose an autoencoder based MRI image super resolution technique that performs reconstruction of the high resolution MRI images from low resolution MRI images. Experimental results on synthetic and real brain MRI images show that our autoencoder based SR technique surpasses other state-of-the-art techniques in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Information Fidelity Criterion (IFC), and computational time

    Stroke Lesion Segmentation and Deep Learning: A Comprehensive Review

    Get PDF
    Stroke is a medical condition that affects around 15 million people annually. Patients and their families can face severe financial and emotional challenges as it can cause motor, speech, cognitive, and emotional impairments. Stroke lesion segmentation identifies the stroke lesion visually while providing useful anatomical information. Though different computer-aided software areavailable for manual segmentation, state-of-the-art deep learning makes the job much easier. This review paper explores the different deep-learning-based lesion segmentation models and the impact of different pre-processing techniques on their performance. It aims to provide a comprehensive overview of the state-of-the-art models and aims to guide future research and contribute to thedevelopment of more robust and effective stroke lesion segmentation models

    A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images

    Full text link
    Semantic segmentation is the pixel-wise labelling of an image. Since the problem is defined at the pixel level, determining image class labels only is not acceptable, but localising them at the original image pixel resolution is necessary. Boosted by the extraordinary ability of convolutional neural networks (CNN) in creating semantic, high level and hierarchical image features; excessive numbers of deep learning-based 2D semantic segmentation approaches have been proposed within the last decade. In this survey, we mainly focus on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images. We started with an analysis of the public image sets and leaderboards for 2D semantic segmantation, with an overview of the techniques employed in performance evaluation. In examining the evolution of the field, we chronologically categorised the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era. We technically analysed the solutions put forward in terms of solving the fundamental problems of the field, such as fine-grained localisation and scale invariance. Before drawing our conclusions, we present a table of methods from all mentioned eras, with a brief summary of each approach that explains their contribution to the field. We conclude the survey by discussing the current challenges of the field and to what extent they have been solved.Comment: Updated with new studie

    Blurry Boundary Delineation and Adversarial Confidence Learning for Medical Image Analysis

    Get PDF
    Low tissue contrast and fuzzy boundaries are major challenges in medical image segmentation which is a key step for various medical image analysis tasks. In particular, blurry boundary delineation is one of the most challenging problems due to low-contrast and even vanishing boundaries. Currently, encoder-decoder networks are widely adopted for medical image segmentation. With the lateral skip connection, the models can obtain and fuse both semantic and resolution information in deep layers to achieve more accurate segmentation performance. However, in many applications (e.g., images with blurry boundaries), these models often cannot precisely locate complex boundaries and segment tiny isolated parts. To solve this challenging problem, we empirically analyze why simple lateral connections in encoder-decoder architectures are not able to accurately locate indistinct boundaries. Based on the analysis, we argue learning high-resolution semantic information in the lateral connection can better delineate the blurry boundaries. Two methods have been proposed to achieve such a goal. a) A high-resolution pathway composed of dilated residual blocks has been adopted to replace the simple lateral connection for learning the high-resolution semantic features. b) A semantic-guided encoder feature learning strategy is further proposed to learn high-resolution semantic encoder features so that we can more accurately and efficiently locate the blurry boundaries. Besides, we also explore a contour constraint mechanism to model blurry boundary detection. Experimental results on real clinical datasets (infant brain MRI and pelvic organ datasets) show that our proposed methods can achieve state-of-the-art segmentation accuracy, especially for the blurry regions. Further analysis also indicates that our proposed network components indeed contribute to the performance gain. Experiments on an extra dataset also validate the generalization ability of our proposed methods. Generative adversarial networks (GANs) are widely used in medical image analysis tasks, such as medical image segmentation and synthesis. In these works, adversarial learning is usually directly applied to the original supervised segmentation (synthesis) networks. The use of adversarial learning is effective in improving visual perception performance since adversarial learning works as realistic regularization for supervised generators. However, the quantitative performance often cannot be improved as much as the qualitative performance, and it can even become worse in some cases. In this dissertation, I explore how adversarial learning could be more useful in supervised segmentation (synthesis) models, i.e., how to synchronously improve visual and quantitative performance. I first analyze the roles of discriminator in the classic GANs and compare them with those in supervised adversarial systems. Based on this analysis, an adversarial confidence learning framework is proposed for taking better advantage of adversarial learning; that is, besides the adversarial learning for emphasizing visual perception, the confidence information provided by the adversarial network is utilized to enhance the design of the supervised segmentation (synthesis) network. In particular, I propose using a fully convolutional adversarial network for confidence learning to provide voxel-wise and region-wise confidence information for the segmentation (synthesis) network. Furthermore, various loss functions of GANs are investigated and the binary cross entropy loss is finally chosen to train the proposed adversarial confidence learning system so that the modeling capacity of the discriminator is retained for confidence learning. With these settings, two machine learning algorithms are proposed to solve some specific medical image analysis problems. a) A difficulty-aware attention mechanism is proposed to properly handle hard samples or regions by taking structural information into consideration so that the irregular distribution of medical data could be appropriately dealt with. Experimental results on clinical and challenge datasets show that the proposed algorithm can achieve state-of-the-art segmentation (synthesis) accuracy. Further analysis also indicates that adversarial confidence learning can synchronously improve the visual perception and quantitative performance. b) A semisupervised segmentation model is proposed to alleviate the everlasting challenge for medical image segmentation - lack of annotated data. The proposed method can automatically recognize well-segmented regions (instead of the entire sample) and dynamically include them to increase the label set during training. Specifically, based on the confidence map, a region-attention based semi-supervised learning strategy is designed to further train the segmentation network. Experimental results on real clinical datasets show that the proposed approach can achieve better segmentation performance with extra unannotated data.Doctor of Philosoph

    Convolutional neural network- based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162690/2/mp14377.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162690/1/mp14377_am.pd

    3D bi-directional transformer U-Net for medical image segmentation

    Get PDF
    As one of the popular deep learning methods, deep convolutional neural networks (DCNNs) have been widely adopted in segmentation tasks and have received positive feedback. However, in segmentation tasks, DCNN-based frameworks are known for their incompetence in dealing with global relations within imaging features. Although several techniques have been proposed to enhance the global reasoning of DCNN, these models are either not able to gain satisfying performances compared with traditional fully-convolutional structures or not capable of utilizing the basic advantages of CNN-based networks (namely the ability of local reasoning). In this study, compared with current attempts to combine FCNs and global reasoning methods, we fully extracted the ability of self-attention by designing a novel attention mechanism for 3D computation and proposed a new segmentation framework (named 3DTU) for three-dimensional medical image segmentation tasks. This new framework processes images in an end-to-end manner and executes 3D computation on both the encoder side (which contains a 3D transformer) and the decoder side (which is based on a 3D DCNN). We tested our framework on two independent datasets that consist of 3D MRI and CT images. Experimental results clearly demonstrate that our method outperforms several state-of-the-art segmentation methods in various metrics
    • 

    corecore