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Super-resolution reconstruction of brain magnetic resonance images via 
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A B S T R A C T   

Magnetic Resonance Imaging (MRI) is useful to provide detailed anatomical information such as images of tissues 
and organs within the body that are vital for quantitative image analysis. However, typically the MR images 
acquired lacks adequate resolution because of the constraints such as patients’ comfort and long sampling 
duration. Processing the low resolution MRI may lead to an incorrect diagnosis. Therefore, there is a need for 
super resolution techniques to obtain high resolution MRI images. Single image super resolution (SR) is one of 
the popular techniques to enhance image quality. Reconstruction based SR technique is a category of single 
image SR that can reconstruct the low resolution MRI images to high resolution images. Inspired by the advanced 
deep learning based SR techniques, in this paper we propose an autoencoder based MRI image super resolution 
technique that performs reconstruction of the high resolution MRI images from low resolution MRI images. 
Experimental results on synthetic and real brain MRI images show that our autoencoder based SR technique 
surpasses other state-of-the-art techniques in terms of peak signal-to-noise ratio (PSNR), structural similarity 
(SSIM), Information Fidelity Criterion (IFC), and computational time.   

1. Introduction 

Magnetic Resonance Imaging (MRI) [1] is one of the best approaches 
to give a precise clinical conclusion and obsessive investigation because 
of its non-invasive imaging and powerful characteristics. It is used to 
visualize the anatomical information within the body such as tissues, 
tumors, muscles, brain, heart, and so on. MRI plays an important role in 
neurological and brain research. However, spatial and low resolution 
are persistent problems that MRI often faces that affect the diagnosis 
process and post-processing [2]. There are many problems faced in 
medical imaging [3–5]. The tradeoff between high quality MRI images 
often comes with a long sampling time, patients discomfort, stronger 
magnetic field, increased expenses. Such things are clinically chal-
lenging and rarely possible. To address this problem without changing 
the scanning protocol or scanning hardware, super resolution (SR) ap-
proaches yield promising results. SR approaches are popular in the field 

of computer vision in the past decades. In recent, much literatures are 
proposed to enhance the quality of the image [6–8]. SR approaches can 
be classified into single image super resolution (SISR) and multiple 
image super resolution (MISR). In SISR, the SR image is recovered from a 
single LR image. In MISR, the SR image is reconstructed based on the 
aggregated accuracy of the multiple LR images. This is considered as the 
main drawback of the MISR method because it is challenging to capture 
multiple images of the same object and it is clinically impossible due to 
patients’ comfort [9]. 

SISR [10] methods can be categorized into model-based SR [11], 
reconstruction-based SR [12], and learning-based SR [13]. Model-based 
SR techniques use interpolation algorithms such as nearest neighbor, 
bicubic, and bilinear to reconstruct the HR features from the LR images 
by estimating the pixel values in the HR grids. Though it yields HR 
images at high computational efficiency they result in blurred edges, 
displeasing artifacts, and overly smooth reconstructed images with 
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missing fine details. Reconstruction-based SR solves the problem of 
blurred edges through precise prior knowledge of HR. The HR images 
are reconstructed based on prior knowledge such as edge, gradient, and 
global means. However, the reconstructed images lack fine details at 
high magnification. In learning-based SR models use various machine 
learning techniques to learn the mapping between SR and LR images. It 
analyses the HR-LR images pairs and predicts HR features from an LR 
image. Sparse-coding [14] is one of the learning-based SR methods that 
yield promising results by assuming that the LR image patch from the 
dictionary matches the HR image from the HR dictionary. Due to the 
restrictions and ineffectiveness of this assumption, SR produces un-
pleasant results. To solve these problems different variants of SR tech-
niques have been proposed recently [8,15–17]. 

Recently, due to the hasty evolution of machine learning, particu-
larly deep learning (which is a subset of machine learning) models are 
efficient in extracting the hidden features of an image and it is proven 
successful in image classification [18]. Inspired by the capability of deep 
learning, many kinds of literature have been proposed on SR studies. The 
state-of-the-art literature includes deep learning models such as Con-
volutional Neural Network (CNN) [19], Generative Adversarial Network 
(GAN) [20], residual neural network (ResNet) [21], and recurrent 
neural network (RNN) [22]. Multiple variants of deep learning models 
are available in the state-of-the-art literature they are Super resolution 
convolutional neural network (SRCNN) [23], fast super resolution 
convolutional neural network (FSRCNN) [24], deep recursive convolu-
tional network (DRCN) [25], very deep convolutional networks (VDSR) 
[19], and super resolution generative adversarial network (SRGAN) 
[20]. Though these approaches have some success in reconstructing HR 
natural images, they are not applicable for MRI images. SR approaches 
for MRI image enhancements are also appeared in the state-of-the-art 
research [8,15,17,26–28]. However, they produce irrelevant artifacts 
and distortions. SR approaches for MRI images should deliver relevant 
artifacts and details that are clinically pertinent. Hence, the challenges 
to develop an SR approach for MRI images are clear as the existing ap-
proaches do not satisfy all the requirements and it is obligatory to 
develop a new SR approach. 

Autoencoder [29] is an unsupervised deep learning model that can 
learn the representation of the images. In recent autoencoder based SR 
has been proposed [30–32]. The autoencoder based SR models are 
yielding promising results with reduced computational complexity. 
Autoencoder is a combination of encoder and decoder. The encoder 
learns the input images and translates them into a latent space repre-
sentation. The decoder reconstructs the image only from the latent space 
representation. Dong et al. [14] proposed sparse coding based SR model. 
Sparse coding assumes that the sparse representation of HR image from 
HR dictionary is similar to LR image patch from LR dictionary. Sparse 
representation noise is proposed to overcome this assumption by 
employing non local means where the HR representations can be esti-
mated from LR representations. Other authors such as Wang et al. [33], 
Yang and Yang [34], Chang et al. [35], Shao et al. [31], Park et al. [30], 
proposed similar SR approaches based on sparse and auto encoder based 
SR approaches. However, mostly they use the dictionary training 
method where the LR image patch can be considered as HR image 
patches either directly or through estimations. Also, it is hard for simple 
linear mapping to represent complex relationships, this is another major 
limitation of the existing study. 

In this paper, an autoencoder based SR model is presented for MRI. 
The presented model takes an LR MRI image and input and reconstructs 
the corresponding HR image. Conceptually, the autoencoder generates 
the output image of the same dimension as input from the latent space 
representation generated by the encoder. In the proposed model, the 
autoencoder reconstructs the HR MRI slices from the LR MRI slices based 
on the scaling factor. It consists of feature extraction, nonlinear map-
ping, and reconstruction steps. The efficiency of the proposed SR model 
is evaluated based on Mean Squared Error (MSE), Peak Signal to Noise 
Ratio (PSNR), Structural Similarity Index (SSIM) [36], Information 

Fidelity Criterion (IFC), and computational time. 
The remainder of this paper is organized as follows. The state-of-the- 

art literature proposed on single image SR is presented in section 2. The 
proposed modified autoencoder based SR is discussed in section 3. 
Section 4 presents the experiments carried out, the dataset details, 
experimental analysis, and performance evaluation. Finally, section 5 
concludes. 

2. Related works 

2.1. Image super-resolution using deep learning 

In recent, deep learning based SR approaches have seen a rise in the 
literature. Artificial Neural Networks (ANN), CNN, GAN are some of the 
popular deep learning based SR approaches. ANN based SR approach 
has emerged in 2006 [37]. However, in recent CNN based SR approaches 
have been paid more attention by researchers. SRCNN [23] is one of the 
first CNN based SR in the literature. Subsequently, different variants of 
methods are proposed by modifying the depth and the hyperparameters 
to achieve state-of-the-art performance. FSRCNN [24] is one of the ap-
proaches that yield high SR image restoration accuracy with a simple 
network structure. Kim et al. proposed VDSR [19] and DRCN [25] with 
increased network depth and achieved better performance than SRCNN. 

SRGAN [20] is a generative adversarial network (GAN) based SR 
approach proposed by Ledig et al. This is the first framework to recon-
struct photo-realistic SR using GAN. To achieve this perceptual loss 
function along with L2 loss function has been used. Lim et al. [38] have 
proposed a method called Enhanced Deep Super-Resolution Network 
(EDSR). It achieved better performance than other state-of-the-art SR 
approaches. It reduced the number of layers in the conventional residual 
networks. When the model size is expanded the performance is further 
improved. To reconstruct high-resolution images of different up-scaling 
factors in a single model a new technique called Multi-scale Deep Super 
Resolution system (MDSR) [39] is proposed. It uses wavelet coefficients 
along with CNN to reconstruct the SR images. Along with, residual 
neural networks (ResNet) [40], recurrent neural network (RNN) [22], 
and DenseNet [41] are other effective SR approaches. Tong et al. [42] 
have proposed an image SR approach based on ResNet with skip con-
nections. Zhang et al. [43] proposed a dense ResNet to achieve 
state-of-the-art performance over CNN based approaches. Tai et al. [44] 
reduced the parameter burden of the deep learning model by reusing the 
parameters through recursive blocks. Hu et al. proposed a cascaded 
multiscale cross network (CMSCN) to acquire more information to 
reconstruct the HR images. These approaches have been successful to 
some extent on natural image processing (NIP) tasks. 

2.2. MRI image super resolution 

Due to the success of SR approaches in NIP deep learning based SR 
methods have also been proposed to the MR imaging fields. CNN and 
GAN based SR approaches have been widely used in MRI SR. A CNN 
based SR approach for brain MRI is proposed by Bahrami et al. [45]. The 
model takes anatomical labels of brain tissues and intensity as the input 
to reconstruct MRI SR. Enhanced Deep Residual Network (EDRN) [38] is 
proposed by Zhao et al. to enhance the synthetic multi-orientation of 
brain MRI images through ResNet. Chen et al. [46] proposed a 3D 
densely connected super resolution network (DCSRN) to reconstruct the 
HR features of brain MRI using neural network architecture. Mane et al. 
[24] proposed an FSRCNN based 3D CNN to reconstruct the 
high-dimensional features of MRI images. It lacks a balance between the 
MRI quality and computational complexity. As the network gets deeper 
there is an increase in complexity. Özyurt et al. [47] proposed a fuzzy C 
means SR CNN approach to segment the brain MRI images with high 
quality features. This approach used pretrained network squeezeNet. 
GAN based SR approach is proposed by Lyu et al. [27] where the MRI 
images are enlarged using commonly used SR algorithms and GAN is 
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trained and generates SR MRI images. Then ensemble learning method is 
utilized to finalize the SR images. Ebner et al. [48] have proposed an SR 
reconstruction framework for fetal brain MRI based on CNN based 
network. 

A dilated convolutional encoder-decoder (DCED) network has been 
proposed in Ref. [28] to improve the resolution of MRI by extracting 
high resolution features through the enlarged receptive field without 
increasing the parameters or layers. By enlarging the receptive field, 
dilated encoders capture wider information. To decode the information, 
a deconvolution operation is used in grinding artifacts and storing fine 
details. The input image information loss caused by CNN’s pooling layer 
is addressed by the work Park et al. [30]. An autoencoder based CNN 
image super resolution model is proposed with a deconvolutional layer. 
This method achieved substantial state-of-the-art performance in terms 
of PSNR, SSIM, and computational time. Xue et al. [8] proposed a pro-
gressive sub-band residual learning SR network to improve the spatial 
resolution of MRI images. This model used two parallel learning streams, 
they are to learn the missing high residuals and to reconstruct the MRI 
image. Zhao et al. [49] proposed a channel splitting network SR ap-
proaches that divide the hierarchical features of MRI images into the 
residual and dense branch. The residual branch identifies the features to 
reuse and the dense branch explores the new features. 

From the above literature study, it is understood that the image 
super-resolution has acquired a lot of attraction in recent times. It is 
observed that deep learning based SR techniques are predominant. It is 
also inferred that various state-of-the-art deep learning based SR ap-
proaches have been proposed and they are successful to some extent. 
However, such a model lacks a proper training dataset and has been 
trained with different or ensemble datasets. Table 1 shows some of the 
popular SR approaches and their specifications. 

3. Materials & methods 

The main objective of this study is to reconstruct HR MRI with 
extrapolated signals. The original size of the MRI images is 240 X 240 
and 256 X 256 that is reconstructed based on scaling factors. The scaling 
factor determines the magnification power (for example, if a scaling 
factor is 2 then the resolution of the original image is enlarged 2 times 
than the actual size). MRI images are information rich as they can detect 
tumors, systs, infections, blood vessels, etc. While magnifying an orig-
inal MRI image, the image quality decreases since the original MRI does 
not have adequate spatial resolution information. However, edges in 
upsampled (i.e., magnified) images are adequately sharp. LR images 
cannot be neglected with blurring effects. Downsampling methods 
produce blurry or pixelated images. Bicubic interpolation is one of the 
techniques that blur the image with a downscaling factor of ‘2’, with a 
3x3 average filter along with nearest neighbor interpolation. Hence, the 
bicubic blurring and pixel information loss is given as: 

ILR =Df
bicubic(IHR) (1)  

Where ILR represents LR MRI images and IHR for its corresponding HR 
image. ILR ∈ Rn and IHR ∈ Rm (m > n). Rn& Rmrepresents the image 
resolution. Df

bicubic represents the downsampling of bicubic interpolation 
with scaling factor f. The proposed autoencoder based SR Algorithm 
aims to adjudge IHR from ILR. The recovery of IHR from ILR is an inverse 
problem where it is fairly possible to obtain different results of IHR for a 
given ILR. The autoencoder based SR is trained to reconstruct the image 
from ILR it can be achieved when the model loss is minimized consid-
erably. The loss function can be defined as an optimization problem, 
shown in equation (2). 

I
′

HR = argminIHR

⃒
⃒
⃒
⃒ILR − Df

bicubic.IHR
⃒
⃒|

2 (2)  

Where I′HR is the reconstructed image obtained by minimizing the loss 

function. The notations 
⃒
⃒
⃒

⃒
⃒
⃒ILR − D.IHR

⃒
⃒
⃒|

2 represents the L2 regularization. 

The output IHR can be defined as, 

IHR =F(X; f ; θ) (3)  

Where F denotes proposed SR functions latent space representation, θ 
represents the parameter set such as weights and biases for the function 
and X represents the local features of the input LR MRI. 

3.1. Proposed autoencoder based SR 

Autoencoder based SR approach consists of an autoencoder that 
takes ILR as input and produces the corresponding IHR based on the 
scaling factor. Fig. 1 shows the architecture diagram of the autoencoder 
based SR. In addition to the regular autoencoder, the proposed 
autoencoder model consists of convolution layers and activation func-
tions for feature extraction, and a deconvolution layer for reconstruc-
tion. The visualization of the proposed SR autoencoder network with 
skip connections is shown in Fig. 2. In the network model, pooling layers 
have not been used as it cause information loss when it selects the fea-
tures and reduces the parameters. The deconvolution layer at the end of 
the network is used to upsample the input MRI image and to reconstruct 
the MRI from the latent space representation. 

Autoencoder is a combination of encoder and decoder. The function 
of the encoder and decoder is given as: 

φ : X →F  

ψ : F→X  

φ,ψ = argφ,ψ min
⃒
⃒
⃒
⃒X − X

′ ⃒⃒|
2 (4)  

Where φ and ψ represents the encoder and decoder functions, X repre-
sents the input ILR and F represents the latent space representation. 
Equation (4) shows the loss function of the autoencoder function where 
X′ represents the reconstructed image IHR. The hidden layer 

Table 1 
Comparison of State-of-the-art SR approaches.  

Reference SR Approach Input Upsampling Technique Loss Function Reconstructions 

Dong et al. [23] SRCNN Natural Images Bicubic CNN L2 (MSE) Direct 
Kim et al. [25] DRCN Natural Images Bicubic CNN L2 Direct 
Dong et al. [24] FSRCNN Natural Images DeConv CNN L2 Direct 
Kim et al. [19] VDSR Natural Images Bicubic CNN L2 Direct 
Ledig et al. [20] SRGAN Natural Images Sub-pixel GAN L2 + Perceptual loss Direct 
Lim et al. [38] EDSR Natural Images Sub-pixel ResNet L1 Direct 
Han et al. [63] DSRN Natural Images DeConv RNN L2 Progressive 
Shao et al. [31] CSAE Remote sensing images Bicubic Coupled Sparse autoencoder L1 Direct 
Park et al. [30] ACNS MRI Bicubic Autoencoder inspired CNN MSE Direct 
Pham et al. [61] DCNN-SCSR MRI Sub-pixel Autoencoder L2 Direct 
Xue et al. [8] PSR-SRN MRI Bicubic ResNet MSE Progressive 
Zhao et al. [49] CSN MRI Bicubic ResNet and DenseNet L1 & L2 Direct 
Lyu et al. [27] ELSR MRI Bicubic Ensemble learning MSE Direct  
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functionalities are represented as: 

F = f (W.X + b) (5)  

X ′

= f (W ′

.F + b) (6) 

F denotes the latent space representation of the input ILR image. 
Equations (4) and (5) represents the hidden layer functions. An activa-
tion function defines the output of every layer in the network. In the 
proposed SR autoencoder “ReLu” activation function is used for every 
layer along with the optimizer “Adam”. 

R(z)=max(0, z) (7) 

Equation (6) shows the activation function “ReLu” it is denoted as 
R(z). 

The proposed autoencoder based SR approach consists of feature 
extraction, non-linear mapping, and reconstruction. The local features 
of IHR are extracted based on the receptive fields. It is described using the 

following equation. 

F1 =max(W1.X +B1, 0) + α min(W1.X +B1, 0) (8)  

where convolution operation is represented as ‘. ‘, max () and min () 
represents activation function, W1 represents filters and B1 represents 
biases. 

The non-linear mapping between ILR and IHR is given as follows: 

∑n

i=1
Fi(Xi)=max(Wi +Xi +Bi, 0) + α min(Wi +Xi +Bi, 0) (9)  

where Fi, Xi, Wi and Bi indicates the non-linear mapping of ith 
recurrence. 

After the feature extraction and non-linear mapping, the obtained 
HR features are given to a deconvolution operation to reconstruct the 
HR MRI based on the scaling factor and obtained HR feature aggregate. 
It is represented as follows: 

∑n

i=1
Fi+f

(
Xi+f

)
= deconv

(
Xi+f +Wi+f +Bi+f

)
(10)  

where deconv() represents the deconvolution operation, and Fi+f , Xi+f , 
Wi+f , and Bi+f denotes the parameters with scaling factor f. The overall 
operation of the proposed system is summarized in the following 
Algorithm. 

Algorithm. Autoencoder Based SR   

3.2. Performance metrics 

The proposed autoencoder based SR training is focused to obtain the 

Fig. 1. The architecture of Proposed SR Autoencoder.  

Fig. 2. Visualization of SR autoencoder network with skip connections.  
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optimal θ with a minimal loss between original IHR and reconstructed 
I′HR. It is calculated by mean square error (MSE) [50]. To evaluate the 
performance of the proposed SR study, we used typical SR study metrics, 
which are peak signal-to-noise ratio (PSNR) [51], structural similarity 
index (SSIM) [52] and information fidelity criterion (IFC) [53]. 

The loss metric MSE is calculated to understand the difference in 
linking the reconstructed MRI image and the target image super- 
resolution. The MSE loss metric can be represented as: 

LMSE
SR =

1
MN

∑M

n=1

∑N

m=1

[
I
′

HR(n,m) − F
(
IHR

(
n,m

)]2
(11)  

where n, m are the pixel dimensions of the image. LMSE
SR calculates the 

MSE pixel wise for the original HR MRI image and the reconstructed SR 
MRI image from the LR MRI image. 

SSIM is a performance metric used to calculate the reconstructed 
image quality. SSIM is developed by Wang [36], to quantify the quality 
degradation of the reconstructed image. The structural quality of the 
reconstructed SR image is given by 

SSIM =
(2μsμSR + C1)(2σSSR + C2)(

μ2
s + μ2

SR + C1
)
+ (σ2

S + σ2
SR + C2)

(12)  

μ and σ denotes mean and standard deviation respectively. C1 and C2 are 
constants introduced to the formula for stabilization. The SSIM value 
would be 1 if the reconstructed SR MRI image and HR MRI image are 
identical. 

PSNR computes the decibels of the peak signal-to-noise ratio be-
tween the actual and reconstructed SR images. The higher values of 
PSNR denote the better quality of the reconstructed SR image. The PSNR 
value can be calculated by equation (13) 

PSNR= − 10log10
eMSE

S2 (13) 

IFC computes the mutual information between the original MRI and 
the reconstructed HR MRI. 

IFC =
∑

k∈subbands
I
(
CNk ,k;NNk ,k

⃒
⃒sNk ,k

)
(14)  

where Nk denotes coefficient of k subbands for CNk ,k, NNk ,k, and sNk ,k. 

3.3. Dataset details 

The proposed SR autoencoder has experimented on multimodal 
brain tumor segmentation challenge (BraTS2017) [54–56] and 
MRBrain18 [57]. BraTS2017 consists of 285 MRI images of resolution 
256 × 256 x 3. It comprises four modal brain MRI scans such as T1, 
T1-weighted, T2-weighted, and T2 FLAIR. We selected 200 MRI images 
slices of T1 and T2 FLAIR. MRBrain18 consists of T1, T1-IR, and 
T2-FLAIR. We selected 31 MRI slices for experimentation. The dimen-
sion of MRI images of MRBrain18 is 240 X 240. Fig. 3 shows the sample 

MRI images from BraTS2017 and MRBrain18. Table 2 summarizes the 
dataset used in the experiment. 

4. Experiments & results 

In this section, dataset details, experimental configurations, experi-
mental analysis, and performance evaluation of the proposed SR 
autoencoder is presented. 

4.1. Training 

The proposed SR autoencoder model has been trained by considering 
the original MRI images as the ground truth. The LR images are gener-
ated from the original MRI images using equation (1). Our model was 
individually trained and experimented on the two public datasets. The 
scaling factor has been chosen as ‘2’. Hence, the resolution of the orig-
inal MRI images is downscaled from 256 X 256 to 128 X 128 and from 
240 X 240 to 120 X 120. The dataset is divided into 85% and 15% for 
training and testing respectively. 

The experiments are carried out in GoogleColab Tesla K80 GPU, and 
16 GB RAM. The SR autoencoder model configured with Adam opti-
mizer with learning rate of 0.001, β1 = 0.9 and β2 = 0.99 values. 

4.2. Experimental analysis 

The proposed SR autoencoder model training loss is calculated using 
equation (11). The model loss is minimized through backpropagation. 
The network is trained for 1500 epochs approximately. The model 
achieved minimal MSE loss without overfitting. 

Then the model is tested with the 15% of test data. Some random 
sample input and output of the test data is illustrated in Fig. 4 (a) is the 
downsampled LR MRI image, Fig. 4 (b) is reconstructed or upsampled 
MRI image, and Fig. 4 (c) is the ground truth MRI image i.e., the original 
MRI image. 

The model is further tested with random images from the dataset. 
The MSE values are calculated under the pixel quality difference be-
tween the input and the reconstructed SR image output. Fig. 5. Illus-
trates the model testing with random dataset images. 

The MSE value is the divergence between the actual image and the 
reconstructed SR image. In Fig. 5. (a) the left hand side image is the 
reconstructed MRI image and the right hand side image is the original 

Fig. 3. Sample MRI images from the dataset.  

Table 2 
Dataset details.  

Dataset Image Properties Image 
Count 

Training 
set 

Testing 
set 

BraTS2017 
[54] 

T1 and T2 Flair 256 ×
256 x 3 

200 170 30 

MRBrain18 
[57] 

T1 and T2 Flair 240 ×
240 

31 26 5  

J. Andrew et al.                                                                                                                                                                                                                                 



Informatics in Medicine Unlocked 26 (2021) 100713

6

MRI image. The MSE value between the image is 0.05 and the structural 
similarity value is 1. This shows that the model generated the SR image 
identical to the actual HR image. Fig. 5. (b) shows a similar type of SR 
and original image where the MSE value is 0.04 but the SSIM value is 
0.99. This indicates that the model reconstructed a highly similar image 
with original qualities. 

4.3. Performance evaluation 

The proposed SR Autoencoder model is compared with state-of-the- 
art approaches: SRCNN [23], FSRCNN [24], DRCN [25], SRGAN [20], 
Bicubic [58], LRTV [59], NMU [60], ACNS [30], DCNN-SCSR [61], 
PSR-SRN [8] and MCSR [62]. The approaches are a combination of 
model-based and deep learning-based SR. The approaches are compared 
concerning the SSIM values. Fig. 6 shows the comparison graph of SSIM 
values of different state-of-the-art approaches. 

From Fig. 6. (a) The proposed SR Autoencoder performs better 
compared with other state-of-the-art approaches. The proposed model 
achieves a higher SSIM value of 0.99 which is comparatively higher than 
other approaches. PSNR is the other metric used to evaluate the model. 
The average PSNR value of the proposed model is 63. Fig. 6. (b) shows 
the average PSNR value comparison with other approaches. The pro-
posed model is performing better than other approaches. 

We further evaluated the performance of the proposed SR autoen-
coder with the MRBrain18 dataset. Our proposed model achieved better 

Fig. 4. Experimental results of proposed SR Autoencoder (a) Input: downscaled brain MRI image (b) Output: Reconstructed SR brain MRI image (c) Original HR 
brain MRI image. 

Fig. 5. Model testing. (a) Mse = 0.05 and SSIM = 1.00 (b) MSE = 0.04 and SSIM = 0.99.  

Fig. 6. Performance evaluation: (a) Comparison of SSIM values with state-of- 
the-art approaches, (b) Comparison of PSNR values with state-of-the- 
art approaches. 

Table 3 
Results of state-of-the-art SR approaches on MRBrain18 dataset.  

Approaches PSNR SSIM IFC 

SRCNN [23] 26.905 0.846 1.974 
Bicubic [58] 22.458 0.688 0.762 
NLM [64] 26.318 0.827 2.065 
ScSR [65] 26.078 0.821 1.586 
VDSR [19] 27.283 0.8571 2.137 
LapSR [66] 27.700 0.860 2.067 
PSR-SRN [8] 28.067 0.872 2.307 
Proposed SR Autoencoder 29.023 0.884 2.301  
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PSNR and SSIM values compared to the state-of-the-art SR approaches 
on the MRBrain18 dataset. The IFC value our model achieved is also 
better than most of the approaches. Table 3 shows the comparative 
analyses of the results. The results used to evaluate the proposed 
approach are the results obtained on the test dataset. 

The proposed model performance is also evaluated based on running 
time. Table 4 shows the comparison of running time of approaches such 
as SRCNN, FSRCNN, and DRCN. The running time is taken based on the 
BraTS 17 dataset with scaling factor ‘2’. Our approach is fastest 
compared to the other approaches this proves that the proposed 
approach is lightweight. 

5. Discussion 

The major objective of this paper is to reconstruct a HR MRI from a 
single low resolution MRI. To achieve that an autoencoder based SR 
approach for MRI images is presented in this paper. The SR autoencoder 
is proficient of reconstructing HR MRI from LR MRI latent space rep-
resentation. The proposed yielded better performance with respect to 
PSNR, SSIM and IFC and also the lightweight nature of the architecture 
reduced the computational complexity compared to recent state-of-the- 
art approaches. The network architecture of the proposed approach is 
simple and uses less number of parameters. The network architecture of 
the proposed approach is determined through experiments and the de-
tails are available in section 3. The architecture provides a balance be-
tween the MRI image quality and the computational complexity. The 
number of parameters used in our approach is 5480 whereas the other 
state-of-the-art approaches such as SRCNN and FRCNN have used 8032 
and 12,464 respectively which are 2 or 3 times greater than the pro-
posed approach. The reduction in the number of parameters minimizes 
the computational complexity. When the number of layers in the 
network architecture increases it increases the number of parameters 
that makes the network training cumbersome. Though, the number of 
parameters are less compared to other approaches, the performance of 
the approach is superior due to its suitable network structure. Table 4 
compares the running time of the proposed approach for its corre-
sponding scaling factors. It is evident that DRCN takes longer time to 
calculate the result it is because of deep nature of the network. The 
network architecture of DRCN has 18 layers and 1,774,080 parameters. 
Though SRCNN has the shallowest network architecture with only 3 
layers, due to its intra layer design it required longer running time. 
Hence, our proposed network architecture has 6 layers and reduced 
number of parameters and found to be superior in terms of running time 
without compromising the image quality. 

Further, the performance of the proposed autoencoder based SR 
approach is evaluated based on the standard performance metrics to 
measure the quality of the images such as PSNR, SSIM and IFC. Our 
approach achieved the best PSNR value of 63 compared other state-of- 
the-art approaches that used similar dataset for experiments. Fig. 6 
shows the comparison of SSIM and PSNR values achieved by different 
state-of-the-art approaches. The performance metrics values shows that 
the proposed approach has reconstructed the MRI image with adequate 
details. The reason behind this is the learning ability of the autoencoder 
in the network architecture. The autoencoder model learned the latent 
space representation from the input MRI image. The resultant images are 
then reconstructed based on the latent space representation code. The 
deconvolution layer at the end of the network architecture reconstructs 

the MRI image from the features extracted by the convolutional layers 
and the latent space representation. The proposed approach is experi-
mented with two public real datasets (BraTS2017 and MRBrain18). 
Fig. 4 shows step-by-step process of the proposed approach. Fig. 4 (a) 
shows the downscaled and blurred image which lacks appropriate de-
tails from the MRI image and given as input to the deep learning 
network. Fig. 4 (b) is the reconstructed MRI image from the given input 
MRI image. Fig. 4 (c) is the corresponding original MRI image from the 
dataset. The reconstructed image is then compared with the original 
image and the performance metrics values are calculated. Fig. 5 shows 
the testing of random images from the dataset. The SSIM values are 
almost 1.00 that shows that there is no loss in the reconstructed image 
compared to the original image. Also the MSE values is at the lowest 
proves that there is very minimal error. The overall performance of the 
proposed approach is presented in Fig. 6 and Table 3. It shows that the 
proposed approach is having an edge over other state-of-the-art 
approaches. 

Our proposed autoencoder based SR approach has the potential to 
reduce the MRI sampling time and still achieve higher image quality. It 
gives patients’ comfort as the scan time is not required to be longer but 
still the we get the higher image quality with adequate structural details. 
The current work is limited to 2D MRI slice reconstruction. The proposed 
approach does not consider 3D MRI image features such as structural 
and spatial information. We are actively working on this as our future 
direction of this study. 

In the experiments, we noticed that the performance of the model is 
not based on the filters, padding, or number of layers but based on its 
combination. We also experimented our model with a deep autoencoder 
model with multiple layers but it cannot achieve better image quality. 
However, we observed that the performance of any deep learning based 
SR approach is affected by training. Hence, it gives us a warning that 
such deep learning models should be used with caution especially in the 
field of medical imaging. 

6. Conclusion 

High resolution (HR) MRI images are essential to provide more 
detailed information for clinical diagnosis. However, it is challenging 
due to patients discomfort, long sampling time and poor signal-to-noise 
ratio. To address the aforementioned challenges, we presented an 
autoencoder based super resolution approach for MRI images to 
reconstruct the missing structural details of the MRI images through the 
non-linear mapping between the low resolution (LR) MRI images and 
HR features and the latent space representation of the LR images. The 
proposed autoencoder based SR approach has experimented on publicly 
available BraTS2017 and MRBrain18. Experimental results show that 
the proposed approach not only outperforms the state-of-the-art SR 
approaches in terms of PSNR, SSIM, and IFC but also with reduced 
computational complexity. Additionally, we analyzed the performance 
of the approach concerning the number of deep learning parameters. 
The proposed approach uses fewer parameters compared to the state-of- 
the-art approaches such as SRCNN, FSRCNN, and DRCN and proved to 
be lightweight without compromising the image quality. Hence, the 
proposed approach can be used for real time HR MRI reconstruction. 
However, we noticed that the performance of the deep learning models 
is directly proportional to the quality of the training set. 

This study is limited to 2D in-plane resolution MRI enhancement. In 
the future, our work aims to enhance 3D MRI images considering the 
magnitude and phase of the images. 
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Table 4 
Running time comparison.  

Approach Scaling factor Time (s) 

SRCNN 2 1.59 
FSRCNN 2 1.96 
DRCN 2 9.06 
Proposed SR autoencoder 2 0.32  
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