25 research outputs found

    Transrectal ultrasound image processing for brachytherapy applications

    Get PDF
    In this thesis, we propose a novel algorithm for detecting needles and their corresponding implanted radioactive seed locations in the prostate. The seed localization process is carried out efficiently using separable Gaussian filters in a probabilistic Gibbs random field framework. An approximation of the needle path through the prostate volume is obtained using a polynomial fit. The seeds are then detected and assigned to their corresponding needles by calculating local maxima of the voronoi region around the needle position. In our experiments, we were able to successfully localize over 85% of the implanted seeds. Furthermore, as a regular part of a brachytherapy cancer treatment, patient’s prostate is scanned using a trans-rectal ultrasound probe, its boundary is manually outlined, and its volume is estimated for dosimetry purposes. In this thesis, we also propose a novel semi-automatic segmentation algorithm for prostate boundary detection that requires a reduced amount of radiologist’s input, and thus speeds up the surgical procedure. Saved time can be used to re-scan the prostate during the operation and accordingly adjust the treatment plan. The proposed segmentation algorithm utilizes texture differences between ultrasound images of the prostate tissue and the surrounding tissues. It is carried out in 5 the polar coordinate system and it uses three-dimensional data correlation to improve the smoothness and reliability of the segmentation. Test results show that the boundary segmentation obtained from the algorithm can reduce manual input by the factor of 3, without significantly affecting the accuracy of the segmentation (i.e. semi-automatically estimated prostate volume is within 90% of the original estimate)

    A Study of Image-based C-arm Tracking Using Minimal Fiducials

    Get PDF
    Image-based tracking of the c-arm continues to be a critical and challenging problem for many clinical applications due to its widespread use in many computer-assisted procedures that rely upon its accuracy for further planning, registration, and reconstruction tasks. In this thesis, a variety of approaches are presented to improve current c-arm tracking methods and devices for intra-operative procedures. The first approach presents a novel two-dimensional fiducial comprising a set of coplanar conics and an improved single-image pose estimation algorithm that addresses segmentation errors using a mathematical equilibration approach. Simulation results show an improvement in the mean rotation and translation errors by factors of 4 and 1.75, respectively, as a result of using the proposed algorithm. Experiments using real data obtained by imaging a simple precisely machined model consisting of three coplanar ellipses retrieve pose estimates that are in good agreement with those obtained by a ground truth optical tracker. This two-dimensional fiducial can be easily placed under the patient allowing a wide field of view for the motion of the c-arm. The second approach employs learning-based techniques to two-view geometrical theories. A demonstrative algorithm is used to simultaneously tackle matching and segmentation issues of features segmented from pairs of acquired images. The corrected features can then be used to retrieve the epipolar geometry which can ultimately provide pose parameters using a one-dimensional fiducial. The problem of match refinement for epipolar geometry estimation is formulated in a reinforcement-learning framework. Experiments demonstrate the ability to both reject false matches and fix small localization errors in the segmentation of true noisy matches in a minimal number of steps. The third approach presents a feasibility study for an approach that entirely eliminates the use of tracking fiducials. It relies only on preoperative data to initialize a point-based model that is subsequently used to iteratively estimate the pose and the structure of the point-like intraoperative implant using three to six images simultaneously. This method is tested in the framework of prostate brachytherapy in which preoperative data including planned 3-D locations for a large number of point-like implants called seeds is usually available. Simultaneous pose estimation for the c-arm for each image and localization of the seeds is studied in a simulation environment. Results indicate mean reconstruction errors that are less than 1.2 mm for noisy plans of 84 seeds or fewer. These are attained when the 3D mean error introduced to the plan as a result of adding Gaussian noise is less than 3.2 mm

    Enabling technologies for MRI guided interventional procedures

    Get PDF
    This dissertation addresses topics related to developing interventional assistant devices for Magnetic Resonance Imaging (MRI). MRI can provide high-quality 3D visualization of target anatomy and surrounding tissue, but the benefits can not be readily harnessed for interventional procedures due to difficulties associated with the use of high-field (1.5T or greater) MRI. Discussed are potential solutions to the inability to use conventional mecha- tronics and the confined physical space in the scanner bore. This work describes the development of two apparently dissimilar systems that repre- sent different approaches to the same surgical problem - coupling information and action to perform percutaneous (through the skin) needle placement with MR imaging. The first system addressed takes MR images and projects them along with a surgical plan directly on the interventional site, thus providing in-situ imaging. With anatomical images and a corresponding plan visible in the appropriate pose, the clinician can use this information to perform the surgical action. My primary research effort has focused on a robotic assistant system that overcomes the difficulties inherent to MR-guided procedures, and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot is a servo pneumatically operated automatic needle guide, and effectively guides needles under real- time MR imaging. This thesis describes development of the robotic system including requirements, workspace analysis, mechanism design and optimization, and evaluation of MR compatibility. Further, a generally applicable MR-compatible robot controller is de- veloped, the pneumatic control system is implemented and evaluated, and the system is deployed in pre-clinical trials. The dissertation concludes with future work and lessons learned from this endeavor

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Late Morbidity (Dysphagia) in Head and Neck Cancer after Radiotherapy using various Treatment Techniques

    Get PDF
    Oropharyngeal Cancer (Chapter 2) Good tumor control but late-side effects occur e.g. dysphagia. Quality of Life: Dysphagia (Chapters 3-6) Dose-effects relationships in base of tongue, tonsillar fossa and nasopharyngeal cancer are found for swallowing problems. Quality of Lfe: Trismus (Chapter 7) Dose-effects relationships in base of tongue and tonsillar fossa are found for trismus problems. Brachytherapy (Chapters 8-10) Patient treated by brachyhterapy have better local control, disease-free survival and overal survival than those treated with EBRT. Also BT patients were found to have fewer swallowing problems compared with the non-BT group of patients. Hyperbaric Oxygen (Chapter 11) A great benefit for the quality of life of patients was seen in patients who were randomized for hyperbaric oxygen after radiotherapy. A significant difference of different aspects of quality of life was seen for H&N35 ‘swallowing problems’, H&N35 ‘sticky saliva’, H&N35 ‘dry mouth’, visual analogue scale (VAS) ‘Dry mouth’, PSS ‘eating in public’ and VAS ‘pain in mouth’ in favor of the hyperbaric oxygen group. Non-Rigid Registration / Atlas-Based Auto-Segmentation (Chapters 12-14) Non-rigid registration method is a powerful tool to accurately assess local shape and position changes in HNC patients. When using ABAS, edited auto-contours were somewhat more in concordance with the corresponding levels of this atlas as opposed to the originally contoured levels

    Minimally Invasive Urological Procedures and Related Technological Developments

    Get PDF
    The landscape of minimally invasive urological intervention is changing. A lot of new innovations and technological developments have happened over the last 3 decades. Laparoscopy and robotic surgery have revolutionised kidney and prostate cancer treatment, with more minimally invasive procedures now being carried out than ever before. At the same time, technological advancements and the use of laser have changed the face of endourology. Several new innovative treatments are now commonplace for benign prostate enlargement (BPE). Management of prostate cancer now involves procedures such as robotic prostatectomy, brachytherapy, radiotherapy, cryotherapy and HIFU. Robotic partial nephrectomy and cryotherapy have changed the face of renal cancer. En-bloc resection of bladder cancer is challenging the traditional management of non-muscle invasive bladder cancer and becoming commonplace, while robotic cystectomy is also gaining popularity for muscle invasive bladder cancer. Newer surgical intervention related to BPE includes laser (holmium, thulium and green light), water-based treatment (Rezum, Aquablation) and other minimally invasive procedures such as prostate artery embolisation (PAE) and Urolift. Endourological procedures have incorporated newer laser types and settings such as moses technology, disposable ureteroscopes (URS) and minimisation of percutaneous nephrolithotomy (PCNL) instruments. All these technological innovations and improvements have led to shorter hospital stay, reduced cost, potential reduction in complications and improvement in the quality of life (QoL)
    corecore