20,245 research outputs found

    Approximations of Semicontinuous Functions with Applications to Stochastic Optimization and Statistical Estimation

    Get PDF
    Upper semicontinuous (usc) functions arise in the analysis of maximization problems, distributionally robust optimization, and function identification, which includes many problems of nonparametric statistics. We establish that every usc function is the limit of a hypo-converging sequence of piecewise affine functions of the difference-of-max type and illustrate resulting algorithmic possibilities in the context of approximate solution of infinite-dimensional optimization problems. In an effort to quantify the ease with which classes of usc functions can be approximated by finite collections, we provide upper and lower bounds on covering numbers for bounded sets of usc functions under the Attouch-Wets distance. The result is applied in the context of stochastic optimization problems defined over spaces of usc functions. We establish confidence regions for optimal solutions based on sample average approximations and examine the accompanying rates of convergence. Examples from nonparametric statistics illustrate the results

    Quadratic optimal functional quantization of stochastic processes and numerical applications

    Get PDF
    In this paper, we present an overview of the recent developments of functional quantization of stochastic processes, with an emphasis on the quadratic case. Functional quantization is a way to approximate a process, viewed as a Hilbert-valued random variable, using a nearest neighbour projection on a finite codebook. A special emphasis is made on the computational aspects and the numerical applications, in particular the pricing of some path-dependent European options.Comment: 41 page

    Independence clustering (without a matrix)

    Full text link
    The independence clustering problem is considered in the following formulation: given a set SS of random variables, it is required to find the finest partitioning {U1,…,Uk}\{U_1,\dots,U_k\} of SS into clusters such that the clusters U1,…,UkU_1,\dots,U_k are mutually independent. Since mutual independence is the target, pairwise similarity measurements are of no use, and thus traditional clustering algorithms are inapplicable. The distribution of the random variables in SS is, in general, unknown, but a sample is available. Thus, the problem is cast in terms of time series. Two forms of sampling are considered: i.i.d.\ and stationary time series, with the main emphasis being on the latter, more general, case. A consistent, computationally tractable algorithm for each of the settings is proposed, and a number of open directions for further research are outlined
    • …
    corecore