13,452 research outputs found

    The k-tuple domination number revisited

    Get PDF
    The following fundamental result for the domination number γ (G) of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: γ (G) ≤ frac(ln (δ + 1) + 1, δ + 1) n, where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [J. Harant, M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 29-34], and for the triple domination number by Rautenbach and Volkmann [D. Rautenbach, L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007) 98-102], who also posed the interesting conjecture on the k-tuple domination number: for any graph G with δ ≥ k - 1, γ× k (G) ≤ frac(ln (δ - k + 2) + ln (over(d, ̂)k - 1 + over(d, ̂)k - 2) + 1, δ - k + 2) n, where over(d, ̂)m = ∑i = 1n ((di; m)) / n is the m-degree of G. This conjecture, if true, would generalize all the mentioned upper bounds and improve an upper bound proved in [A. Gagarin, V. Zverovich, A generalised upper bound for the k-tuple domination number, Discrete Math. (2007), in press (doi:10.1016/j.disc.2007.07.033)]. In this paper, we prove the Rautenbach-Volkmann conjecture. © 2007 Elsevier Ltd. All rights reserved

    k-Tuple_Total_Domination_in_Inflated_Graphs

    Full text link
    The inflated graph GIG_{I} of a graph GG with n(G)n(G) vertices is obtained from GG by replacing every vertex of degree dd of GG by a clique, which is isomorph to the complete graph KdK_{d}, and each edge (xi,xj)(x_{i},x_{j}) of GG is replaced by an edge (u,v)(u,v) in such a way that u∈Xiu\in X_{i}, v∈Xjv\in X_{j}, and two different edges of GG are replaced by non-adjacent edges of GIG_{I}. For integer k≥1k\geq 1, the kk-tuple total domination number γ×k,t(G)\gamma_{\times k,t}(G) of GG is the minimum cardinality of a kk-tuple total dominating set of GG, which is a set of vertices in GG such that every vertex of GG is adjacent to at least kk vertices in it. For existing this number, must the minimum degree of GG is at least kk. Here, we study the kk-tuple total domination number in inflated graphs when k≥2k\geq 2. First we prove that n(G)k≤γ×k,t(GI)≤n(G)(k+1)−1n(G)k\leq \gamma_{\times k,t}(G_{I})\leq n(G)(k+1)-1, and then we characterize graphs GG that the kk-tuple total domination number number of GIG_I is n(G)kn(G)k or n(G)k+1n(G)k+1. Then we find bounds for this number in the inflated graph GIG_I, when GG has a cut-edge ee or cut-vertex vv, in terms on the kk-tuple total domination number of the inflated graphs of the components of G−eG-e or vv-components of G−vG-v, respectively. Finally, we calculate this number in the inflated graphs that have obtained by some of the known graphs
    • …
    corecore