189 research outputs found

    Bounds on the Dimension of Trivariate Spline Spaces: A Homological Approach

    Get PDF
    International audienceWe consider the vector space of globally differentiable piecewise polynomial functions defined on a three-dimensional polyhedral domain partitioned into tetrahedra. We prove new lower and upper bounds on the dimension of this space by applying homological techniques. We give an insight of different ways of approaching this problem by exploring its connections with the Hilbert series of ideals generated by powers of linear forms, fat points, the so-called Fröberg--Iarrobino conjecture, and the weak Lefschetz property

    On dimension and existence of local bases for multivariate spline spaces

    Get PDF
    AbstractWe consider spaces of splines in k variables of smoothness r and degree d defined on a polytope in Rk which has been divided into simplices. Bernstein-BĂ©zier methods are used to develop a framework for analyzing dimension and basis questions. Dimension formulae and local bases are found for the case r = 0 and general k. The main result of the paper shows the existence of local bases for spaces of trivariate splines (where k = 3) whenever d > 8r

    Associated Primes of Spline Complexes

    Full text link
    The spline complex R/J[Σ]\mathcal{R}/\mathcal{J}[\Sigma] whose top homology is the algebra Cα(Σ)C^\alpha(\Sigma) of mixed splines over the fan Σ⊂Rn+1\Sigma\subset\mathbb{R}^{n+1} was introduced by Schenck-Stillman in [Schenck-Stillman 97] as a variant of a complex R/I[Σ]\mathcal{R}/\mathcal{I}[\Sigma] of Billera [Billera 88]. In this paper we analyze the associated primes of homology modules of this complex. In particular, we show that all such primes are linear. We give two applications to computations of dimensions. The first is a computation of the third coefficient of the Hilbert polynomial of Cα(Σ)C^\alpha(\Sigma), including cases where vanishing is imposed along arbitrary codimension one faces of the boundary of Σ\Sigma, generalizing the computations in [Geramita-Schenck 98,McDonald-Schenck 09]. The second is a description of the fourth coefficient of the Hilbert polynomial of HP(Cα(Σ))HP(C^\alpha(\Sigma)) for simplicial fans Σ\Sigma. We use this to derive the result of Alfeld, Schumaker, and Whiteley on the generic dimension of C1C^1 tetrahedral splines for d≫0d\gg 0 [Alfeld-Schumaker-Whiteley 93] and indicate via an example how this description may be used to give the fourth coefficient in particular nongeneric configurations.Comment: 40 pages, 10 figure

    On spline quasi-interpolation through dimensions

    Get PDF

    Multivariate polynomial splines on generalized oranges

    Get PDF
    We consider spaces of multivariate splines defined on a particular type of simplicial partitions that we call (generalized) oranges. Such partitions are composed of a finite number of maximal faces with exactly one shared medial face. We reduce the problem of finding the dimension of splines on oranges to computing dimensions of splines on simpler, lower-dimensional partitions that we call projected oranges. We use both algebraic and Bernstein–Bézier tools

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest
    • …
    corecore