825 research outputs found

    Bounds on the Sum Capacity of Synchronous Binary CDMA Channels

    Full text link
    In this paper, we obtain a family of lower bounds for the sum capacity of Code Division Multiple Access (CDMA) channels assuming binary inputs and binary signature codes in the presence of additive noise with an arbitrary distribution. The envelope of this family gives a relatively tight lower bound in terms of the number of users, spreading gain and the noise distribution. The derivation methods for the noiseless and the noisy channels are different but when the noise variance goes to zero, the noisy channel bound approaches the noiseless case. The behavior of the lower bound shows that for small noise power, the number of users can be much more than the spreading gain without any significant loss of information (overloaded CDMA). A conjectured upper bound is also derived under the usual assumption that the users send out equally likely binary bits in the presence of additive noise with an arbitrary distribution. As the noise level increases, and/or, the ratio of the number of users and the spreading gain increases, the conjectured upper bound approaches the lower bound. We have also derived asymptotic limits of our bounds that can be compared to a formula that Tanaka obtained using techniques from statistical physics; his bound is close to that of our conjectured upper bound for large scale systems.Comment: to be published in IEEE Transactions on Information Theor

    Spectral Efficiency of Random Time-Hopping CDMA

    Full text link
    Traditionally paired with impulsive communications, Time-Hopping CDMA (TH-CDMA) is a multiple access technique that separates users in time by coding their transmissions into pulses occupying a subset of NsN_\mathsf{s} chips out of the total NN included in a symbol period, in contrast with traditional Direct-Sequence CDMA (DS-CDMA) where Ns=NN_\mathsf{s}=N. This work analyzes TH-CDMA with random spreading, by determining whether peculiar theoretical limits are identifiable, with both optimal and sub-optimal receiver structures, in particular in the archetypal case of sparse spreading, that is, Ns=1N_\mathsf{s}=1. Results indicate that TH-CDMA has a fundamentally different behavior than DS-CDMA, where the crucial role played by energy concentration, typical of time-hopping, directly relates with its intrinsic "uneven" use of degrees of freedom.Comment: 26 pages, 13 figure

    Fast Decoder for Overloaded Uniquely Decodable Synchronous Optical CDMA

    Full text link
    In this paper, we propose a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) systems. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only 1-2 dB higher signal-to-noise ratio (SNR) than the ML decoder.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0395
    • …
    corecore